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Abstract. In this paper, some fixed point theorems for new type of (&, 3)-expansive map-
pings of type (S) and type (T) using control function and S-admissible function in G-metric
spaces are proved. Further, we prove certain fixed point results by relaxing the continuity

condition.

1. INTRODUCTION

In 2011, Imdad et al. [6] generalized some common fixed point results for
expansive mappings in symmetric spaces. Afterwards, some researchers estab-
lished fixed point results for expansive mappings in complete metric spaces,
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cone metric spaces and 2-metric spaces (see [5], [12], [15]). In 2013, Sha-
bani and Razani [14] investigated the solutions of minimization problem for
noncyclic functions in the context of G-metric spaces. In 2014, Karapinar [§]
proved some interesting results for (£, «)-contractive mappings in generalized
metric space. In 2010, Mustafa et al. [10] proved some fixed point results for
expansive mappings in G-metric spaces.

Afterwards, many researchers proved some fixed point results for another
sort of contraction known as F-Suzuki contraction and a-type F-contraction
in metric spaces and G-metric spaces (see [2], [4], [9], [11]). In 2018, Jyoti et
al. [7] introduced the notion of (53, &, ¢)-expansive mappings in digital metric
space. After then, some researchers established fixed point results in Hausdorff
rectangular metric spaces and b-metric spaces with the help of C-functions (see

1], [3])-

Lemma 1.1. Let {x,} be a Cauchy sequence in (H,G) withlim, o G(zy, u, u)
=0. Then G(zp,t,t) = G(u,t,t) for every t € H.
Definition 1.2. ([13]) Let ¥ be the family of functions ¢ : [0, +00) — [0, +00)
satisfying the followings:

(i) ¢ is upper semi-continuous and strictly increasing;

(ii) {¢"™(k)} tend to 0 as n — oo for all k > 0;
(iii) ¥ (k) < & for all K > 0.

These functions are known as comparison functions.

Definition 1.3. ([13]) Let A : H — H be a given self-map in a metric space
(H,w). Then, h is said to be an («,)-contraction if there exist two maps
€W and a:H x H — [0,+00) such that

o(z, z)w(he, hz) < Y(@(z, 2)),
for all z,z € H.

In 2012, Samet et al. introduced the notion of S-admissible functions as
follows:

Definition 1.4. ([13]) Let H : H — H and 8 : H X H x H — [0, +00). Then,
H is said to be a -admissible if 8(e, k, k) > 1, then S(He, Hk, Hk) > 1, for
all e, k € H.

2. MAIN RESULTS

In this section, we introduce (&, §)-expansive mappings of type (S) and type
(T) and prove some fixed point theorems in a G-metric space with the help of
a [-admissible function.
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Definition 2.1. Let Q : H — H be a function in (#,G). Then, Q is said to
be a (&, f)-expansive mapping of type (5) if there are two mappings & € ®
and f:H x H x H — [0, 00] such that

§(G(Qz, Qy, Qz)) = f(x,y, z) min{G(z,y, 2),G(z, Qz, Qx), G(y, Qy, Q),
G(z,Qz,Q2),G(z, Qy, Q),G(y, Qz, Q2)},
(2.1)
where ® denote the class of all the mappings ¢ : [0, 00) — [0, 00) satisfying the
followings:

(i) ¢ is upper semi-continuous;
(i) &(k) < & for any K > 0;
(iii) {£™(kx)} converges to zero when n — oo for every k > 0.

Definition 2.2. Let Q : H — H be a function in (#,G). Then, Q is known
as (&, f)-expansive function of type (T') if there exist two mappings £ € ® and
B:H xHxH — [0,00] such that

G(x, Qz, Q2) + G(z, Qy, Qy) }

£(G(Qx, Qu, Qz)) > B(x,y, z) min {g(x,y, z), 5

(2:2)

Theorem 2.3. Let Q : H — H be (§,3)-expansive mapping of type (S) in
(H,G) which is complete, symmetrical, one to one and onto. Also, Q satisfies
the following conditions:

(i) Q is continuous;
(i) Q71 is B-admissible and there exist xo € H such that
ﬂ(‘rOa Q_lx()? Q_lx()) Z 1} ﬂ(an Q_QQ?O, Q_QxO) Z 1.
Then, © has a fized point in H.
Proof. Let {x,} be the sequence such that Qx, 1 = z,, for every n € Z. If
there exists a positive integer n such that x, = x,41, then Qz, = x,. So, x,
is a fixed point of Q.
Let us assume that x,41 # x,, for every n € Z. Then,
G(Tpt1,Tn,Tn) >0, VN € Zy.
From the assumption of the theorem, we have

5(1:07 Q_lx()a Q_le) = B(an mlal‘l) Z 1.
Since Q7! is B-admissible, we have

B(Q ' wo, Q' a1, QM ay) = B, w2, 2) > 1.

By induction on n,, we have

5(%‘n,xn+1,1‘n+1) > 1. (2.3)
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Proceeding in the same way, we obtain
B(:U()v Q_2$07 Q_2$0) = /B(ZUO, o, x?) Z 1
and
B(Q Yag, Q7 2xy, Q %29) = B(xy, x3,23) > 1.
By repeating the same process, we obtain
B(xnaxn—i-%wn-!—?) > 1.

Now, we claim that limy, o0 G(Zpn, Tnt1, Tnt1) = 0.
Putting = z, and y= 2z = x,41 in (2.1), we get

§(G(Qxn, Qrpy1, QTny1))
> B(Zn, Tnt1, Tpg1) MIn{G(Tn, Tnt1, Tny1), G(Tn, Qn, Qn),
G(nt1, QTnt1, Qrnt1), G(Tng1, Qny1, QTnt1),
G(@n, Qrnr1, Qrnt1), G(Tnt1, Quny1, QTnr1)}-
Therefore, we have
§(G(Qxn, Qrny1, QTni1))
> B(Tn, Tnt1, Tpt1) MIn{G (T, Tnt1, Tnt1), G(Tn, Tn—1, Tn—1),
G(Tnt1, Tn, Tn), G(Tng1, Tn,y ©n)G (T, Tny Tn )y G(Tnt1, Tn, Tn) -
By using definition of £, we get
G(Tn—1,Tn, Tn) > E(G(QTn, Qupi1, QTn+1)).
Therefore, we get
G(Tn—1,Tn, Tn)
> B(xn, i1, Tog1) Min{G(Tn, Tnit1, Tni1), G(Tn, Tn-1, Tn—-1), (2.4)
G(Tnt1sTn, Tn)y G(Tnt1s Tn, Tn)y G(Tny Tny Tn )y G(Tnt1, Tn, Tn) b
Since (H,G) is symmetrical, we have
G(Tn, Tnt1, Tnt1) = G(Tnt1, Tn, Tn).
By using (2.4), we obtain
G(Tn—1,%n, Tn) > B(@n, Tnt1, Tnty1)mMin{G(Tni1, Tn, Tnt1), G(Tn—1, Tn, Tn_1)}.
If there exist n € Z4 such that
min{G(Tn+1, Tn, Tn+1), G(Tn—1,Tn, Tn-1) = G(Tn—1, Tn, Tn-1),
then making use of (2.3), the above inequality is equivalent to
G(Tp—1,Tn, Tn) > G(Tpn_1,Tn_1,Tn),

a contradiction.
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Consequently, we have
min{G(Tn11, Tn, Tnt1), G(Tn—1, Tny Tn-1) = G(Tn11, Tn, Tni1)-
Therefore, we have
G(Tn—1,Tn, Tn) > §(G(Qn, QTni1, QTnt1)) > G(Tn, Tnt1, Tnt1),
which gives that
G(Tn, Tnt1, Tnt1) < G(Tp—1,Tn, Tn). (2.5)
Using mathematical induction, we obtain
G(@n, Tnt1, Tnt1) < £"G(w0, 71, 21).
It follows from the definition of £ that
nh_>H§o G(Tn, Tny1, Tny1) = 0.
Next, we assert that

