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Abstract. An efficient adaptive scheme based on a triple mixed quadrature rule of precision
nine for approximate evaluation of line integral of analytic functions has been constructed. At
first, a mixed quadrature rule SM;(f) has been formed using Gauss-Legendre three point
transformed rule and five point Booles transformed rule. A suitable linear combination
of the resulting rule and Clenshaw-Curtis seven point rule gives a new mixed quadrature
rule SMio(f). This mixed rule is termed as triple mixed quadrature rule. An adaptive
quadrature scheme is designed. Some test integrals having analytic function integrands have
been evaluated using the triple mixed rule and its constituent rules in non-adaptive mode.
The same set of test integrals have been evaluated using those rules as base rules in the
adaptive scheme. The triple mixed rule based adaptive scheme is found to be the most

effective.

1. INTRODUCTION

Despite the simple nature of the problem and the practical value of its
method, numerical integration has been of great interest to both pure and
applied mathematicians like Archimedes, Kepler, Huygens, Newton, Euler,
Gauss, Jacobi, Chebyshev, Markhoff, Fejer, Polyya, Szego, Schoenberg and
Sobolov. There are several rules [3,4,11] for the approximate evaluation of
real definite integral
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b 1
I(f):/ f(x)dx and /1 f(z)dz. (1.1)

However there are only few quadrature rules for evaluating an integral of type

I(f) = / f(2)dz, (1.2)

where L is a directed line segment from the point (zo — h) to (2o + h) in the
domain of f. Using the transformation z = zo + ht,t € [—1, 1] (due to [6]), we
transformed the integral (1.2) to the form

1
h /1 f(z0 + ht)dt (1.3)

and made the approximation of the integral by applying standard quadrature
rule meant for approximate evaluation of real definite integral (1.1). The rules
so formed are termed as transformed rules for numerical integration of (1.2).

The integral (1.1) has been successfully approximated by several authors
[7,8,9] by applying the mixed quadrature rule in the complex plane. In liter-
ature, precision of a quadrature rule has been enhanced through Richardson
extrapolation and Kronrod extension [8,9]. These methods of precision en-
hancement are very much cumbersome and each having single base rule. But
the enhancement of precision by mixed quadrature approach is very much
simple with the aid of two rules and easy to handle.

In 1996, Das and Pradhan [3] breed the concept of mixed quadrature, af-
ter that Dash and his research team, Archarya have been developing mixed
quadrature rules of different combinations.

In this paper, a new mixed quadrature rule of precision nine has been de-
signed by a convex combination of three rules,

(i) Gauss-Legendre three point transformed rule GL(f),

(ii) Bools transformed rule BL(f),

(iii) Clenshaw-Curtis 7-point rule CC7(f).

This new mixed rule is termed as Triple Mixed Rule SMio(f).

This paper consists of seven sections. Section 1 is introductory one. Section
2 speaks about the constituent rules GL(f), BL(f) and the formation of the
mixed rule SM;(f) as well as their truncation errors. Section 3 describes
about Clenshaw-Curtis 7-point rule CC7(f) and its truncation error. Section
4 explains how the new rule named Triple mixed rule SMo(f) is constructed.
Section 5 gives an account of error analysis of the Triple mixed rule. In
Section 6 numerical verification of the new rule and its constituent rules is
done evaluating test integrals in non-adaptive environment. The effectiveness
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of the Triple mixed rule SMo(f) is presented through Tables and Figures.
Section 7 consists of an adaptive integration scheme and tabulated results of
the test integrals in this adaptive scheme taking the rule SMio(f) and its
constituents as base rules. A conclusion is drawn highlighting the role of
SMio(f) in the last section, Section 8.

2. CONSTRUCTION OF THE CONSTITUENT MIXED RULE SM;(f)

For construction of the constituent mixed rule SM;(f) let us consider fol-
lowing two quadrature rules of precision five.

