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Abstract. In this paper we consider a multiobjective optimization problem with locally Lip-

schitz functions defined on a Banach space involving inequality, equality and set constraints.

Some constraint qualifications in terms of Clarke’s generalized gradients and directional

derivatives are studied, and necessary and sufficient conditions for efficiency with positive

Lagrange multipliers associated with all components of the objective are established.

1. Introduction

Constraint qualifications (called also regularity conditions) play an impor-
tant role in the theory of extremum problems. They allow us to get Kuhn-
Tucker necessary conditions for efficiency from Fritz John conditions. A lot of
studies dealt with constraint qualifications under which we can obtain posi-
tive Lagrange multipliers associated with all components of objective functions
(see, e.g., [4], [6], [9]-[13], and references therein), which leads to that none of
components of the objective vanishes in necessary conditions for efficiency.

Maeda [10] studies multiobjective optimization problems involving Fréchet
differentiable inequality constraints and introduces a constraint qualification
under which he derives Kuhn-Tucker necessary conditions for efficiency with
Lagrange multipliers corresponding to all components of objective functions
to be positive. Preda-Chitescu [13] give a constraint qualification of Maeda
type in the semidifferentiable case for a multiobjective optimization problem
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with inequality constraints and develop results similar to those obtained by
Maeda [10].

Giorgi et al. [4] consider multiobjective minimization problems involving
inequality and equality constraints in finite dimensions where all functions
are Dini or Hadamard differentiable. They introduce several constraint qual-
ifications which generalize the constraint qualification introduced by Maeda
[10] and the classical ones, and under which they establish Kuhn-Tucker nec-
essary conditions for efficiency with positive Lagrange multipliers associated
with all components of objective functions. Recently, Luu-Hung [9] develop
Kuhn-Tucker necessary conditions for efficiency to mathematical programs in
normed spaces involving inequality, equality and set constraints with positive
Lagrange multipliers corresponding to all components of objective functions,
while Nguyen-Luu [12] establish a theorem of the alternative of Tucker type to
a system comprising inequalities described by sup-functions and an inclusion
together with Kuhn-Tucker necessary conditions of aforementioned type.

The purpose of this paper is to study some constraint qualifications in terms
of Clarke’s generalized gradients and directional derivatives, and establish nec-
essary and sufficient conditions for efficiency in locally Lipschitz mathematical
programming problems involving inequality, equality and set constraints in
Banach spaces with positive Lagrange multipliers associated with all compo-
nents of objective functions along with some properties of the set of Lagrange
multipliers.

The remainder of the paper is organized as follows. After some prelimi-
naries, Section 3 presents a Kuhn-Tucker necessary condition for efficiency in
terms of Clarke’s generalized gradients and normal cones together with nec-
essary and sufficient conditions ensuring the regulaity condition (CQI) holds.
In Section 4 we introduce a constraint qualification of Maeda type in terms
of Clarke’s generalized directional derivatives, and show that (CQI) implies
(CQII). Section 5 gives a necessary condition for efficiency under the regular-
ity condition (CQII). When imposing some generalized convexity hypotheses
on the data of the problem, the necessary condition mentioned above is also
a sufficient one.

2. Preliminaries

Let X be a Banach space, and let f, g, h be mappings from X into Rr, Rm,
R`, respectively. Then f, g, h can be expressed as follows: f = (f1, . . . , fr),
g = (g1, . . . , gm), h = (h1, . . . , h`), where f1, . . . , fr, g1, . . . , gm, h1, . . . , h` are
locally Lipschitz functions defined on X. Let C be a nonempty closed subset of
X. For the sake of simplicity, we define the sets: I = {1, . . . , m} J = {1, . . . , `}
and L = {1, . . . , r}.
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Consider the following multiobjective programming problem:

min f(x),
subject to

(MP) gi(x) 6 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , `,

x ∈ C.

Denote by I(x) the set of active indexes at a point x

I(x) =
{

i ∈ I : gi(x) = 0
}

,

and M the feasible set of Problem (MP)

M =
{

x ∈ C : gi(x) 6 0 (∀i ∈ I), hj(x) = 0 (∀j ∈ J)
}

.

