Nonlinear Functional Analysis and Applications
Vol. 16, No. 1 (2011), pp. 9-16

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright © 2011 Kyungnam University Press

ON APPROXIMATE N-RING HOMOMORPHISMS AND
N-RING DERIVATIONS

M. Eshaghi Gordji

Department of Mathematics, Semnan University,
P. O. Box 35195-363, Semnan, Iran
e-mail: madjid.eshaghi@gmail.com

Abstract. In this paper, we investigate the Hyers-Ulam-Rassias stability of n-ring homo-

morphisms and n-ring derivations on Banach algebras.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let A, B be two rings (algebras). An additive (linear) map h : A — B is
called a n-ring homomorphism (n-homomorphism) if A(II}" ;a;) = II}" ; h(a;),

for all a1,a9,-- ,a, € A. The concept of n-homomorphisms was studied for
complex algebras by Hejazian, Mirzavaziri, and Moslehian [12] (see also [7],
(9], [10], [22]).

Let A be a ring and let X be an A—module. An additive map D : A — X
is called an n-ring derivation if

D( izlai) = D(al)ag Oy alD(az)ag Q-+ arag - an_lD(an),

for all a1,a9,- - ,a, € A. A 2-ring derivation is then a ring derivation, in
the usual sense, from an algebra into its module. Furthermore, every ring
derivation is clearly also an n-ring derivation for all n > 2, but the converse is
not true, in general. For instance, let

0 R R R
0 0 R R
A= 0 0 0 R
0 0 0 O
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then A is an algebra equipped with the usual matrix-like operations. It is easy
to see that

A £0= A"
Then every additive map f : A — A is a 4-ring derivation.

We say that a functional equation (*) is stable if any function f approxi-
mately satisfying the equation (*) is near to an exact solution of (*). Such a
problem was formulated by S. M. Ulam [26] in 1940 and solved in the next
year for the Cauchy functional equation by D. H. Hyers [13] in the framework
of Banach spaces. Later, T. Aoki [2] and Th. M. Rassias [25] considered map-
pings f from a normed space into a Banach space such that the norm of the
Cauchy difference f(z +y) — f(z) — f(y) is bounded by the expression

e([l]I” + Nlyll”)

for all =,y and some ¢ > 0 and p € [0,1). The terminology ”Hyers-Ulam-
Rassias stability” was indeed originated from Th. M. Rassias’s paper [25] (see
also [8], 23], [15], [18]).

D. G. Bourgin is the first mathematician dealing with the stability of ring
homomorphisms. The topic of approximate ring homomorphisms was studied
by a number of mathematicians, see [3, 5, 14, 6, 16, 20, 23, 24] and references
therein.

It seems that approximate derivations was first investigated by K.-W. Jun
and D.-W. Park [17]. Recently, the stability of derivations have been inves-
tigated by some authors; see [1, 4, 11, 17, 19, 21] and references therein. In
this paper we investigate the Hyers-Ulam-Rassias stability of n-ring homomor-
phisms and n-ring derivations.

2. MAIN RESULTS

We start our work with a result concerning approximate n-ring homomor-
phisms, which can be regarded as an extension of Theorem 1 of [3].

Theorem 2.1. Let A be a ring, B be a Banach algebra and let 6 and € be
nonnegative real numbers. Suppose f is a mapping from A to B such that

If(a+b) = fa) = f(b)[| < e (2.1)
and that
(G ai) — Iy flai)|| < 6 (2.2)

foralla,b,ay,as,...,a, € A. Then there exists a unique n-ring homomorphism
h: A — B such that

[f(a) = h(a)| < e (2.3)

for all a € A. Furthermore,
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(T (@) (T f (i) =TTy h(as))
= (T, f(as) — Ty h(ai)) (T (i)
=0 (2.4)

for all a1, a9, ...,an, € A and all k € {1,2,...,n — 1}.