lim G(xn, Tpi2, Tny2) = 0.
n—o0

Putting = z,, and y = z = x,, 42 in (2.1), we get
§(G(Qxn, Quny2, Qn+2))
> B(Tn, Tnt2, Tnt2) MIn{G(Tn, Tni2, Tny2), G(Tn, Qn, Qy),
G(Tny2, QTnt2, Qrni2), G(Tnt2, Qny2, QTni2),
G(zpn, Qni2, QTni2),G(Tnt2, Qrni2, Qrni2)}.
Therefore,
§(G(Qxn, QTny2, QTni2))
> B(Zn, Tny2, Tpi2 MIN{G (T, Tnt2, Tni2), G(Tn, Tn-1, Tn-1),
G(Tnt2, Tnt1, Tnt1), G(Tnt2, Tni1, Tnt),
G(Tns Tt 1, Tnt1), G (Tnt2, Tnt1, Tng1) )
By making use of definition of £, we obtain
G(Tn-1, Tnt1, Tnt1) > §(G(QTn, QTni2, QTny2)).
Therefore, we have
G(Tn—1,Tn41, Tni1)
> B(Xn, Tnt2, Tni2) MIn{G(Tn, Tnit2, Tni2), G(Tn, Tn_1, Tn_1),
G(Tnt2; Tnt1, Tnt1)s G(Tnt2, Tt 1, Tnt1),
G(Tns Tnt1, Tnt1), G (Tnt2, Tnt1, Tny1) )

(2.6)

Since (H,G) is symmetrical and utilizing (2.3), (2.5), we have

g(xn—la Tn+1, mn-l—l) > min{g(l'n; Tn+1, xn-‘,—l), g(xn—h In, xn)} (27)
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Let pn = G(Tnt1, Tnt3, Tnts) and ¢, = G(Tp+2, Tn+3, Tnt+s). Then, from
(2.7), we conclude that

Pn—2 = G(Tn—1, Tnt1, Tnt1)
> &(G(Tn—1,Tn41, Tnt1))
=£(G(Qxp, Qrni2, QTni2))
> min{G(Tn, Tnt1, Tnt1), G(Tn—1,Tn, Tn)}

= min{pn—lv Qn—l}-
From (2.5), we have

dn—2 Z dn—1 Z min{pn—la Qn—l}-

Therefore, we conclude that

min{pn—27 QTL—Q} Z min{pn—lv Qn—l}-

Hence, the sequence {min{p,, ¢, } } is monotonically decreasing sequence. There-
fore, the sequence converges to £ > 0.
Let us assume that £ > 0. Then, we have

lim sup(p,) = lim sup(min{py,,¢,}) = lim min{p,,q,} = ¢.
n—o0 n—00 n—00
Using (2.7), we get

¢ = Tim sup(py)
> nli_>ngo sup(&(G(Tn—1, Tn+1, Tnt1)))

> lim Sup(min{pn—h(b’b—l} = £7
n—oo
which is a contradiction. Therefore, we get

g(xna Tn+42, xn+2) =0.

Now, we assert that x, # xp, for each a # b. Suppose, on the contrary that
xq = xp for some a,b € Z, where a # b. Let us suppose that ¢ > b. Then

§(G(wp, Tp-1,Tp-1)) = §(G (26, Qrp, Q)
= &(G(xa, Qra, QT4))
=£(G(Qxa11, Qrq, Qt4))
B(Tas1, Tas Ta) H(Tny1, Tn, Tn)

>
> H(xn+11 Tn, xn)a
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where

H(xpt1,Tn, Tn)
= min{G(Ta11, Zas Ta), G (Tat1, QTat1, QTat1), G(Ta, Qxq, QTa),
G(xq, Qq, QTq), G(Tat1, QTa, Qa), G(Ta, QTa, QTa)}
= min{G(Ta+1, Ta> Ta), G(Tat1, Ta, Ta) G (Tas Ta—1, Ta—1),
G(2a,Ta—1,Ta—1),G(Tat1, Ta—1,Ta-1), G(Ta> Ta—1, Ta—1)}

