Nonlinear Functional Analysis and Applications Vol. 26, No. 5 (2021), pp. 985-994

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.05.09 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2021 Kyungnam University Press

NON-INVARIANT HYPERSURFACES OF A (ϵ, δ) -TRANS SASAKIAN MANIFOLDS

Toukeer Khan¹ and Sheeba Rizvi²

¹School of Liberal Arts and Science Ear University, Lucknow-226003, India e-mail: toukeerkhan@gmail.com

²School of Liberal Arts and Science Era University, Lucknow-226003, India e-mail: drsheeba@erauniversity.in

Abstract. The object of this paper is to study non-invariant hypersurface of a (ϵ, δ) -trans Sasakian manifolds equipped with (f, g, u, v, λ) -structure. Some properties obeyed by this structure are obtained. The necessary and sufficient conditions also have been obtained for totally umbilical non-invariant hypersurface with (f, g, u, v, λ) -structure of a (ϵ, δ) -trans Sasakian manifolds to be totally geodesic. The second fundamental form of a non-invariant hypersurface of a (ϵ, δ) -trans Sasakian manifolds with (f, g, u, v, λ) -structure has been traced under the condition when f is parallel.

1. Introduction

The study of (ϵ) -Sasakian manifolds have been studies by Bejancu and Duggal [2], and Xufeng and Xiaoli [10] studied that these manifolds are real hypersurface of indefinite Kahlerian manifolds. Tripathi et al. [9] introduced and studied (ϵ) -almost para contact manifolds. De and Sarkar [4] also introduced (ϵ) -Kenmotsu manifolds and studied conformally flat, Weyl semisymmetric, ϕ -recurrent (ϵ) -Kenmotsu manifolds. Nagaraja et al. [7] studied (ϵ, δ) -trans Sasakian structure.

⁰Received September 5, 2020. Revised November 30, 2020. Accepted April 11, 2021.

⁰2010 Mathematics Subject Classification: 53D05, 53D25, 53C25.

⁰Keywords: (ϵ, δ) -trans Sasakian manifold, totally geodesic, totally umbilical.

 $^{^{0}}$ Corresponding author: T. Khan(toukeerkhan@gmail.com).

In 1970, Goldberg et al. [5] introduced the notion of a non-invariant hypersurface of an almost contact manifold in which the transform of a tangent vector of the hypersurface by the (1,1)-structure tensor field f defining the almost contact structure is never tangent to the hypersurface. The notion of (f,g,u,v,λ) -structure was given by Yano and Okumura [11]. It is well known ([12] and [3]) that hypersurface of an almost contact metric manifold always admits a (f,g,u,v,λ) -structure. In [5], author proved that there always exists a (f,g,u,v,λ) -structure on a non-invariant hypersurface of an almost contact metric manifold. They also proved that there does not exist invariant hypersurface of a contact manifold. Prasad [8] studied the non-invariant hypersurface of trans Sasakian manifolds. Khan [6] studied the non-invariant hypersurface of Nearly Kenmotsu manifold. Ahmed et el. [1] studied the non-invariant hypersurface of nearly hyperbolic Sasakian manifold. In the present paper, we study the non-invariant hypersurface of (ϵ, δ) -trans Sasakian manifolds.

This paper is organized as follows. In section 2, we give a brief description of (ϵ, δ) -trans Sasakian manifolds. In section 3, introduce the non-invariant hypersurface and induced (f, g, u, v, λ) -structure on non-invariant hypersurface M getting some equation. Some results of non-invariant hypersurface with (f, g, u, v, λ) -structure of (ϵ, δ) -trans Sasakian manifolds. The necessary and sufficient conditions also have been obtained for totally umbilical non-invariant hypersurface with (f, g, u, v, λ) -structure of (ϵ, δ) -trans Sasakian manifolds to be totally geodesic.

