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Abstract. An efficient adaptive scheme based on a triple mixed quadrature rule of precision

nine for approximate evaluation of line integral of analytic functions has been constructed. At

first, a mixed quadrature rule SM1(f) has been formed using Gauss-Legendre three point

transformed rule and five point Booles transformed rule. A suitable linear combination

of the resulting rule and Clenshaw-Curtis seven point rule gives a new mixed quadrature

rule SM10(f). This mixed rule is termed as triple mixed quadrature rule. An adaptive

quadrature scheme is designed. Some test integrals having analytic function integrands have

been evaluated using the triple mixed rule and its constituent rules in non-adaptive mode.

The same set of test integrals have been evaluated using those rules as base rules in the

adaptive scheme. The triple mixed rule based adaptive scheme is found to be the most

effective.

1. Introduction

Despite the simple nature of the problem and the practical value of its
method, numerical integration has been of great interest to both pure and
applied mathematicians like Archimedes, Kepler, Huygens, Newton, Euler,
Gauss, Jacobi, Chebyshev, Markhoff, Fejer, Polyya, Szego, Schoenberg and
Sobolov. There are several rules [3,4,11] for the approximate evaluation of
real definite integral
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I(f) =

∫ b

a
f(x)dx and

∫ 1

−1
f(z)dz. (1.1)

However there are only few quadrature rules for evaluating an integral of type

I(f) =

∫
L
f(z)dz, (1.2)

where L is a directed line segment from the point (z0 − h) to (z0 + h) in the
domain of f . Using the transformation z = z0 + ht, t ∈ [−1, 1] (due to [6]), we
transformed the integral (1.2) to the form

h

∫ 1

−1
f(z0 + ht)dt (1.3)

and made the approximation of the integral by applying standard quadrature
rule meant for approximate evaluation of real definite integral (1.1). The rules
so formed are termed as transformed rules for numerical integration of (1.2).

The integral (1.1) has been successfully approximated by several authors
[7,8,9] by applying the mixed quadrature rule in the complex plane. In liter-
ature, precision of a quadrature rule has been enhanced through Richardson
extrapolation and Kronrod extension [8,9]. These methods of precision en-
hancement are very much cumbersome and each having single base rule. But
the enhancement of precision by mixed quadrature approach is very much
simple with the aid of two rules and easy to handle.

In 1996, Das and Pradhan [3] breed the concept of mixed quadrature, af-
ter that Dash and his research team, Archarya have been developing mixed
quadrature rules of different combinations.

In this paper, a new mixed quadrature rule of precision nine has been de-
signed by a convex combination of three rules,

(i) Gauss-Legendre three point transformed rule GL(f),
(ii) Bools transformed rule BL(f),
(iii) Clenshaw-Curtis 7-point rule CC7(f).

This new mixed rule is termed as Triple Mixed Rule SM10(f).

This paper consists of seven sections. Section 1 is introductory one. Section
2 speaks about the constituent rules GL(f), BL(f) and the formation of the
mixed rule SM1(f) as well as their truncation errors. Section 3 describes
about Clenshaw-Curtis 7-point rule CC7(f) and its truncation error. Section
4 explains how the new rule named Triple mixed rule SM10(f) is constructed.
Section 5 gives an account of error analysis of the Triple mixed rule. In
Section 6 numerical verification of the new rule and its constituent rules is
done evaluating test integrals in non-adaptive environment. The effectiveness
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of the Triple mixed rule SM10(f) is presented through Tables and Figures.
Section 7 consists of an adaptive integration scheme and tabulated results of
the test integrals in this adaptive scheme taking the rule SM10(f) and its
constituents as base rules. A conclusion is drawn highlighting the role of
SM10(f) in the last section, Section 8.

2. Construction of the constituent mixed rule SM1(f)

For construction of the constituent mixed rule SM1(f) let us consider fol-
lowing two quadrature rules of precision five.