Recall that a point x ∈ M is said to be a local weak efficient minimizer of
(MP) if there exists a number δ > 0 such that there is no x ∈ M ∩ B(x; δ)
satisfying

fk(x) < fk(x) (∀ k ∈ L), (2.1)

where B(x; δ) stands for the open ball of radius δ around x. The point x is
called a local Pareto minimizer of (MP) if (2.1) is replaced by the following

fk(x) 6 fk(x) (∀ k ∈ L), (2.2)

fj(x) < fj(x) at least one j ∈ L. (2.3)

Following [2], for a locally Lipschitz real-valued function f defined on X, the
Clarke generalized directional derivative of f at x, with respect to a direction
v, is defined as

f0(x; v) = lim sup
x→x, t↓0

f(x + tv)− f(x)
t

,

where t ↓ 0 means t → 0+. The function f0(x; .) is finite, positively homoge-
neous and subadditive. The following set of the topological dual X∗ of X is
called the Clarke generalized gradient of f at x

∂f(x) =
{

x∗ ∈ X∗ : 〈x∗, v〉 6 f0(x; v),∀ v ∈ X
}

.

Now let f be a real-valued function defined on X. The upper Dini derivative
of f at x in a direction v is

Df(x; v) = lim sup
t↓0

f(x + tv)− f(x)
t

; (2.4)



84 Do Van Luu

The upper Hadamard derivative of f at x in the direction v is

df(x; v) = lim sup
u→v, t↓0

f(x + tu)− f(x)
t

· (2.5)

Replacing “lim sup” by “lim inf” in (2.4) and (2.5), we obtain the lower Dini
derivative Df(x; v) and the lower Hadamard derivative df(x; v), respectively,
of f at x in the direction v. In case Df(x; v) = Df(x; v) (resp. df(x; v) =
df(x; v)), we denote their common value by Df(x; v) (resp. df(x; v)), which is
called the Dini derivative (resp. Hadamard derivative) of f at x in the direction
v. The function f is Dini differentiable (resp. Hadamard differentiable) at x
if its Dini derivative (resp. Hadamard derivative) at x exists in all directions.
Note that if df(x; v) exists, then also Df(x; v) exists and they are equal. In
case f is Fréchet differentiable at x with Fréchet derivative ∇f(x), then

Df(x; v) = df(x; v) = 〈∇f(x), v〉.
Following [2], the Clarke tangent cone and the contingent cone to a set

C ⊂ X at a point x ∈ C are respectively defined as

T (C; x) =
{

v ∈ C : ∀xn ∈ C,xn → x,∀ tn ↓ 0,∃ vn → v

such that xn + tnvn ∈ C,∀n
}

,

K(C; x) =
{

v ∈ X : ∃ vn → v,∃ tn ↓ 0 such that x + tnvn ∈ C,∀n
}

.

Note that T (C; x) is convex, while K(C; x) is not necessarily convex. Both
T (C;x) and K(C; x) are nonempty closed, and T (C.x) ⊂ K(C; x). In case C
is convex, they are equal.

The normal cones associated with T (C;x) and K(C;x) are

NT (C; x) =
{

x∗ ∈ X∗ : 〈x∗, v〉 6 0, ∀ v ∈ T (C; x)
}

,

NK(C; x) =
{

x∗ ∈ X∗ : 〈x∗, v〉 6 0, ∀ v ∈ K(C;x)
}

.

Both these cones are weakly∗ closed convex. The cone NT (C; x) is called
Clarke’s normal cone, and NK(C;x) ⊂ NT (C; x).

For any set K ⊂ X, the polar cone of K is given by

K0 =
{

ξ ∈ X∗ : 〈ξ, v〉 6 0,∀ v ∈ K
}

.

Thus, NT (C; x) = T 0(C; x), NK(C; x) = K0(C;x).
The Dini subdifferential of a Dini differentiable function defined on X at x

is
∂Df(x) =

{
ξ ∈ X∗ : 〈ξ, v〉 6 Df(x; v),∀ v ∈ X

}
.
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Note that in case f is locally Lipschitz at x,

∂Df(x) ⊂ ∂f(x),

as Df(x; v) 6 f0(x; v).
Adapting the definition of Giorgi and Guerraggio [3], a locally Lipschitz

function defined on X is called ∂-quasiconvex (resp. ∂-pseudoconvex) at x if

f(y) 6 f(x) implies 〈ξ, y − x〉 6 0 (∀ ξ ∈ ∂f(x))

(resp. f(y) < f(x) implies 〈ξ, y − x〉 < 0, ∀ ξ ∈ ∂f(x)).

In case f is Fréchet continuously differentiable, the ∂-quasiconvexity (resp. ∂-
pseudoconvexity) at x reduced to the quasiconvexity (resp. pseudoconvexity)
at x.