2. Preliminaries

Let M be a n-dimensional almost contact metric manifold with the almost contact metric structure (ϕ, ξ, η, g) where a tensor ϕ of type (1,1), a vector field ξ , called structure vector field and η , the dual 1-form and a Riemannian metric g satisfying the following,

$$\phi^2 X = -X + \eta(X)\xi,\tag{2.1}$$

$$\eta(\xi) = 1, \ \eta(\phi X) = 0, \ \phi \xi = 0.$$
(2.2)

An almost contact metric manifold \widetilde{M} is called an (ϵ) -almost contact metric manifold if

$$\eta(X) = \epsilon g(X, \xi), g(\xi, \xi) = \epsilon, \tag{2.3}$$

$$g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X) \eta(Y), \tag{2.4}$$

$$g(\phi X, Y) = -g(X, \phi Y), \tag{2.5}$$

for all $X, Y \in TM$ [10], where $\epsilon = g(\xi, \xi) = \pm 1$.

An (ϵ) -almost contact metric manifold is called an (ϵ, δ) -trans Sasakian manifold [9] if

$$(\widetilde{\nabla}_X \phi) Y = \alpha \{ g(X, Y) \xi - \epsilon \eta(Y) X \} + \beta \{ g(\phi X, Y) \xi - \delta \eta(Y) \phi X \}, \tag{2.6}$$

$$\widetilde{\nabla}_X \xi = -\epsilon \alpha(\phi X) - \delta \beta \phi^2 X, \tag{2.7}$$

hold for some smooth function α and β on \widetilde{M} and $\epsilon = \pm 1$, $\delta = \pm 1$. For $\beta = 0$, $\alpha = 1$ an (ϵ, δ) -tans Sasakian manifold reduces to an (ϵ) -Sasakian manifold and for $\alpha = 0$, $\beta = 1$, it is reduced to a (δ) -Kenmotsu manifold.

A hypersurface of an almost contact metric manifold \widetilde{M} is called a non-invariant hypersurface, if the transform of a tangent vector of the hypersurface under the action of (1,1) tensor field ϕ defining the contact structure is never tangent to the hypersurface. Let X be tangent vector on non-invariant hypersurface of an almost contact metric manifold \widetilde{M} . Then ϕX is never to tangent of the hypersurface. Let \widetilde{M} be a non-invariant hypersurface of an almost contact metric manifold. Now, we define the following:

$$\phi X = fX + u(X)\widetilde{N},\tag{2.8}$$

$$\phi \widetilde{N} = -U, \tag{2.9}$$

$$\xi = V + \lambda \widetilde{N}, \lambda = \eta(\widetilde{N}), \tag{2.10}$$

$$\eta(X) = v(X), \tag{2.11}$$

where f is (1,1) tensor field, u and v are 1-form, \widetilde{N} is a unit normal to the hypersurface, $X \in TM$ and $u(X) \neq 0$. Then we get an induced (f, g, u, v, λ) -structure on \widetilde{M} satisfying the conditions

$$f^{2} = -I + u \otimes U + v \otimes V,$$

$$uof = \lambda v, vof = -\lambda u,$$

$$v(V) = 1 - \lambda^{2}, u(V) = v(U) = 0, u(U) = 1 - \lambda^{2},$$

$$fV = \lambda U, fU = \lambda V,$$

$$u(X) = \epsilon g(X, U), v(X) = \epsilon g(X, V),$$

$$g(fX, fY) = g(X, Y) - u(X)u(Y) - \epsilon v(X)v(Y),$$

$$g(fX, Y) = -g(X, fY),$$

$$(2.12)$$

for all $X, Y \in TM$ and $\lambda = \eta(\widetilde{N})$.

The Gauss and Weingarten formula are given by

$$\widetilde{\nabla}_X Y = \widetilde{\nabla}_X Y + h(X, Y) \widetilde{N},$$
(2.13)

$$\widetilde{\nabla}_X \widetilde{N} = -A_{\widetilde{N}} X, \tag{2.14}$$

for all $X,Y\in TM$, where $\widetilde{\triangledown}$ and \triangledown are the Riemannian and induced connection on \widetilde{M} and M respectively and \widetilde{N} is the unit normal vector in the normal bundle $T^{\perp}M$. In this formula h is the second fundamental form on M related to $A_{\widetilde{N}}$ by

$$h(X,Y) = g(A_{\widetilde{N}}X,Y), \tag{2.15}$$

for all $X, Y \in TM$.