2.1. Gauss-Legendre 3-point transformed rule GL(f). The Gauss-Legen-
dre 3-point transformed rule [1,2,11,12] is given by

I(f) =~ GL(f) = [51" (zo - \/§> +8f(20) +5f (zo + h\/§>] . (2.1)

Appling Taylor’s theorem, (2.1) becomes

h’2 0 h‘4 v 3 h6 vl
GL(f) = 2h[(20) + 57" (20) + 21" (20) + 55 27/ (20)
32 h8 VL 33 th T 34h Tt
+ S 0) + g R 0) + g o)+ | (22)

The exact value of the integral due to Taylor [11]

2 ht . he RS
Hﬁz%ﬂ@+fW%HgﬂW@+WW%H§ﬁW%)
10 12

h T h it

Error due to the rule GL(f ) is denoted by Eqr(f) and given by
Ecr(f) = (f) — GL(f). Using (2.2) and (2.3), we get

88 hY 656 h11 4144 B3
f””( 0)+ 7

Fou(f) = w5 o1 o)+ o 1 )+ T )+
(2.4)

The error term establishes that the degree of precision of rule GL(f) is five.

52 7!

2.2. Boole’s Quadrature transformed rule BL(f). The Boole’s trans-
formed rule [1,7,11] is given by

I(f) = BL(f)

= 4% [7f(20 —h) +32f (20 — g) +12f(20) + 32f (20 + h) FT7f(z0+1)].
(2.5)
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2

y 4 6 8
BLf) = 20 (zo) o (o) o £ (o) o

ool Ot gl (0
5 pl0 897 K12

T X
L _oat T L 2.
310 )+ s st (B0 F (2:6)

Error due to the rule BL(f) is denoted by Epr(f),so Epr(f) = I(f)—BL(f).

-1 h’7 Vi _17h9 V118
Epr(f) = 5T (20) + Toaf (20)
—23 pl1 1967 A3
- €T o €T R 2.
t 16 !l Pt s )t (2.7)

The error term establishes that the degree of precision of rule BL(f) is five.

2.3. The mixed rule SM;(f). The following theorem gives the construction
of the mixed rule SM;(f).

Theorem 2.1. If f(z) is analytic in the given domain Q D [z9 — h,zo + h],
then the mized SM;(f) and error due to the rule ESM;(f) given by

SMi(f) = — [25GL(f) + 24BL(f)]

49
and .
—14n7
Proof. We have
I(f) = GL(f) + Ecr(f) (2.8)
and
I(f) = BL(f) + EB(/). (2.9)

Adding 24 times of (2.9) with 25 times of (2.8) we have

A9I(f) = [25GL(f) + 24BL(f)] + [25Eqr(f) + 24EBL(f)],
this implies that

1) = 55

Therefore, we have

BOL(T) + UBL()] + 55 25 Eor(f) + 24EmL(f)].

I(f) = SMi(f)+ ESM(f),
where

SMy(f) = % 25GL(f) + 24BL(f)] (2.10)

is a mixed rule and

ESMi(f) = 45 [55Fa1(f) + 24Eps(f)
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is the truncation error due to the mixed rule. Using (2.4) and (2.7) after
simplification, we get

—14h% i 413 pt —48069 h'3 ..
ESM(J) = 55 or 0+ g0 10720+ Tag000 1317 (30) +('2'ﬁ)
Hence we have (neglecting the higher order terms)
_ ()R
ESMi(f) = 5 20 57 (z0)
This completes the proof. O
Note: Using (2.1) and (2.5) on (2.10) , we get
125h 3 3
SMy(f) = Tl {f (Zo - h\/;> +f (zo +h\/;> }
24h
ﬁ{f(zo—h)ﬂLf(ZoJrh)}
256h 184h
+ T (o = h/2) + o+ 2} + o (). (2.12)

(2.12) is known as expansion form of the rule SM;(f).
3. CLENSHAW-CURTIS 7-POINT TRANSFORMED RULE C'C7(f)