3. The constraint qualification (CQI) and
Lagrange multipliers for problem (MP)

Adapting the definition of Chandra-Dutta-Lalitha [1], we shall say that
Problem (MP) satisfies the constraint qualification (CQI) at x ∈ M if for each
s ∈ L, there is no scalars τk > 0, k ∈ L, k 6= s, λi > 0, i ∈ I(x), µj ∈ R, j ∈ J ,
not all zero, satisfying

0 ∈
∑

k∈L, k 6=s

τk∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C;x). (3.1)

Note that (CQI) is equivalent to that for every s ∈ L,

0 ∈
∑

k 6=s

τk∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C;x) }
⇒

τk > 0, ∀ k ∈ L, k 6= s, λi > 0, ∀ i ∈ I(x), µj ∈ R, ∀ j ∈ J

⇒ τk = λi = µj = 0

(∀ k ∈ L, k 6= s,∀ i ∈ I(x), ∀ j ∈ J).
A Kuhn-Tucker necessary condition for efficiency with positive Lagrange

multipliers corresponding to all components of the objective can be stated as
follows.

Theorem 3.1. Let x be a local Pareto minimizer of (MP ). Assume that the
constraint qualification (CQI) holds at x. Then there exist scalars τk > 0,
k ∈ L, λi > 0, i ∈ I and µj ∈ R, j ∈ J such that

0 ∈
∑

k∈L

τk∂fk(x) +
∑

i∈I

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C; x), (3.2)

λigi(x) = 0, i ∈ I. (3.3)
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Proof. It is easy to see that for each s ∈ L, x is a local minimizer of the
following scalar optimization problem:

min fs(x),

s.t. fk(x) 6 fk(x), k ∈ L, k 6= s,

(Ps) gi(x) 6 0, i ∈ I,

hj(x) = 0, j ∈ J,

x ∈ C.

Applying Theorem 6.1.1 [2] to each Problem (Ps) yields the existence of
numbers τ

(s)
k > 0, k ∈ L, k 6= s, λ

(s)
i > 0, i ∈ I, µ

(s)
j ∈ R, j ∈ J , not all zero,

such that

0 ∈
∑

k∈L

τ
(s)
k ∂fk(x) +

∑

i∈I

λ
(s)
i ∂gi(x) +

∑

j∈J

µ
(s)
j ∂hj(x) + NT (C.x), (3.4.s)

λ
(s)
i gi(x) = 0, i ∈ I. (3.5.s)

In view of the constraint qualification (CQI), one get τ
(s)
s > 0.

Summing up the inclusion (3.4.1),...,(3.4.r), we obtain

0 ∈
∑

k∈L

τk∂fk(x) +
∑

i∈I

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C; x),

where τk =
∑
s∈L

τ
(s)
k > 0 (k ∈ L), λi =

∑
s∈L

λ
(s)
i > 0 (i ∈ I), and µj =

∑
s∈L

µ
(s)
j ∈ R (j ∈ J). Moreover, it follows readily from (3.5.s) that

λigi(x) = 0, i ∈ I,

as was to be shown. ¤
Without loss of generality we can suppose that I(x) = {1, . . . , p} (p 6 m).

For s ∈ L we denote by Λs(x) the set of vectors (τ1, . . . , τs−1, τs+1, . . . , τr,
λ1, . . . , λp, µ1, . . . , µ`) with τk > 0 (∀ k ∈ L, k 6= s), λi > 0 (∀ i ∈ I(x)), µj ∈ R
(∀ j ∈ J) such that

0 ∈ ∂fs(x) +
∑

k∈L, k 6=s

τk∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C; x),

and Λ(x) =
⋃

s∈L

Λs(x).

The following result shows that the boundedness of Λ(x) is a sufficient
condition ensuring the regularity condition (CQI) holds.

Theorem 3.2. Let x ∈ M . Assume that Λs(x) is a nonempty and bounded
for all s ∈ L. Then the constraint qualification (CQI) holds at x.
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Proof. Assume the contrary, that the regularity condition (CQI) does not holds
at x. Then there exist s0 ∈ L, τ ′k > 0 (k ∈ L, k 6= s0), λ′i > 0 (i ∈ I(x)) and
µ′j ∈ R (j ∈ J), not all zero, such that

0 ∈
∑

k∈L, k 6=s0

τ ′k∂fk(x) +
∑

i∈I(x)

λ′i∂gi(x) +
∑

j∈J

µ′j∂hj(x) + NT (C; x). (3.6)

Since Λs0(x) 6= ∅, there exist τk > 0 (k ∈ L, k 6= s0), λi > 0 (i ∈ I(x)), and
µj ∈ R (j ∈ J) such that

0 ∈ ∂fs0(x) +
∑

k∈L, k 6=s0

τk∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C; x).