3. Some properties of non-invariant hypersurfaces

Lemma 3.1. Let M be a non-invariant hypersurface with (f, g, u, v, λ) -structure of (ϵ, δ) -trans Sasakian manifold \widetilde{M} . Then

$$(\widetilde{\nabla}_X \phi) Y = (\nabla_X f) Y - u(Y) A_{\widetilde{N}} X + h(X, Y) U + ((\nabla_X u) Y + h(X, fY)) \widetilde{N}, \tag{3.1}$$

$$(\widetilde{\nabla}_X \eta) Y = (\nabla_X v) Y - \lambda h(X, Y), \tag{3.2}$$

$$\widetilde{\nabla}_X \xi = \nabla_X V - \lambda A_{\widetilde{N}} X + (h(X, V) + X\lambda) \widetilde{N}, \tag{3.3}$$

for all $X, Y \in TM$.

Proof. Consider:

$$(\widetilde{\nabla}_X \phi) Y = \widetilde{\nabla}_X \phi Y - \phi(\widetilde{\nabla}_X Y).$$

Using (2.8) and (2.13), we have

$$(\widetilde{\nabla}_X \phi) Y = \widetilde{\nabla}_X (fX + u(Y)\widetilde{N}) - \phi(\widetilde{\nabla}_X Y + h(X, Y)\widetilde{N})$$

$$(\widetilde{\nabla}_X \phi) Y = \widetilde{\nabla}_X f X + \widetilde{\nabla}_X (u(Y)\widetilde{N}) - \phi \widetilde{\nabla}_X Y - h(X, Y) \phi \widetilde{N}$$

$$(\widetilde{\nabla}_X \phi) Y = \widetilde{\nabla}_X f X + h(X, fY) \widetilde{N} + u(Y) \widetilde{\nabla}_X \widetilde{N} + (\widetilde{\nabla}_X u(Y)) \widetilde{N} - f(\widetilde{\nabla}_X Y)$$
$$- u(\widetilde{\nabla}_X Y) \widetilde{N} + h(X, Y) U$$

$$(\widetilde{\nabla}_X \phi) Y = (\widetilde{\nabla}_X f) X + f(\widetilde{\nabla}_X X) - u(Y) A_{\widetilde{N}} X + h(X, Y) U + h(X, fY) \widetilde{N}$$
$$- f(\widetilde{\nabla}_X Y) + (\widetilde{\nabla}_X u(Y)) \widetilde{N} - u(\widetilde{\nabla}_X Y) \widetilde{N}$$

$$(\widetilde{\nabla}_X \phi) Y = (\widetilde{\nabla}_X f) X - u(Y) A_{\widetilde{N}} X + h(X, Y) U + h(X, fY) \widetilde{N} + (\widetilde{\nabla}_X u(Y)) \widetilde{N} - u(\widetilde{\nabla}_X Y) \widetilde{N}$$

$$\begin{split} (\widetilde{\triangledown}_X \phi) Y &= (\widetilde{\triangledown}_X f) X - u(Y) A_{\widetilde{N}} X + h(X,Y) U + h(X,fY) \widetilde{N} + (\widetilde{\triangledown}_X u(Y) + h(X,u(Y)) \widetilde{N} - u(\widetilde{\triangledown}_X Y)) \widetilde{N} \end{split}$$

$$(\widetilde{\triangledown}_X\phi)Y=(\widetilde{\triangledown}_Xf)X-u(Y)A_{\widetilde{N}}X+h(X,Y)U+((\widetilde{\triangledown}_Xu)Y+h(X,fY))\widetilde{N}.$$

Also, we have

$$(\widetilde{\nabla}_X \eta) Y = \widetilde{\nabla}_X \eta(Y) - \eta(\widetilde{\nabla}_X Y).$$