2.1. Gauss-Legendre 3-point transformed rule GL(f). The Gauss-Legen-
dre 3-point transformed rule [1,2,11,12] is given by

I(f) ≈ GL(f) =
h

9

[
5f

(
z0 − h

√
3

5

)
+ 8f(z0) + 5f

(
z0 + h

√
3

5

)]
. (2.1)

Appling Taylor’s theorem, (2.1) becomes

GL(f) = 2h
[
f(z0) +

h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

3

52
h6

5!
fvi(z0)

+
32

53
h8

8!
fviii(z0) +

33

54
h10

10!
fx(z0) +

34

55
h12

12!
fxii(z0) + · · ·

]
. (2.2)

The exact value of the integral due to Taylor [11]

I(f) = 2h
[
f(z0) +

h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

7!
fvi(z0) +

h8

9!
fviii(z0)

+
h10

11!
fx(z0) +

h12

13!
fxii(z0) + · · ·

]
. (2.3)

Error due to the rule GL(f) is denoted by EGL(f) and given by
EGL(f) = I(f)−GL(f). Using (2.2) and (2.3), we get

EGL(f) =
8

52
h7

7!
fvi(z0)+

88

53
h9

9!
fviii(z0)+

656

54
h11

11!
fx(z0)+

4144

55
h13

13!
fxii(z0)+· · ·

(2.4)
The error term establishes that the degree of precision of rule GL(f) is five.

2.2. Boole’s Quadrature transformed rule BL(f). The Boole’s trans-
formed rule [1,7,11] is given by

I(f) ≈ BL(f)

=
h

45

[
7f(z0 − h) + 32f(z0 −

h

2
) + 12f(z0) + 32f(z0 +

h

2
) + 7f(z0 + h)

]
.

(2.5)
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BL(f) = 2h
[
f(z0)+

h2

3!
f ii(z0)+

h4

5!
f iv(z0)+

h6

6× 6!
fvi(z0)+

57

45× 8

h8

8!
fviii(z0)

+
5

32

h10

10!
fx(z0) +

897

45× 128

h12

12!
fxii(z0) + · · ·

]
. (2.6)

Error due to the rule BL(f) is denoted by EBL(f), so EBL(f) = I(f)−BL(f).

EBL(f) =
−1

3

h7

7!
fvi(z0) +

−17

20

h9

9!
fviii(z0)

+
−23

16

h11

11!
fx(z0) +

1967

15× 128

h13

13!
fxii(z0) + · · · . (2.7)

The error term establishes that the degree of precision of rule BL(f) is five.

2.3. The mixed rule SM1(f). The following theorem gives the construction
of the mixed rule SM1(f).

Theorem 2.1. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h],
then the mixed SM1(f) and error due to the rule ESM1(f) given by

SM1(f) =
1

49
[25GL(f) + 24BL(f)]

and

ESM1(f) ≡ −14

245

h9

9!
fviii(z0).

Proof. We have

I(f) = GL(f) + EGL(f) (2.8)

and

I(f) = BL(f) + EBL(f). (2.9)

Adding 24 times of (2.9) with 25 times of (2.8) we have

49I(f) = [25GL(f) + 24BL(f)] + [25EGL(f) + 24EBL(f)] ,

this implies that

I(f) =
1

49
[25GL(f) + 24BL(f)] +

1

49
[25EGL(f) + 24EBL(f)] .

Therefore, we have

I(f) = SM1(f) + ESM1(f),

where

SM1(f) =
1

49
[25GL(f) + 24BL(f)] (2.10)

is a mixed rule and

ESM1(f) =
1

49
[25EGL(f) + 24EBL(f)]
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is the truncation error due to the mixed rule. Using (2.4) and (2.7) after
simplification, we get

ESM1(f) =
−14

245

h9

9!
fviii(z0) +

413

2450

h11

11!
fx(z0) +

−48069

147000

h13

13!
fxii(z0) + · · · .

(2.11)
Hence we have (neglecting the higher order terms)

ESM1(f) =
(−14)

245

h9

9!
fviii(z0).