(3.7)

Combining (3.6) and (3.7) yields that for any γ > 0,

0 ∈ ∂fs0(x) +
∑

k∈L, k 6=s0

(τk + γτ ′k)∂fk(x) +
∑

i∈I(x)

(λi + γλ′i)∂gi(x)+

+
∑

j∈J

(µj + γµ′j)∂hj(x) + NT (C; x),

which implies that

(τ1+γτ ′1, . . . , τs0−1 + γτ ′s0−1, τs0+1 + γτ ′s0+1, . . . , τr + γτ ′r,

λ1 + γλ′1, . . . , λp + γλ′p, µ1 + γµ′1, . . . , µ` + γµ′`) ∈ Λs0(x),

and hence, Λs0(x) is unbounded, which contradicts the hypothesis. ¤
In what follows we can see that whenever the regularity condition (CQI)

holds at a local Pareto minimum x the set Λ(x) will be nonempty and bounded.

Theorem 3.3. Let x be a local Pareto minimizer of (MP). Assume that the
regularity condition (CQI) holds at x. Then Λ(x) is nonempty and bounded.

Proof. Since x is a local Pareto minimizer for (MP), it also is a local minimizer
of the scalar optimization problem (Ps) for all s ∈ L. Applying Theorem 6.1.1
[2] to each Problem (Ps) (s ∈ L) yields the existence of scalas τk > 0 (k ∈ L),
λi > 0 (i ∈ I(x)) and µj ∈ R (j ∈ J), not all zero, such that

0 ∈
∑

k∈L

τk∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C; x).

By virtue of the regularity condition (CQI), each the following constraint
qualification holds to (Ps) at x: for all (τ1, . . . , τs−1, τs+1, . . . , τr, λ1, . . . , λp,
µ1, . . . , µ`) ∈ Rr−1

+ × Rp
+ × R` \ {0},

0 6∈
∑

k∈L, k 6=s

τk∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∂hj(x) + NT (C;x). (3.8)



88 Do Van Luu

for all s ∈ L. Hence τs > 0, and we can take τs = 1 (∀ s ∈ L). Consequently,
Λs(x) 6= ∅, and so is Λ(x).

It is obvious that the regularity condition (3.8) implies that for all
(τ1, . . . , τs−1, τs+1, . . . , τr, λ1, . . . , λp, µ1, . . . , µ`) ∈ Rr−1

+ × Rp
+ × R` \ {0},

0 6∈ ∂
( ∑

k∈L, k 6=s

τkfk

)
(x) + ∂

( ∑

i∈I(x)

λigi

)
(x) + ∂

(∑

j∈J

µjhj

)
(x) + NT (C; x).

(3.9)

This is the constraint qualification (CQII) for Problem (Ps) in the Jourani
sense in [8]. Under the gerularity condition (3.9) Theorem 3.2 in [8] shows
that Λs(x) is bounded. Hence, Λ(x) is bounded as well. ¤

4. The constraint qualification (CQII)

In this section we shall be concerned with a constraint qualification of Maeda
[10] type in terms of the Clarke generalized directional derivatives and the
relationship between this constraint qualification and (CQI)

For x ∈ X, we set
Qs =

{
x ∈ C : fk(x) 6 fk(x)(∀k ∈ L, k 6= s), gi(x) 6 0(∀i ∈ I),

hj(x) = 0(∀j ∈ J)
}

,

Ps =
{

x ∈ C : fk(x) 6 fk(x)(∀k ∈ L, k 6= s), gi(x) 6 0(∀i ∈ I),

hj(x) = 0(∀j ∈ J)
}

,

Q =
{

x ∈ C : fk(x) 6 fk(x)(∀k ∈ L), gi(x) 6 0(∀i ∈ I),

hj(x) = 0(∀j ∈ J)
}

,
For a nonempty closed convex subcone T of K(C;x), we set

CT (Qs; x) =
{

v ∈ T :f0
k (x; v) 6 0 (∀k ∈ L, k 6= s),

g0
i (x, v) 6 0 (∀i ∈ I(x)), h0

j (x; v) = 0 (∀j ∈ J)
}

,

CT (Q; x) =
{

v ∈ T :f0
k (x; v) 6 0 (∀k ∈ L),

g0
i (x; v) 6 0 (∀i ∈ I(x)), h0

j (x; v) = 0 (∀j ∈ J)
}

. (4.1)

Thus Qs = Ps ∩ C and CT (Q;x) =
⋂

s∈L

CT (Qs;x).