Using
$$(2.8)$$
, (2.11) and (2.13) , we have

$$\begin{split} &(\widetilde{\nabla}_X \eta) Y = \widetilde{\nabla}_X (v(Y)) - \eta (\widetilde{\nabla}_X Y), \\ &(\widetilde{\nabla}_X \eta) Y = \widetilde{\nabla}_X (v(Y)) + h(X, v(Y)) \widetilde{N} - \eta (\widetilde{\nabla}_X Y + h(X, Y) \widetilde{N}), \\ &(\widetilde{\nabla}_X \eta) Y = \widetilde{\nabla}_X (v(Y) - \eta (\widetilde{\nabla}_X Y) - h(X, Y) \eta (\widetilde{N}), \\ &(\widetilde{\nabla}_X \eta) Y = \widetilde{\nabla}_X v(Y) - v (\widetilde{\nabla}_X Y) - h(X, Y) \eta (\widetilde{N}), \\ &(\widetilde{\nabla}_X \eta) Y = (\widetilde{\nabla}_X v) Y - \lambda h(X, Y). \end{split}$$

Further, consider using (2.13) and using (2.10), we have

$$\begin{split} \widetilde{\nabla}_{X}\xi &= \widetilde{\nabla}_{X}\xi + h(X,\xi)\widetilde{N}, \\ \widetilde{\nabla}_{X}\xi &= \widetilde{\nabla}_{X}(V + \lambda\widetilde{N}) + h(X,V + \lambda\widetilde{N})\widetilde{N}, \\ \widetilde{\nabla}_{X}\xi &= \widetilde{\nabla}_{X}V + \widetilde{\nabla}_{X}(\lambda\widetilde{N}) + h(X,V)\widetilde{N} + \lambda h(X,\widetilde{N})\widetilde{N}, \\ \widetilde{\nabla}_{X}\xi &= \widetilde{\nabla}_{X}V + \lambda(\widetilde{\nabla}_{X}\widetilde{N}) + (X\lambda)\widetilde{N} + h(X,V)\widetilde{N}, \\ \widetilde{\nabla}_{X}\xi &= \widetilde{\nabla}_{X}V - \lambda A_{\widetilde{N}}X + (h(X,V) + X\lambda)\widetilde{N}, \end{split}$$

for all $X, Y \in TM$.

Theorem 3.2. Let M be a non-invariant hypersurface with (f, g, u, v, λ) -structure of (ϵ, δ) -trans Sasakian manifold \widetilde{M} . Then we have

$$h(X,\xi) = \epsilon \alpha f^2 X - \epsilon \alpha u(X) U - \delta \beta f X + f(\widetilde{\nabla}_X \xi), \tag{3.4}$$

$$u(\widetilde{\nabla}_X \xi) = -\epsilon \alpha u(fX) + \delta \beta u(X), \tag{3.5}$$

for all $X, Y \in TM$.

Proof. Consider

$$(\widetilde{\nabla}_X \phi) \xi = \widetilde{\nabla}_X \phi \xi - \phi(\widetilde{\nabla}_X \xi),$$

$$(\widetilde{\nabla}_X \phi) \xi = -\phi(\widetilde{\nabla}_X \xi).$$
(3.6)

Using equations (2.2), (2.7), (2.8) and (2.9) in above, we have

$$(\widetilde{\nabla}_X \phi) \xi = -\phi(-\epsilon \alpha(\phi X) - \delta \beta \phi^2 X),$$

$$(\widetilde{\nabla}_X \phi) \xi = \phi(\epsilon \alpha(f X + u(X) \widetilde{N})) + \delta \beta \phi(-X + \eta(X) \xi),$$

$$(\widetilde{\nabla}_X \phi) \xi = \epsilon \alpha f^2 X + \epsilon \alpha u(X f) \widetilde{N} - \epsilon \alpha u(X) U - \delta \beta f X - \delta \beta u(X) \widetilde{N}.$$
(3.7)