This completes the proof. �

Note: Using (2.1) and (2.5) on (2.10) , we get

SM1(f) =
125h

441

{
f

(
z0 − h

√
3

5

)
+ f

(
z0 + h

√
3

5

)}

+
24h

315
{f(z0 − h) + f(z0 + h)}

+
256h

735
{f(z0 − h/2) + f(z0 + h/2)}+

184h

315
f(z0). (2.12)

(2.12) is known as expansion form of the rule SM1(f).

3. Clenshaw-Curtis 7-point transformed rule CC7(f)

The Clenshaw-Curtis 7-point transformed rule [4,5,8] is given by

I(f) =

∫ z0+h

z0−h
f(z)dz ≡ CC7(f) =

h

315

[
9f (z0 − h) + 80f

(
z0 −

√
3

2
h

)

+ 144f

(
z0 −

h

2

)
+ 164f(z0) + 144f

(
z0 +

h

2

)
+ 80f

(
z0 +

√
3

2
h

)
+ 9f (z0 + h)

]
(3.1)

and

CC7(f) = 2h

[
f(z0) +

h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

7!
fvi(z0)

]
+

[
31

140

h9

8!
fviii(z0) +

5

25

h11

10!
fx(z0) + · · ·

]
. (3.2)

Corollary 3.1. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h],
then the rule CC7(f) is of precision-7 and the truncation error due to the rule
is ECC7(f) = o(h9).
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Proof. From I(f) = CC7(f) + ECC7(f), we have

ECC7(f) = I(f)− CC7(f). (3.3)

Using (2.3) and (3.2) on (3.3), the truncation error due to the rule CC7(f) is

ECC7(f) =
1

140

h9

9!
fviii(z0) +

1

28

h11

11!
fx(z0) + · · · . (3.4)

(3.4) indicate that the degree of precision of the rule CC7(f) is seven and
ECC7(f) = o(h9). �

4. Formulation of the triple mixed quadrature rule SM10(f)

The following theorem gives the formulation of the proposed Triple mixed
quadrature rule.

Theorem 4.1. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h],
then the triple mixed quadrature SM10(f) and truncation error due to the rule
ESM10(f) are given by

SM10(f) =
1

9
[8CC7(f) + SM1(f)]

and

ESM10(f) =
1

9
[8ECC7(f) + ESM1(f)].

Proof. Resuming
I(f) = CC7(f) + ECC7(f) (4.1)

and
I(f) = SM1(f) + ESM1(f). (4.2)

Adding 8 times of (4.1) to the equation (4.2), we get

9I(f) = SM1(f) + 8CC7(f) + ESM1(f) + 8ECC7(f).

Hence

I(f) =
1

9
[SM1(f) + 8CC7(f)] +

1

9
[ESM1(f) + 8ECC7(f)].

Therefore, we have
I(f) = SM10(f) + ESM10(f),

where

SM10(f) =
1

9
[SM1(f) + 8CC7(f)] (4.3)

and

ESM10(f) =
1

9
[ESM1(f) + 8ECC7(f)]. (4.4)

(4.3) is the required triple mixed quadrature rule and (4.4) is the truncation
error associated due to the rule. �
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Figure 1. Representation of construction of the rule SM10(f)

5. Error analysis

An error analysis of the constructed Triple mixed rule has been obtained
by the following theorems.

Theorem 5.1. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h],
then the truncation error due to the rule SM10(f) is denoted by ESM10(f)

and | ESM10(f) |∼= 53
1050

h11

11! f
x(z0).

Proof. Using (2.11) and (3.4) on (4.4), we get

ESM10(f) =
53

1050

h11

11!
fx(z0) + · · · .

Hence,

ESM10(f) ∼=
53

1050

h11

11!
fx(z0)

and

| ESM10(f) |∼=
53

1050

h11

11!
fx(z0).

�

Lemma 5.2. The Error bound of the constructed quadrature rule is

| ESM10(f) |≤ 2M

315

h9

9!
|ξ2 − ξ1|, ξ1, ξ2 ∈ [−1, 1]

where M = max−1≤z≤1 |f ix(z)|.