The Clenshaw-Curtis 7-point transformed rule [4,5,8] is given by

zo+h
I(f):/ f(Z)dZ:CC7(f):31h5[9f(zo—h)_|_80f (%—?h)

o—h

+ 144 f (zo - Z) + 164 f(20) + 144f (Zo + ;L)

+80f <20+\é§h> +9f (20 + h) (3.1)
and
h2 . ht he
CC7(f) =2h [f(zo) + gf“(zo) + afw(zo) + 7!j‘""”(zo)]
31 hY . 5 it
b | o) + T )+ 3.2

Corollary 3.1. If f(z) is analytic in the given domain 2 D [z0 — h, zo + h],
then the rule CCr7(f) is of precision-7 and the truncation error due to the rule
is ECCr(f) = o(h%).
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Proof. From I(f) = CCy(f)+ ECC7(f), we have
ECC:(f) = I(f) = CCr(f). (3-3)
Using (2.3) and (3.2) on (3.3), the truncation error due to the rule CC7(f) is
1 A 1 Al

(3.4) indicate that the degree of precision of the rule CC7(f) is seven and
ECCr(f) = o(h?). m

4. FORMULATION OF THE TRIPLE MIXED QUADRATURE RULE SMjq(f)

The following theorem gives the formulation of the proposed Triple mixed
quadrature rule.

Theorem 4.1. If f(z) is analytic in the given domain Q D [z9 — h, 2o + h],
then the triple mized quadrature SMio(f) and truncation error due to the rule
ESM(f) are given by

SMio(f) = §8CCH () + SMi(f)]

and

ESMig(f) = {[BECCH(f) + ESM(f)).

Proof. Resuming
I(f) = CC:(f) + ECCr(f) (4.1)
and
I(f) = SMy(f) + ESM1(f) (4.2)
Adding 8 times of (4.1) to the equation (4.2), we get
9I(f) = SM1(f) +8CC(f) + ESM1(f) +8ECC(f).

Hence
I1(f) = §SM(f) +8CC()] + §[ESMi(f) + SECCH(f)],

Therefore, we have
I(f) = SMo(f) + ESMio(f),

where
SMiolf) = g[SM(f) +80CH(f) (4.3
and
ESMig(f) = S[ESMi(f) + 8ECCH(f)). (1.4)

(4.3) is the required triple mixed quadrature rule and (4.4) is the truncation
error associated due to the rule. O
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The triple mixed quadrature rule
SM ,,(f) (Precision-9)

FIGURE 1. Representation of construction of the rule SMj(f)

5. ERROR ANALYSIS

An error analysis of the constructed Triple mixed rule has been obtained
by the following theorems.

Theorem 5.1. If f(z) is analytic in the given domain Q D [zo — h,zo + h],
then the truncation error due to the rule SMyo(f) is denoted by ESMio(f)
and | ESMio(f) |2 13251 £ (20).

1050 11!
Proof. Using (2.11) and (3.4) on (4.4), we get
53 hil |
ESMo(f) = 1050 1/ (z0) +
Hence,
L 53 A
ESM(f) = 105011,f( 20)
and
53 AU,
| ESMuo(f) 1= {55171 (20)-

Lemma 5.2. The Error bound of the constructed quadrature rule is
< 2M h?
= 315 9!

where M = max_1<.<1 |fm(z)|

| ESMIO( ) |§2 _§1|7 61752 € [_17 1]

Proof. From (3.4), we get ECCr(f) = 11 f’”“(ﬁl), & € [-1,1] and from
(2.11), we get ESMy(f) = 512 ’5? fU(&y), & € [—1,1]. Using these two values
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n (4.4), we can write

st L {22 ) {28 ey

2 hg Vi V11
= 3E9 &) = U (&)}

—2 hg mm Vit
=EWU - PE)}

—2 K
=0 f””(Z) z
315 9! Jg,

It implies that

315 9! 315 9!

2 hd

< =
= 315 9!