Using equation (2.13) in (3.6), we get

$$(\widetilde{\nabla}_X \phi)\xi = -\phi(\widetilde{\nabla}_X \xi) - h(X, \xi)\phi\widetilde{N}.$$

Using equation (2.8) and (2.9) in above, we get

$$(\widetilde{\nabla}_X \phi) \xi = -f(\widetilde{\nabla}_X \xi) - u(\widetilde{\nabla}_X \xi) \widetilde{N} + h(X, \xi) U. \tag{3.8}$$

Comparing equation (3.7) and (3.8), we have

$$-f(\widetilde{\nabla}_X \xi) - u(\widetilde{\nabla}_X \xi)\widetilde{N} + h(X, \xi)U$$

= $\epsilon \alpha f^2 X + \epsilon \alpha u(Xf)\widetilde{N} - \epsilon \alpha u(X)U - \delta \beta f X - \delta \beta u(X)\widetilde{N}.$

Equating tangential and normal parts on both sides, we have

$$h(X,\xi)U = \epsilon \alpha f^2 X - \epsilon \alpha u(X)U - \delta \beta f X + f(\widetilde{\nabla}_X \xi)$$

and

$$u(\widetilde{\nabla}_X \xi) = -\epsilon \alpha u(Xf) + \delta \beta u(X),$$

for all $X, Y \in TM$.

Theorem 3.3. Let M be a non-invariant hypersurface with (f, g, u, v, λ) structure of (ϵ, δ) -trans Sasakian manifold \widetilde{M} . Then, we have

$$(\nabla_X f)Y = u(Y)A_{\widetilde{N}}X - h(X,Y)U + \alpha g(X,Y)V - \epsilon \alpha v(Y)X + \beta g(fX,Y)V - \delta \beta v(Y)fX$$
 (3.9)

and

$$(\widetilde{\nabla}_X u)Y = \lambda \alpha g(X, Y) + \lambda \beta g(fX, Y) - \delta \beta v(Y)u(X) - h(X, fY),$$
 (3.10) for all $X, Y \in TM$.

Proof. Consider covariant differentiation, then we have

$$(\widetilde{\nabla}_X \phi) Y = \widetilde{\nabla}_X \phi Y - \phi(\widetilde{\nabla}_X Y). \tag{3.11}$$

Using equation (2.8) in (2.13), we have

$$(\widetilde{\nabla}_X \phi) Y = \widetilde{\nabla}_X f Y + \widetilde{\nabla}_X (u(Y)\widetilde{N}) - \phi \widetilde{\nabla}_X Y - h(X, Y) \phi \widetilde{N}.$$

Using (2.8), (2.9) and (2.13), we have

$$\begin{split} (\widetilde{\nabla}_X \phi) Y &= \widetilde{\nabla}_X f Y + h(X, f Y) \widetilde{N} + u(Y) (\widetilde{\nabla}_X \widetilde{N}) \\ &+ (\widetilde{\nabla}_X u(Y)) \widetilde{N} - f \widetilde{\nabla}_X Y - u(\widetilde{\nabla}_X Y) \widetilde{N} + h(X, Y) U. \end{split}$$

Using (2.13) and (2.14) in above, we have

$$(\widetilde{\triangledown}_X\phi)Y=(\widetilde{\triangledown}_Xf)Y-u(Y)A_{\widetilde{N}}X+h(X,Y)U+((\widetilde{\triangledown}_Xu)Y+h(X,fY))\widetilde{N}.\eqno(3.12)$$

Now, using (2.8), (2.10) and (2.11) in (2.6), we have

$$(\widetilde{\nabla}_X \phi) Y = \alpha g(X, Y) V + \lambda \alpha g(X, Y) \widetilde{N} - \epsilon \alpha v(Y) X + \beta g(fX, Y) V + \lambda \beta g(fX, Y) \widetilde{N} - \delta \beta v(Y) fX - \delta \beta v(Y) u(X) \widetilde{N}.$$
(3.13)