Maeda [10] considered Problem (MP) consists only of Fréchet continuously
differentiable constraints of inequality type. To derive necessary conditions



On constraint qualifications and optimality conditions 89

with positive Lagrange multipliers associated with all components of the ob-
jective, Maeda [10] introduced the following constraint qualification:

C(Q; x) ⊂
⋂

s∈L

coK(Qs; x), (4.2)

where co indicates the closed convex hull, X = Rn, and

C(Q; x) =
{

v ∈ X :〈∇fk(x), v〉 6 0 (∀k ∈ L),

〈∇gi(x), v〉 6 0 (∀i ∈ I(x)), 〈∇hj(x), v〉 = 0 (∀j ∈ J)
}

.

Chandra et al. [1] studied Problem (MP) without set constraints, and intro-
duced the constraint qualification of the form

C(Qs; x) ⊂ co K(Qs;x) for some s ∈ L. (4.3)

Note here that T = X and C(Qs; x) = CX(Qs;x).
Under condition (4.3) Chandra et al. only obtain necessary conditions

for efficiency with Lagrange multipliers corresponding to the objective to be
nonzero. Motivated by the results due to Maeda [10] and Chandra et a. [1], we
introduce the following constraint qualification: there exist nonempty closed
convex subcones T of K(C; x) and Ts of K(Qs; x) (∀s ∈ L) such that

CT (Q;x) ⊂
⋂

s∈L

Ts, (4.4)

which is called the constraint qualification (CQII). For example, it can be
taken T and Ts as the Clarke tangent cones T (C; x) and T (Qs; x) (s ∈ L),
respectively.

Theorem 4.1 below will show that the constraint qualification (CQI) implies
the constraint qualification (CQII) under suitable hypothesis.

Theorem 4.1. Let x be a feasible point of Problem (MP) and C a convex
set. Assume that hj is Fréchet continuously differentiable at x with Fréchet
derivatives ∇hj (∀j ∈ J); fk and gi are Dini differentiable at x with convex
derivatives (∀k ∈ L,∀i ∈ I(x)). Suppose, in addition, that the constraint
qualification (CQI) holds at x. Then the constraint qualification (CQII) holds
at x.

Proof. Since fk and gi are Dini differentiable and locally Lipschitz at x, they
are Hadamard differentiable at x for all k ∈ L, i ∈ I(x). By virtue of the
regularity condition (CQI), it follows that for all s ∈ L,

0 ∈
∑

k∈L, k 6=s

τk∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∇hj(x)+NT (C; x) }
⇒

τk > 0 (∀k ∈ L, k 6= s), λi > 0 (∀i ∈ I(x)), µj ∈ R (∀j ∈ J)
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⇒ τk = λi = µj = 0 (∀k ∈ L, k 6= s,∀i ∈ I(x), ∀j ∈ J). (4.5)

Since ∂Dfk(x) ⊂ ∂fk(x), ∂Dgi(x) ⊂ ∂gi(x), it follows from (4.5) that for all
s ∈ L,

0 ∈
∑

k∈L, k 6=s

τk∂Dfk(x) +
∑

i∈I(x)

λi∂Dgi(x) +
∑

j∈J

µj∇hj(x)+NT (C; x) }
⇒

τk > 0 (∀k ∈ L, k 6= s), λi > 0 (∀i ∈ I(x)), µj ∈ R (∀j ∈ J)

⇒ τk = λi = µj = 0 (∀k ∈ L, k 6= s,∀i ∈ I(x), ∀j ∈ J),
which implies that for all s ∈ L,

0 ∈
∑

k∈L, k 6=s

τk∂Dfk(x) +
∑

i∈I(x)

λi∂Dgi(x) +
∑

j∈J

µj∇hj(x) }
⇒

τk > 0 (∀k ∈ L, k 6= s), λi > 0 (∀i ∈ I(x)), µj ∈ R (∀j ∈ J)

⇒ τk = λi = µj = 0 (∀k ∈ L, k 6= s,∀i ∈ I(x), ∀j ∈ J), (4.6)

as 0 ∈ NT (C;x).
Moreover, one has, according to Theorem 3.1 [7], that

K(Qs;x) = K(Ps;x) ∩K(C;x). (4.7)

Note here that K(C; x) = T (C; x), as C is convex. Under the regularity
condition (4.6) we can invoke Lemma 2.1 [14] to deduce that for all s ∈ L,

K(Ps; x) =
{

v ∈ X :Dfk(x; v) 6 0 (∀k ∈ L, k 6= s),

Dgi(x; v) 6 0 (∀i ∈ I(x)), 〈∇hj(x), v〉 = 0 (∀j ∈ J)
}

.