= min{G(a+1, Ta, Ta), G (Ta, Ta—1, Ta—1)}-
If min{G(zq+1,%a,%a), G(Ta, Ta—1,Ta-1)} = G(Tat1,Za, Ta), then we have
(G (@, 2p—1,2p-1)) = G(Zat1, Ta, Ta),
implies that
G(Tat1,Ta, Ta) < E(G(@p, To—1, T0-1))
< EG(Tat1, Tas Ta)- (2.8)
If min{G(zq+1,%a;xa), G(Ta, Ta—1,Ta—1)} = G(xa, Ta—1, Tq—1), then we have
§(G(xb, 201, 7p-1)) > G(Ta, Ta—1,Ta—1),
that is,
G(xq, a1, Ta—1) < E(G (T, Tp—1,Tp—1))
< &G (24, Tam1, Ta1)- (2.9)

Using (2.8) and (2.9), we have

g(l'a—i-l, Lay xa) < fbiag(xa—i-la La, l'a)
and
g(.’Ea, La—1, xafl) < gb_a—i_lg(l’a) La—1, xafl)-

In both cases, this is a contradiction. So, x, # xp, for each a # b.
Next, we assert that {x,} is a Cauchy sequence, that is,

lim G(zn, Tntm, Tntm) = 0. (2.10)
n—oo
We have proved (2.10) for cases m = 1 and m = 2, respectively.
Let us take m > 3. Now, two cases arise.
Case 1 : For m = 2r where r > 2.
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Using (2.8) and definition of (#,§), we obtain
g(ﬂ?n, Tn+m; xn+m) = g(.’En, Tn+2r, xn+2r)
< g(.’En, Tn+42, xn+2) + g(anrQa Tn+3, xn+3)

—+ -+ g($n+2r717 Tn+2r, anrQT’)
n+2r—1

Sg($n,$n+2,w‘n+2)+ Z fd(g(xmﬂ?hﬂ?l))

d=n-+2

0o
S g(xnvxn—l—nyn—l—Q) + Zéd(g(ajOa Ty, xl))
d=n
— 0 as n — oo.

Case 2 : For m = 2r + 1 where r > 1.
Using (2.8) and definition of (#,G), we obtain

g(fL‘n, Tn4+ms anrm) = g($n7 Tn+4+2r4+1; $n+2r+1)
< g(ivn, Tn+1, $n+1) + g($n+1a Tn+2, $n+2)

+ -+ G(Tnt2r, Tng2r+1, Tntort1)
n+2r

< Z €4 G(z0, 71, 71))
d=n

< Z.fd(g(xo,xl,m))
d=n

— 0 as n — oo.

In both cases limy, 00 G(Xn, Xn+m, Xn+m) = 0, which yields that {x, } is Cauchy.

Since (H,G) is complete, there exist u € H such that
lim G(xp,u,u) = 0.

n—0o0

Using the first assumption of the Theorem 2.3, we get
lim G(Qxy,, Qu, Qu) = lim G(xp41, Qu, Qu) = 0.
n—o0 n—oo

Therefore, we have Qu = limy, o0 Tpt1 = u. So, Q has a fixed pointu € H. U

Theorem 2.4. Let Q : H — H be a (§, B)-expansive mapping of type (T) in
(H,G), which is complete, symmetrical, one to one and onto. Also, Q satisfies

the conditions of Theorem 2.3. Then, Q has a fixed point in H.

Proof. Let {x,} be a sequence such that Qx,,11 = x,, for each n € Z. Then,

by using Theorem 2.3, we get

5(37717 Tn+2, xn+2) > 1.
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Next, we assert that lim,, oo G(Tpt1, Tn, Tpt1) = 0.
Putting z = z,, and y = z = x,,41 in (2.1), we get
§(Q(an, QTni1, Ql'n—‘rl))
= §(g(Q$n, an+1a an—&—l))

> B(xnv Tn+1, 37n+1) min {g(xna Tn+1, xn-i-l)?

g(xn—i—l’ Qﬂfn—i-l, an+1) + g($n+1QIn+1, Ql‘n—&-l) }
2
= B(xnv Tn+1, $n+1) min{g(xnv Tn, wn)v g(xn+1, Tn,y m77»)}