Comparing (3.12) and (3.13), we have

$$\begin{split} (\triangledown_X f) Y - u(Y) A_{\widetilde{N}} X + h(X,Y) U + ((\widetilde{\triangledown}_X u) Y + h(X,fY)) \widetilde{N} \\ &= \alpha g(X,Y) V + \lambda \alpha g(X,Y) \widetilde{N} - \epsilon \alpha v(Y) X + \beta g(fX,Y) V \\ &+ \lambda \beta g(fX,Y) \widetilde{N} - \delta \beta v(Y) fX - \delta \beta v(Y) u(X) \widetilde{N}. \end{split}$$

Equating tangential and normal part, we have

$$(\nabla_X f)Y = u(Y)A_{\widetilde{N}}X - h(X,Y)U + \alpha g(X,Y)V - \epsilon \alpha v(Y)X + \beta g(fX,Y)V - \delta \beta v(Y)fX$$

and

$$(\widetilde{\triangledown}_X u)Y = \lambda \alpha g(X,Y) + \lambda \beta g(fX,Y) - \delta \beta v(Y)u(X) - h(X,fY),$$
 for all $X,Y \in TM$.

Theorem 3.4. Let M be a non-invariant hypersurface with (f, g, u, v, λ) structure of (ϵ, δ) -trans Sasakian manifold \widetilde{M} . Then we have

$$\widetilde{\nabla}_X V = \lambda A_{\widetilde{N}} X - \epsilon \alpha f X + \delta \beta X - \delta \beta v(X) V \tag{3.14}$$

and

$$h(X, V) = -\epsilon \alpha u(X) - \lambda \delta \beta v(X) - X\lambda, \tag{3.15}$$

for all $X, Y \in TM$.

Proof. Using equation (2.1), (2.8) and (2.11) in (2.7), we have

$$\widetilde{\nabla}_X \xi = -\epsilon \alpha f X - \epsilon \alpha u(X) \widetilde{N} + \delta \beta X - \delta \beta v(X) V - \lambda \delta \beta v(X) \widetilde{N}. \tag{3.16}$$

Comparing equation (3.16) and (3.3) we have

$$\begin{split} \widetilde{\triangledown}_X V - \lambda A_{\widetilde{N}} X + (h(X,V) + X\lambda) \widetilde{N} \\ = -\epsilon \alpha f X - \epsilon \alpha u(X) \widetilde{N} + \delta \beta X - \delta \beta v(X) V - \lambda \delta \beta v(X) \widetilde{N}. \end{split}$$

Equating tangential and normal part, we have

$$\widetilde{\nabla}_X V = \lambda A_{\widetilde{N}} X - \epsilon \alpha f X + \delta \beta X - \delta \beta v(X) V$$

and

$$h(X,V) = -\epsilon \alpha u(X) - \lambda \delta \beta v(X) - X\lambda,$$

for all $X, Y \in TM$.

Theorem 3.5. Let M be a non-invariant hypersurface with (f, g, u, v, λ) structure of (ϵ, δ) -trans Sasakian manifold \widetilde{M} . Then, we have

$$(\widetilde{\nabla}_X \phi) Y = \alpha g(X, Y) V - \epsilon v(Y) X + \beta g(fX, Y) V - \delta \beta v(Y) f X + (\lambda \alpha g(X, Y) + \lambda \beta g(fX, Y) - \delta \beta v(Y) u(X)) \widetilde{N}$$
(3.17)

for all $X, Y \in TM$.