Proof. Put h(a) = lim,, 5 f(2™a) for all a € A. Then by Hyers’ Theorem,
h is additive. We will show that h is an n-ring homomorphism. For every
ai,as, ..., a, € A we have

|h(a1a3...an) — hlar) (g f (a))|
— lim H;m £ (arag...an)) — hay) (s f(a;))]|
= tim [ F((2"a0)a.an) — h{ar) Ty  (a))]

= tim [ (270 an) — (27 ar) (T ()
+ f(2™a1) (7o f(ai))} — h(a1) (s f (a:)) ||
. 1
Hence,

h(aiag...an) = h(ar) (s f(a;)). (2.5)
By (2.5) it follows that

h(ar) f(2™a2) (Il f(a;)) = h(2™a1a2...a,) = 2" h(ara2...a,)

for all a1, a9, ...,a, € A,m € N. Dividing both sides of above equality by 2™
and taking the limit m — oo. Then we have

() 02) (T f(a1)) = i han) 51 F(27a2) (T f(a) = h{araz...a0).

Hence by (2.5) we have

h(a1)h(az2) (L3 f(ai)) = h(araz...an) = h(a1) (s f(as))-
Now, proceed in this way to prove that
(T (@) (T £ (i) = h(arag...an) (2.6)

for all a1, aq9,...,an, € Aand all k € {1,2,...,n—1}. Put k =n—1in (2.6), we
obtain

(= h(a) f(2Man) = h(2™(araz...ar)) = 2™ h(a1az...an) (2.7)
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for all a1, aq, ...,a, € A,;m € N. Dividing both sides of (2.7) by 2™ and taking
the limit m — oo, it follows that A is an n-homomorphism. On the other hand
h is additive and h(a) = limy, 5 f(2™a) for all @ € A. Then we have

(I 1 f (a0)) (Mg 1 A(@i)) = h(aras...an) = (g h(a;)) (2.8)
for all aj,ag,...,a, € Aand all k € {1,2,...,n— 1}, and (2.4) follows (2.6) and
(2.8). Obviously the uniqueness property of h follows from additivity. O

Similarly to the proof of Theorem 2 of [3], we can prove the Hyers-Ulam-
Rassias type stability of n-ring homomorphisms as follows.

Theorem 2.2. Let A be a normed algebra, B be a Banach algebra, § and € be
nonnegative real numbers and let p, q be two real numbers such that p,q < 1 or
p,q > 1. Assume that f : A — B satisfies the system of functional inequalities

[f(a+0) = f(a) = f(O)I < e([lall”+ [[b]|")
and
(I a;) — TGy f(ai) || < 6(Ty [aq|?)

foralla,b,aq,ao,...,a, € A. Then there exists a unique n-ring homomorphism
h: A — B and a constant k such that

1f(a) = h(a)|| < kel[al”
for all a € A.

Now we will prove the stability of n-ring derivations from a normed algebra
into a Banach module.

Theorem 2.3. Let A be a normed algebra and let X be a Banach A— module.
Suppose the map f: A — X satisfying the system of inequalities:

[f(a+0b) = f(a) = fOI < e(flal” + [I6]7)  (a,b€ A), (2.9)
1F (T yas) — f (an)TTga; — a1 f(a)T_ga; — - - — 75 4 f (an) || < E(Z i)
210

for all a1, as, ...,a, € A, where ¢ and p are constants in RT U {0}. If p < 1,
then there is a unique n-ring derivation D : A — X such that

2€
I£@) ~ D)l < 5=,

for all a € A. Moreover if for every ¢ € C and a € A, f(ca) = cf(a), then
f=D.

lal” (2.11)
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Proof. By Rassias’s Theorem and (2.9), it follows that there exists a unique
additive mapping D : A — A satisfies (2.11). We have to show that D is an
n-derivation. Let s = ﬁ, and let a, a1, a9, ...,a, € A. For each m € N, we
have D(a) = m~*D(m?a), therefore

lm=*f(m*a) — D(a)|| = m™*[|f(m*a) — D(m*a)]|

2¢

—s P s _||p
<= 2 al
s(p—1)__2€
=m [lal”.
2-2p
Since s(p — 1) < 0, we have
lim [|m ™% f(m®a) — D(a)|| = 0. (2.12)
m