By using identical steps as in proof of Theorem 2.3, we can show that Q has
a fixed point in H. O

Theorem 2.5. Let Q : H — H be a (§, B)-expansive mapping of type (S) in
(H,G), which is complete, symmetrical, one to one and onto. Also, Q satisfies
the following conditions:

(1) If {xn} is a sequence in H such that B(Xn,Xn+1,Xn+1) > 1 and {x,}
tends to © when n — oo, then there exist a subsequence {xy,,} of {xn}
in order that B(xy,,z,x) > 1;

(i) Q7! is B-admissible and there exists xo € H such that
B(wo, @ "o, @ 'wo) > 1, Blwo, Q w0, Q w0) > 1.
Then, © has a fized point in H.

Proof. Let {x,} be the sequence in H such that z, = Qz,11. By using
identical steps as in proof of Theorem 2.3, we can prove that {z,} is a Cauchy
sequence in H, which converges to w € H.

Using Lemma 1.1, we have

nh_)n;o G(zn,+1, Qu, Qw) = G(w, Qw, Qu). (2.11)

Now, we assert that Qw = w. Assume on the contrary that Qw # w. Using
the assumption (i) of the Theorem 2.5, there exist a subsequence {xy, } of {x,}
such that S(z,,,w,w) > 1. Letting ¢ — oo and using (2.1), (2.11), we obtain

G(rn,—1, w,w)
> £(G(9Qxy,, Qu, Qw)
> B(xn,, w, w) min{G(xn,, w, w), G(Tn,, QTn,, QTn,),
G(w, Qu, Qu), G(w, Qw, Qu), G(xy,, Qu, Qu), G(w, Qu, Qu)}
> min{G(zn,, w,w), G(Tn,, Tny—1, Tn,—1), G(w, Qu, Qu),
G(w, Qu, Qu), G(xy,, Qu, Qu), G(w, Qu, Qu)}
> G(w, Qw, Qu). (2.12)
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By definition of £, we obtain
£(G(w, Qu, Qu)) < G(w, Qu, Qu). (2.13)
By combining (3.12) and (3.13), we have
G(w, Qu, Qu) < §(G(w, Qu, Qu)) < G(w, Qu, Qu),

which is a contradiction. So, Qw = w. Hence, w is a fixed point of Q. O

Theorem 2.6. Let Q : H — H be a (&, B)-expansive mapping of type(T) in
(H,G) which is complete, symmetrical, one to one and onto. Also, Q satisfies
the conditions of Theorem 2.5. Then, Q has a fixed point in H.

Proof. Let {z,} a sequence in H such that x,, = Qx, 1. By using identical
steps as in proof of Theorem 2.4, we can prove that {x,} is a cauchy sequence
in ‘H, which converges to w € H.

Using Lemma 1.1, we have

nlggo g(xnt-l-b Q’LU, Qw) = g(wv Qw? Qw) (214)

Now, we claim that Qw = w. Suppose on the contrary that Qw # w.
Letting t — oo, using (2.1) and (2.14), we obtain

g(xnt—la w, w)

> £(G(Qxy,, Qu, Qu)

> B(xn,, w, w) min {g(xm, w,w),

G(w, Qw, Qw)+G(w, Qu, Qu) }

> min{G(zp,, w,w), G(w, Qu, Quw)}. i (2.15)
Letting ¢ — oo in (2.15), we have
¢(G(w, Qw, Qw) > G(w, Qw, Qu). (2.16)
By definition of £, we obtain
£(G(w, Qu, Qu)) < G(w, Qu, Qu). (2.17)

By combining (2.16) and (2.17), we have
G(w, Qu, Qu) < {(G(w, Qu, Qu)) < G(w, Qu, Qu),

which is a contradiction. So Qw = w. Hence, w is a fixed point of Q. O

3. CONCLUSION

In this manuscript, some common fixed point theorems are proved for (&, 3)-
expansive mappings of type (S) and type (T') using control function and /-
admissible function in G-metric space.
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