Proof. Using (3.9) and (3.10) in (3.13), we have

$$\begin{split} (\widetilde{\triangledown}_X\phi)Y &= u(Y)A_{\widetilde{N}}X - h(X,Y)U + \alpha g(X,Y)V - \epsilon \alpha v(Y)X + \beta g(fX,Y)V \\ &- \delta \beta v(Y)fX - u(Y)A_{\widetilde{N}}X + h(X,Y)U + (\lambda \alpha g(X,Y) + \lambda \beta g(fX,Y) \\ &- \delta \beta v(Y)u(X) - h(X,fY) + h(X,fY))\widetilde{N}, \\ (\widetilde{\triangledown}_X\phi)Y &= \alpha g(X,Y)V - \epsilon \alpha v(Y)X + \beta g(fX,Y)V - \delta \beta v(Y)fX + (\lambda \alpha g(X,Y) \\ &+ \lambda \beta g(fX,Y) - \delta \beta v(Y)u(X))\widetilde{N}, \\ (\widetilde{\triangledown}_X\phi)Y &= \alpha \{g(X,Y)V - \epsilon v(Y)X\} + \beta \{g(fX,Y)V - \delta \beta v(Y)fX\} \\ &+ (\lambda \alpha g(X,Y) + \lambda \beta g(fX,Y) - \delta \beta v(Y)u(X))\widetilde{N}, \end{split}$$

Theorem 3.6. Let M be a totally umbilical non-invariant hypersurface with (f,g,u,v,λ) -structure of (ϵ,δ) -trans Sasakian manifold \widetilde{M} . Then it is totally

$$\epsilon \alpha u(X) + \lambda \delta \beta v(X) + X\lambda = 0,$$
 (3.18)

for all $X, Y \in TM$.

geodesic if and only if

for all $X, Y \in TM$.

Proof. Using equation (2.1), (2.8) and (2.11) in (2.7), we have

$$\widetilde{\triangledown}_X \xi = -\epsilon \alpha f X - \epsilon \alpha u(X) \widetilde{N} + \delta \beta X - \delta \beta v(X) V - \lambda \delta \beta v(X) \widetilde{N}.$$

Using (3.3) in above equation, we have

$$\begin{split} \widetilde{\triangledown}_X V - \lambda A_{\widetilde{N}} X + (h(X,V) + X\lambda) \widetilde{N} &= -\epsilon \alpha f X - \epsilon \alpha u(X) \widetilde{N} + \delta \beta X \\ &- \delta \beta v(X) V - \lambda \delta \beta v(X) \widetilde{N}. \end{split}$$

Equating normal part, we have

$$h(X, V) = -\epsilon \alpha u(X) - \lambda \delta \beta v(X) - X\lambda. \tag{3.19}$$

If M is totally umbilical, then $A_{\widetilde{N}}=\zeta I$, where ζ is Kahlerian metric

$$h(X,Y) = g(A_{\widetilde{N}}X,Y) = g(\zeta X,Y) = \zeta g(X,Y) = \zeta v(X),$$

$$h(X,V) = \zeta g(X,V) = \zeta v(X).$$
(3.20)

Then, from (3.19) and (3.20), we, have

$$\epsilon \alpha u(X) + \lambda \delta \beta v(X) + X\lambda + \zeta v(X) = 0. \tag{3.21}$$

If M is totally geodesic, that is, $\zeta = 0$, then from (3.21), we have

$$\epsilon \alpha u(X) + \lambda \delta \beta v(X) + X\lambda = 0,$$

for all
$$X, Y \in TM$$
.

Theorem 3.7. Let M be a non-invariant hypersurface with (f, g, u, v, λ) structure of (ϵ, δ) -trans Sasakian manifold \widetilde{M} . If U is parallel, then we have

$$\epsilon \alpha \lambda X + f(A_{\widetilde{N}}X) + \beta \delta \lambda (fX) = 0,$$
 (3.22)

for all $X, Y \in TM$.

Proof. Consider covariant differentiation, then we have

$$(\widetilde{\nabla}_X \phi) \widetilde{N} = \widetilde{\nabla}_X \phi \widetilde{N} - \phi (\widetilde{\nabla}_X \widetilde{N}). \tag{3.23}$$

Using equation (2.8), (2.9), (2.13) and (2.14) in above, we have

$$(\widetilde{\nabla}_X \phi) \widetilde{N} = \nabla_X \phi \widetilde{N} + h(X, \phi \widetilde{N}) \widetilde{N} - f(\widetilde{\nabla}_X \widetilde{N}) - u(\widetilde{\nabla}_X \widetilde{N}) \widetilde{N},$$

$$(\widetilde{\nabla}_X \phi) \widetilde{N} = -\nabla_X U + f(A_{\widetilde{N}} X).$$
(3.24)