In view of the convexity of the functions Dfk(x; .) (k ∈ L) and Dgi(x; .)
(i ∈ I(x)), we deduce that K(Ps; x) is convex. This along with (4.7) yields
that K(Qs; x) is a closed convex cone.

On the other hand, it is clear that for each s ∈ L,

CK(Qs; x) ⊂
{

v ∈ K(C; x) : Dfk(x; v) 6 0 (∀k ∈ L, k 6= s)

Dgi(x; v) 6 0 (∀i ∈ I(x)), 〈∇hj(x), v〉 = 0 (∀j ∈ J)
}

= K(Ps; x) ∩K(C; x)

= K(Qs; x).

Hence, ⋂

s∈L

Ck(Qs; x) = CK(Q; x) ⊂
⋂

s∈L

K(Qs;x).

Thus the constraint qualification (CQII) holds at x with T = K(C; x) and
Ts = K(Qs;x). ¤
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5. Optimality conditions

In this section, under the constraint qualification (CQII) we shall derive
necessary conditions for efficiency of Problem (MP) with positive Lagrange
multipliers corresponding to all components of the objective in terms of the
Clarke generalized gradients and the contingent cone K(C; x). At this point
we also assume that hj (j ∈ J) is Fréchet continuously differentiable at x with
Fréchet derivative ∇hj(x) for all j ∈ J . For an arbitrary nonempty closed
convex subcone T of K(C;x), we set

BT (x) =
⋃{ ∑

k∈L

τk∂fk(x)+
∑

i∈I(x)

λi∂gi(x) +
∑

j∈J

µj∇hj(x) + T 0 : τk > 0,

λi > 0, µj ∈ R for all k ∈ L, i ∈ I(x), j ∈ J
}

.

Theorem 5.1. Let x be a local Pareto minimizer of Problem (MP). Assume
that the constraint qualification (CQII) holds at x for the nonempty closed
convex subcones T and Ts of K(C; x) and K(Qs; x), respectively. Then(

−
∑

k∈L

∂fk(x)
)⋂

BT (x) 6= ∅, (5.1)

where the bar indicates the weak∗ closure.

Proof. Since x is a local Pareto minimizer of (MP), it is a local minimizer of
the scalar optimization problem (Ps) for all s ∈ L. For any v ∈ K(Qs; x),
there exist sequences tn ↓ 0 and vn → v such that x + tnvn ∈ Qs (∀n). Hence,

dfs(x; v) > lim sup
n→∞

fs(x + tnvn)− fs(x)
tn

> 0.

As fs is locally Lipschitz at x, it results that

Dfs(x; v) = dfs(x; v) > 0 (∀v ∈ K(Qs;x)),

which leads to the following

f0
s (x; v) > 0 (∀v ∈ K(Qs; x)),

as Dfs(x; v) 6 f0
s (x; v). This yields that

f0
s (x; v) > 0 (∀v ∈ Ts). (5.2)

Let us show that

0 ∈ ∂fs(x) + T 0
s . (5.3)

Assume the contrary, that

0 6∈ ∂fs(x) + T 0
s .

It is obvious that the set ∂fs(x)+T 0
s is convex. In view of the weak∗ compact-

ness of ∂fs(x) and the weak∗ closedness of T 0
s , we infer that the set ∂fs(x)+T 0

s
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is weakly∗ closed. Making use of a separation theorem of disjoint convex sets
(see, for example, [5, Theorem 3.6]), we claim that there exists v0 ∈ X, v0 6= 0,
such that

〈ξ, v0〉 < 0 (∀ξ ∈ ∂fs(x) + T 0
s ). (5.4)

As 0 ∈ T 0
s , it results that

〈ξ, v0〉 < 0 (∀ξ ∈ ∂fs(x)),

whence,

f0
s (x; v0) < 0. (5.5)

We shall prove that v0 ∈ Ts. If this were not so, there would exist ξ0 ∈ T 0
s

such that 〈ξ0, v0〉 > 0. For any λ > 0, λξ0 ∈ T 0
s , and so, for λ sufficiently large

and any ξ ∈ ∂fs(x), we have

〈ξ, v0〉+ 〈λξ0, v0〉 > 0.