2 K (%2 2 K o[
| BSM | = 5 | [ e 1< [ () | dz
&1 &1

Mdz,

where M = max_j<.<1 | f*%(2) | . Hence, we have

2M h°
< 3ol al (5.1)
Since &; and & are arbitrarily chosen points in the interval [—1, 1], (5.1) shows
that the absolute value of the truncation error will be less if the points £; and
&> are closure to each other. O

| ESMio(f)

Corollary 5.3. The error bound for the truncation error is

AM hP

| ESMio(f) IS % 315 01
where M = max_1<,<1 | f%(2) |.
Proof. From the Lemma 5.2,

2M h°
=35 315 9!
where M = max_j<.<1 | f%(2)|.

Using the relation | {o — & |< 2 [9], we have

AM h®
ESM: < =
| ESMio(f) 1< 5125

| ESMlO( ) | 7€1|7 61’62 € [7171]

O

Theorem 5.4. If f(z) is analytic in the given domain Q D [z9—h, zo+h], then
the error committed due to the mized quadrature rule SMyo(f) is less than its
constituent rules.
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Proof. From (2.4) and Theorem 5.1 | ESMio(f) |<| EGL(f) | . From (2.7)
and Theorem 5.1 | ESMio(f) |<| EBL(f) | . From (2.11) and Theorem 5.1
| ESMio(f) |<| ESM;i(f) | . From (3.4) and Theorem 5.1 | ESMo(f) |<|
ECC:(f)|. O

6. NUMERICAL VERIFICATION

The effectiveness of the rule SMjo(f) is verified by applying it and its
constituents on test integrals in Non-adaptive mode (see remarks below on
Tables 1,2 and Figures 2,3,4).

Table-1.
Integrals Values obtained by different quadrature rules
GL(f) BL(f) SM:(f) CCq(f) SMio(f)
I = | 1.462409711 | 1.462909438 | 1.462654475| 1.462651370 | 1.4626517153
fg e=*'dz | 47732195i 972969671 964986141 23528938i 1636681
I = | 2.350336928 | 2.3504709035 2.350402549 | 2.350402366 | 2.3504023869
fiicoszdz 6800113i 693721 033981 69629971 56042461
I3 = | 20.20264061 | 44.427103214 32.06768352 | 31.06556841 | 31.176914536
f_%i Bdy | 948331 14170251 298951 289606731 23978231
I44 = | 0.654389422 | 0.6543893634 0.654389393 | 0.654389393 | 0.6543893935
fi/l?/’?’ coszdz 52546781 698781 6002811 5913094921 | 923063271
Table-2.
Inte | Exact value |Error| due to quadrature rules
grals
|[EGL(f)| | [EBL(f)| | |[ESMi(f)I |[ECC7(f)| [ESMio(f)|
I 1.4626517459| 0.0002420 | 0.0002576 | 0.0000027| 0.0000003 | 0.000000030
07182i 3442986 930658 30058 75672 590815
I 2.3504023872| 0.00006545 | 0.0000685 | 0.0000001| 0.0000000 | 0.000000000
876029131 86075916 | 16281769 | 61746377 | 205913032 | 331560453
I3 31.176914536| 10.9742739| 13.250188 | 0.8907689| 0.1113461 | 0.000000000
23979128349 | 16756491 67790191 | 86749708 | 233437239 | 000008983494
4i
I3 0.6543893935| 0.00000002 | 0.0000000 | 0.0000000| 0.0000000 | 0.000000000
92304481 89331633 | 30122426 | 00007976 | 00000995 | 000001847
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Decimals places~Values
15-decimal ——
= —
£ 11 decimal —— m Exact value(l1)
a —
E | = SM10 (f)
‘s 7-decimal —
g —_— uCC7 (f)
L — = SM1(f)
4-decima —_—
— mBL(
. 7 GL
ETEURp, Laean m GL(f)
. 1.4626 1.4678
) 1.463
Integral values

FIGURE 2. Values of I7 obtained by different quadrature rules.