From (2.6), we have

$$(\widetilde{\nabla}_X \phi) \widetilde{N} = \alpha \{ g(X, \widetilde{N}) \xi - \epsilon \lambda X \} + \beta \{ g(\phi X, \widetilde{N}) \xi - \delta \lambda \phi X \},$$

$$(\widetilde{\nabla}_X \phi) \widetilde{N} = -\epsilon \alpha \lambda X - \beta \delta \lambda (fX) - \beta \delta \lambda u(X) \widetilde{N}.$$
(3.25)

From (3.25) and (3.26), we have

$$\begin{split} -\nabla_X U + f(A_{\widetilde{N}}X) &= -\epsilon \alpha \lambda X - \beta \delta \lambda (fX) - \beta \delta \lambda u(X)\widetilde{N}, \\ \nabla_X U &= \epsilon \alpha \lambda X + f(A_{\widetilde{N}}X) + \beta \delta \lambda (fX) + \beta \delta \lambda u(X)\widetilde{N}. \end{split}$$

If U is parallel, then $\nabla_X U = 0$, so from above equation, we have

$$\epsilon\alpha\lambda X + f(A_{\widetilde{N}}X) + \beta\delta\lambda(fX) + \beta\delta\lambda u(X)\widetilde{N} = 0.$$

Now, equating tangential part, we have

$$\epsilon \alpha \lambda X + f(A_{\widetilde{N}}X) + \beta \delta \lambda (fX) = 0,$$

for all $X, Y \in TM$.

References

- M. Ahmed, S.A. Khan and T. Khan, On non-invariant hypersurfaces of a nearly hyperbolic Sasakian manifold, Int. J. Math., 28(8) (2017), 1750064, 1-8, DOI: 10.1142/S0129167X17500641
- [2] A. Bejancu and K.L. Duggal, Real hypersurfaces of indefinite Kahler manifolds, Int. J. Math. Sci., 16(3) (1993), 545-556.
- [3] D.E. Blair and G.D. Ludden, Hypersurfaces in almost contact manifold, Tohoku Math. J., 22 (1969), 354-362.
- [4] U.C. De and A. Sarkar, On (ϵ) -Kenmotsu manifolds, Hadronic J., $\mathbf{32}(2)$ (2009), 231-242.
- [5] S.I. Goldberg, Conformal transformation of Kaehler manifolds, Bull. Amer. Math. Soc., 66 (1960), 54-58.
- [6] T. Khan, On non-invariant hypersurfaces of a nearly Kenmotsu manifold, IOSR-JM., 15(6), Ser. I (Nov-Dec. 2019), 30-34. DOI: 10.9790/5728-1506013034.
- [7] H.G. Nagaraja, C.P. Premalatha and G. Somashekhara, $On(\epsilon, \delta)$ -trans Sasakian structure, Pro. Est. Acad. Sci. Ser. Math., **61**(1) (2012), 20-28.
- [8] R. Prasad, On non-invariant hypersurfaces of trans Sasakian manifolds, Bull. Calcutta Math. Soc., 99(5) (2007), 501-510.
- [9] M.M. Tripathi, E. Erol Kilic, S.Y. Perktas and S. Keles, Indefinite almost para contact metric manifolds. Int. J. Math. Math. Sci., (2010), Article ID. 846195, DOI: 1001155120101846195.
- [10] X. Xufeng and C. Xiaoli, Two theorem on (ε)-Sasakian manifolds, Int. J. Math. Math. Sci., 21(2) (1998), 249-254. https://doi.org/10.1155/S0161171298000350.
- [11] K. Yano and M. Okumura, On (f, g, u, v, λ) -structures, Kodai Math. Sem. Rep., 22 (1970), 401-423.
- [12] K. Yano and M. Okumura, Invariant submanifolds with (f, g, u, v, λ) -structures, Kodai Math. Sem. Rep., **24** (1972), 75-90.