Proof. From (3.4), we get ECC7(f) ∼= 1
140

h9

9! f
viii(ξ1), ξ1 ∈ [−1, 1] and from

(2.11), we get ESM1(f) ∼= −14
245

h9

9! f
viii(ξ2), ξ2 ∈ [−1, 1]. Using these two values
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on (4.4), we can write

ESM10(f) ∼=
1

9

[{
2

35

h9

9!
fviii(ξ1)

}
−
{

2

35

h9

9!
fviii(ξ2)

}]
=

2

315

h9

9!

{
fviii(ξ1)− fviii(ξ2)

}
=
−2

315

h9

9!

{
fviii(ξ2)− fviii(ξ1)

}
=
−2

315

h9

9!

∫ ξ2

ξ1

f ix(z)dz.

It implies that

| ESM10 | ∼=
2

315

h9

9!
|
∫ ξ2

ξ1

f ix(z)dz |≤ 2

315

h9

9!

∫ ξ2

ξ1

| f ix(z) | dz

≤ 2

315

h9

9!

∫ ξ2

ξ1

Mdz,

where M = max−1≤z≤1 | f ix(z) | . Hence, we have

| ESM10(f) |≤ 2M

315

h9

9!
| ξ2 − ξ1 | . (5.1)

Since ξ1 and ξ2 are arbitrarily chosen points in the interval [−1, 1], (5.1) shows
that the absolute value of the truncation error will be less if the points ξ1 and
ξ2 are closure to each other. �

Corollary 5.3. The error bound for the truncation error is

| ESM10(f) |≤ 4M

315

h9

9!
,

where M = max−1≤z≤1 | f ix(z) |.

Proof. From the Lemma 5.2,

| ESM10(f) |≤ 2M

315

h9

9!
|ξ2 − ξ1|, ξ1, ξ2 ∈ [−1, 1]

where M = max−1≤z≤1 |f ix(z)|.
Using the relation | ξ2 − ξ1 |≤ 2 [9], we have

| ESM10(f) |≤ 4M

315

h9

9!
.

�

Theorem 5.4. If f(z) is analytic in the given domain Ω ⊃ [z0−h, z0+h], then
the error committed due to the mixed quadrature rule SM10(f) is less than its
constituent rules.
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Proof. From (2.4) and Theorem 5.1 | ESM10(f) |≤| EGL(f) | . From (2.7)
and Theorem 5.1 | ESM10(f) |≤| EBL(f) | . From (2.11) and Theorem 5.1
| ESM10(f) |≤| ESM1(f) | . From (3.4) and Theorem 5.1 | ESM10(f) |≤|
ECC7(f) | . �

6. Numerical verification

The effectiveness of the rule SM10(f) is verified by applying it and its
constituents on test integrals in Non-adaptive mode (see remarks below on
Tables 1,2 and Figures 2,3,4).

Table-1.

Integrals Values obtained by different quadrature rules

GL(f) BL(f) SM1(f) CC7(f) SM10(f)

I1 =∫ i

0
e−z

2

dz

1.462409711
47732195i

1.462909438
97296967i

1.462654475
96498614i

1.462651370
23528938i

1.4626517153
163668i

I2 =∫ i

−i coszdz

2.350336928
6800113i

2.3504709035
69372i

2.350402549
03398i

2.350402366
6962997i

2.3504023869
5604246i

I3 =∫√3i

−
√
3i
z8dz

20.20264061
94833i

44.427103214
1417025i

32.06768352
29895i

31.06556841
28960673i

31.176914536
2397823i

I4 =∫ i/3

−i/3 coszdz

0.654389422
5254678i

0.6543893634
69878i

0.654389393
600281i

0.654389393
591309492i

0.6543893935
92306327i

Table-2.

Inte
grals

Exact value |Error| due to quadrature rules

|EGL(f)| |EBL(f)| |ESM1(f)| |ECC7(f)| |ESM10(f)|

I1 1.4626517459
07182i

0.0002420
3442986

0.0002576
930658

0.0000027
30058

0.0000003
75672

0.000000030
590815

I2 2.3504023872
87602913i

0.00006545
86075916

0.0000685
16281769

0.0000001
61746377

0.0000000
205913032

0.000000000
331560453

I3 31.176914536
23979128349
4i

10.9742739
16756491

13.250188
67790191

0.8907689
86749708

0.1113461
233437239

0.000000000
000008983494

I3 0.6543893935
9230448i

0.00000002
89331633

0.0000000
30122426

0.0000000
00007976

0.0000000
00000995

0.000000000
000001847
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Figure 2. Values of I1 obtained by different quadrature rules.