T1
15-decimals |§
4 : S

B Exactvalue(l2)

10-decimals
m SM10(f)
7-decimals 2l
u SM1(f)
4-decimals  mBLf)

m GL(f)
2.3502

2.3505

FIGURE 3. Values of I> obtained by different quadrature rules.
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15-decimal f——
.
—

W Exactvalue (13)
10-decimal

—‘l m SM10(f)
m CC7(f)
J-decimal
= SM1(f)
4A-decimal A\ R
—
- 10

m GL{f)

FIGURE 4. Values of I3 obtained by different quadrature rules.

Remark 6.1. From the figures and Table-2 we mark as below:

(i) In the figure-2, the values obtained from the triple mixed rule SMo(f)
covers the exact value I1(f) upto seven decimal places but the con-
stituent rules fail after 3- 6 decimal places.

(ii) In the figure-3, the values obtained from the rule SMio(f) covers the

exact value Io(f) upto nine decimal places but the constituent rules
fail after 3-7 decimal places.

(iii) In the figure-4, the values obtained from the rule SMio(f) covers the

exact value I3(f) upto 14 decimal places but the constituent rules fail
to a single decimal place.

7. APPLICATION OF THE QUADRATURE RULE IN ADAPTIVE QUADRATURE
ROUTINES
An effective adaptive strategy is given in following algorithm [4,10,13].
Algorithm 7.1. The input to this scheme is a, b, €,n, f. The output is

p= /abf(:v)dx

with error less than €, n is the number of interval initially chosen. The
adaptive strategy is outlined in the following four steps.

Step-1 An approximation I; to I = f; f(z)dz is computed.
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Step-2 The interval is divided into pieces, [a, ¢] and [c, b] where ¢ =

Sanjit Kumar Mohanty

then I = [ f(z)dx and I3 ~ fcb f(x)dx are computed.
Step-3 Is + I3 is compared with I, to estimate error in Is + I3.
Step-4 If | estimated error |[<€ (termination criterion), then Io+I3 is accepted

(a;b) , and

as an approximation to f; f(x)dzx. Otherwise the same procedure is
applied to [a, ¢] and [c, b], allowing each piece to a tolerance of §.

Applying quadrature routines to the proposed quadrature rule to each of
the sub intervals covering [a, b] until the termination criterion is satisfied.

If the termination criterion is not satisfied in one or more of the sub inter-
vals, then those subintervals must be further subdivided and entire process
repeated.

Table-3. Approximation of the test integrals by the constructed rule SMio(f)
and the constituent rules using the adaptive quadrature routines.

Let us consider the prescribed tolerance € = 1.0 x 107%.

Integrals For the Tripple Mixed rule SM;o(f)

I Approximate value(P) | No of steps | | Error | = | P —
required T|

I, = fil coszdz 2.35040238728724233i 01 3.605 x10~13

I, = fil e*dz 1.6829419696151793281 | 01 2.665 x10~1°

I = ["]); coshzdz | 0.654389393592304491 | 01 1.025 x10~17

Inte | For the constituent Mixed rule SM;(f) | For the constituent rule CC7(f)
grals
I Approximate | No of | | Error |= Approximate | No of | | Error |
value(P) steps | | P —1| value(P) steps | =|P—1|
re- re-
quired quired
1, 2.350402387290 03 2.799 2.3504023872 | 03 1.923
402181 x 10712 8725261 x10713
I 1.682941969617 01 2.039 1.6829419696 | 01 2.546
83271 x10712 15538351 x10713
1. 0.654389393592 01 3.08 0.6543893935 | 01 3.838
335284 x10~ 923006411 x1071
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8. CONCLUSIONS

From the tables it is evident that the mixed quadrature rule when applied
on each of the test integrals gives better results than that of constituent rules
in non-adaptive mode. This mixed quadrature rule SMo(f) also dominates
its constituents in adaptive environment. Though in some cases the number
of steps required to achieve the desired accuracy is reduced but in all cases the
absolute error due to the triple mixed rule is significantly less in comparison
to other rules.
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