We then arrive at a contradiction with (5.4). Hence, v0 ∈ Ts, and so, (5.5)
conflicts with (5.2). Thus one gets (5.3).

It follows from (5.3) that

0 ∈
∑

s∈L

∂fs(x) +
∑

s∈L

T 0
s ⊂

∑

s∈L

∂fs(x) +
∑

s∈L

T 0
s . (5.6)

On the other hand, the constraint qualification (CQII) yields that
( ⋂

s∈L

Ts

)0
⊂ C0

T (Q;x), (5.7)

where C0
T (Q;x) is the polar cone of CT (Q; x). Taking account of Lemma 5.8

in [5], we get
( ⋂

s∈L

Ts

)0
=

∑

s∈L

T 0
s . (5.8)

Combining (5.6)-(5.8) yields that

0 ∈
∑

s∈L

∂fs(x) + C0
T (Q; x). (5.9)

We now prove that

C0
T (Q; x) = BT (x). (5.10)

We first show that

BT (x) ⊂ C0
T (Q; x). (5.11)
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For ξ ∈ BT (x), there exist τk > 0, ξk ∈ ∂fk(x) (k = 1, . . . , r), λi > 0,
ηi ∈ ∂gi(x) (i ∈ I(x)), µj ∈ R (j = 1, . . . , `) and ζ ∈ T 0 such that

ξ =
∑

k∈L

τkξk +
∑

i∈I(x)

λiηi +
∑

j∈J

µj∇hj(x) + ζ.

For any v ∈ CT (Q; x), it follows readily that v ∈ T , and

〈ξk, v〉 6 f0
k (x; v) 6 0 (∀k ∈ L),

〈ηi, v〉 6 g0
i (x; v) 6 0 (∀i ∈ I(x)),

〈∇hj(x), v〉 = 0 (∀j ∈ J),

〈ζ, v〉 6 0.

Hence, ξ ∈ C0
T (Q; x), and (5.11) holds. As C0

T (Q; x) is weakly∗ closed, it
results that

BT (x) ⊂ C0
T (Q; x). (5.12)

Let us verify the opposite inclusion of (5.12). If it were false, there would
exist w ∈ C0

T (Q;x), but w 6∈ BT (x). Observing that BT (x) is weakly∗ closed
and convex, we invoke a separation theorem of disjoint convex sets (see, e.g.,
[5, Theorem 3.6]) to deduce that there exists u0 ∈ X, u0 6= 0, such that

〈ξ, u0〉 6 0 < 〈w, u0〉 (∀ξ ∈ BT (x)), (5.13)

which implies that u0 ∈ B0
T (x).

On the other hand, for ξk ∈ ∂fk(x), it holds that ξk ∈ BT (x) (∀k ∈ L).
Hence,

〈ξk, u0〉 6 0 (∀ξk ∈ ∂fk(x)),
which leads to the following

f0
k (x; u0) 6 0 (∀k ∈ L). (5.14)

Similarly, one gets

g0
i (x; u0) 6 0 (∀i ∈ I(x)). (5.15)

Moreover, since ±∇hj(x) ∈ BT (x) (∀j ∈ J), it results that

〈∇hj(x), u0〉 = 0 (∀j ∈ J). (5.16)

For every ζ ∈ T 0, we also have

〈ζ, u0〉 6 0, (5.17)

whence, u0 ∈ T 00 = T .
Combining (5.14)-(5.17) yields that u0 ∈ CT (Q;x). Observing that w ∈

C0
T (Q; x). we obtain that

〈w, u0〉 6 0,
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which conflicts with (5.13). Hence,

C0
T (Q; x) ⊂ BT (x),

which along with (5.12) yields that (5.10) holds.
Substituting (5.10) into (5.9) yields that

0 ∈
∑

s∈L

∂fs(x) + BT (x),

which implies that (
−

∑

s∈L

∂fs(x)
)
∩BT (x) 6= ∅.

The proof is complete. ¤
The following corollaries give us standard Kuhn-Tucker necessary conditions

for efficiency of (MP) with positive Lagrangian multipliers corresponding to
all components of the objective.