Similarly we can show that

2¢

I f(m T a;) — DI a;) || < mms®—D) 5 op IMLimiadl”.
Therefore we have
lin [ ™" f (m"™ I a;) — D(IGZa4)[|” = 0. (2.13)

By (2.10), for each m € N we have
[ f(m™ I ai) —m™* f(m®an)IGy(ai) —m™ a1 f(m®az) s (a;)
= =TS (ai) f(mPa)|

= (I () = f(man) (g (m*a:))
n—1
= DT (mtan) f(meag)) I (m*a)
j=2

— I (ma) f (ma)|
<m” " elll [[mPay ||
:mns(p—l)GH?ZIHain-

Thus we have

lim [ ™" f(m™ L a;) —m™* f(m®an)Iy(a;) —m™ a1 f(m az)I5(a:)

o I (ag) f(mPan) || = 0 (2.14)
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for all ay,as,...,an € A. On the other hand, we have
1D ya;) — D(an)}sa; — a1 D(ag)T_ga; — - - — T2 ai D(an )|
<Dy ai) —m ™™ f(m™ L2 aq) || + [[m™" f (m "I a;)
—m”*f(m*a1)Iiy(a;) —m™ a1 f(m’az)Ii_3(as)
— o= m IS () f(mPan)|
+ [[m™* f(m®a1 ) pa; — D(a)IGzqa4]
+ [lm™" a1 f(m®a2)Ii_za; — a1 D(ag) I za4
+ ...
T =T f(man) — T s D(an)|

for all ai,as,...,an, € A. According to (2.10), (2.13) and (2.14), if m — oo,
then the right hand side of above inequality tends to 0, so we have

D(I}ya;) = D(a)I}_ya; + a1 D(ag)Il}_ga; + - - - + 1" a; D(an),

7
for all ai,as,...,a, € A. Hence D is an n-ring derivation. The uniqueness
property of D follows from additivity. Let now for every ¢ € C and a € A,
f(ca) = cf(a), then by (2.11), we have

If(a) = D(a)|| = [[m™*f(m*a) —m™>D(m’a)|

2
<m= =2 |Im®alP

- 2—2p
=2l
2—2p
for all @ € A. Hence by letting m — oo in above inequality, we conclude that
f(a) = D(a) for all a € A. O

Similarly we can prove the following Theorem which can be regarded as an
extension of Theorem 2.6 of [11].

Theorem 2.4. Let p, q be real numbers such that p,q < 1, or p,q > 1. Let
A be a Banach algebra and let X be a Banach A— module. Suppose the map
f:+ A— X satisfying the system of inequalities:

1f(a+0) = fla) = FO) < e(flall” +[I6]")  (a,b € A),

£ (I ai) — f (an) I pai —an f(ap) Ii—ga; — - =T fan) || < e(ThLy [lai|9)
for all ay,as, ...,a, € A, where € and p are constants in R U {0}. Then there
exists a unique n-ring derivation D : A — X such that

2e
I£(a) = D(a)]| < 5=

lal”
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for alla € A.

The following counterexample, which is a modification of Luminet’s example
(see [16]), shows that Theorem 2.2 is failed for p =1 (see [3]).

Example 2.5. Define a function ¢ : R — R by
0 lz| <1,

p(r) =
zln(|z|) |z| > 1.

Let f: R — M3(R) be defined by

0 00
f@)=1| e(x) 0 0
0 00

for all x € R. Then
1f(a+b) = f(a) = fO)] < e(lal + [b])

and

£ (T yas) — (T f )| < 6(TTLy fail )
for some § > 0,e > 0 and all a1, as,..a, € R; see [3]. Therefore f satisfies
the conditions of Theorem 2.2 with p =1, ¢ = 2. There is however no n-ring
homomorphism h : R — M3(R) and no constant k > 0 such that

If(a) = h(a)l| < kela] (o € R).
Also example 2.7 of [11] shows that Theorem 2.4 above is failed for p = 1.
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