Figure 3. Values of I2 obtained by different quadrature rules.
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Figure 4. Values of I3 obtained by different quadrature rules.

Remark 6.1. From the figures and Table-2 we mark as below:

(i) In the figure-2, the values obtained from the triple mixed rule SM10(f)
covers the exact value I1(f) upto seven decimal places but the con-
stituent rules fail after 3- 6 decimal places.

(ii) In the figure-3, the values obtained from the rule SM10(f) covers the
exact value I2(f) upto nine decimal places but the constituent rules
fail after 3-7 decimal places.

(iii) In the figure-4, the values obtained from the rule SM10(f) covers the
exact value I3(f) upto 14 decimal places but the constituent rules fail
to a single decimal place.

7. Application of the quadrature rule in adaptive quadrature
routines

An effective adaptive strategy is given in following algorithm [4,10,13].

Algorithm 7.1. The input to this scheme is a, b,∈, n, f . The output is

P ∼=
∫ b

a
f(x)dx

with error less than ∈, n is the number of interval initially chosen. The
adaptive strategy is outlined in the following four steps.

Step-1 An approximation I1 to I =
∫ b
a f(x)dx is computed.
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Step-2 The interval is divided into pieces, [a, c] and [c, b] where c = (a+b)
2 , and

then I2 ≈
∫ c
a f(x)dx and I3 ≈

∫ b
c f(x)dx are computed.

Step-3 I2 + I3 is compared with I1, to estimate error in I2 + I3.
Step-4 If | estimated error |≤∈ (termination criterion), then I2+I3 is accepted

as an approximation to
∫ b
a f(x)dx. Otherwise the same procedure is

applied to [a, c] and [c, b], allowing each piece to a tolerance of ∈2 .

Applying quadrature routines to the proposed quadrature rule to each of
the sub intervals covering [a, b] until the termination criterion is satisfied.

If the termination criterion is not satisfied in one or more of the sub inter-
vals, then those subintervals must be further subdivided and entire process
repeated.

Table-3. Approximation of the test integrals by the constructed rule SM10(f)
and the constituent rules using the adaptive quadrature routines.

Let us consider the prescribed tolerance ε = 1.0× 10−8.

Integrals For the Tripple Mixed rule SM10(f)

I Approximate value(P) No of steps
required

| Error | = | P −
I |

Ia =
∫ i

−i coszdz 2.35040238728724233i 01 3.605 ×10−13

Ib =
∫ i

−i e
zdz 1.682941969615179328i 01 2.665 ×10−16

Ic =
∫ i/3

−i/3 coshzdz 0.65438939359230449i 01 1.025 ×10−17

Inte
grals

For the constituent Mixed rule SM1(f) For the constituent rule CC7(f)

I Approximate
value(P)

No of
steps
re-
quired

| Error |=
| P − I |

Approximate
value(P)

No of
steps
re-
quired

| Error |
= | P−I |

Ia 2.350402387290
40218i

03 2.799
×10−12

2.3504023872
872526i

03 1.923
×10−13

Ib 1.682941969617
8327i

01 2.039
×10−12

1.6829419696
1553835i

01 2.546
×10−13

Ic 0.654389393592
335284i

01 3.08
×10−14

0.6543893935
92300641i

01 3.838
×10−15
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8. Conclusions

From the tables it is evident that the mixed quadrature rule when applied
on each of the test integrals gives better results than that of constituent rules
in non-adaptive mode. This mixed quadrature rule SM10(f) also dominates
its constituents in adaptive environment. Though in some cases the number
of steps required to achieve the desired accuracy is reduced but in all cases the
absolute error due to the triple mixed rule is significantly less in comparison
to other rules.
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