Corollary 5.2. Let x be a local Pareto minimizer of (MP). Assume that the
set BT (x) is weakly∗ closed, and the constraint qualification (CQII) holds at x
for some nonempty closed convex subcones T of K(C; x) and Ts of K(Qs; x)
(s = 1, . . . , r). Then there exist τk > 0 (k = 1, . . . , r), λi > 0 (i = 1, . . . , m)
and µj ∈ R (j = 1, . . . , `) such that

0 ∈
r∑

k=1

τk∂fk(x) +
m∑

i=1

λi∂gi(x) +
∑̀

j=1

µj∇hj(x) + T 0, (5.18)

λigi(x) = 0, i = 1, . . . , m. (5.19)

Proof. We invoke Theorem 5.1 to deduce that(
−

∑

k∈L

∂fk(x)
)
∩BT (x) 6= ∅, (5.20)

as BT (x) weakly∗ closed. But (5.20) is equivalent to the following

0 ∈
∑

k∈L

∂fk(x) + BT (x).

Hence, there exist τk > 0 (k = 1, . . . , r), λi > 0 (i ∈ I(x)) and µj ∈ R
(j = 1, . . . , `) such that

0 ∈
r∑

k=1

(1 + τk)∂fk(x) +
∑

i∈I(x)

λi∂gi(x) +
∑̀

j=1

µj∇hj(x) + T 0.

By taking τk = 1 + τk (k = 1, . . . , r), λi = λi (i ∈ I(x)), λi = 0 (i 6∈ I(x)) and
µj = µj (j = 1, . . . , `), we obtain (5.18) and (5.19). ¤
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Corollary 5.3. Let x be a local Pareto minimizer of (MP). Assume that all
the hypotheses of Corollary 5.2 are fulfilled and the constraint qualification
(CQII) holds with T = T (C; x) and Ts = T (Qs; x). Then there exists τk > 0
(k = 1, . . . , r), λi > 0 (i = 1, . . . ,m) and µj ∈ R (j = 1, . . . , `) such that

0 ∈
r∑

k=1

τk∂fk(x) +
m∑

i=1

λi∂gi(x) +
∑̀

j=1

µj∇hj(x) + NT (C;x),

λigi(x) = 0, i = 1, . . . , m.

Proof. Since T 0(C;x) = NT (C; x), applying Corollary 5.2 we obtain desired
conclusions. ¤

We close the paper with a sufficient condition for efficiency.

Theorem 5.4. Let x be a feasible point of (MP). Assume that the func-
tion fk0 is ∂-pseudoconvex at x for some k0 ∈ L, while the functions fk

(k = 1, . . . , r, k 6= k0) and gi (i ∈ I(x)) are ∂-quasiconvex at x. Suppose,
furthermore, that ±h1, . . . ,±h` are quasiconvex at x, C is convex, and(

−
∑

k∈L

∂fk(x)
)
∩BT (x) 6= ∅, (5.21)

with T = T (C;x). Then x is a weak minimum of (MP).

Proof. It can be rewritten (5.21) in the form

0 ∈
∑

kinL

∂fk(x) + BT (x),

which implies that there exist ξk ∈ ∂fk(x) (k = 1, . . . , r) and η ∈ BT (x) such
that

0 =
∑

k∈L

ξk + η. (5.22)

It can be expressed η as follows

η = w∗ − lim
n→∞

( ∑

k∈L

τ
(n)
k ξ

(n)
k +

∑

i∈I(x)

λ
(n)
i η

(n)
i +

∑

j∈J

µ
(n)
j ∇hj(x) + σ(n)

)
,

(5.23)

where w∗ − lim indicates the limit in weak∗ topology, τ
(n)
k > 0, λ

(n)
i > 0,

µ
(n)
j ∈ R, ξ

(n)
k ∈ ∂fk(x), η

(n)
i ∈ ∂gi(x) and σ(n) ∈ NT (C; x) (for all k ∈ L,

i ∈ I(x), j ∈ J).
Contrary to the conclusion, suppose that x is not a weak minimizer of (MP).

Then there exists x ∈ X which is a feasible point for (MP) such that

fk(x) < fk(x) (∀k ∈ L).
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In view of the ∂-pseudoconvexity of fk0 , the ∂-quasiconvexity of fk (k =
1, . . . , r, k 6= k0), gi (i ∈ I(x)), and the quasiconvexity of ±hj (j = 1, . . . , `), it
follows that for n = 1, 2, . . . ,

fk0(x) < fk0(x) ⇒
{
〈ξk0 , x− x〉 < 0,

〈ξ(n)
k0

, x− x〉 < 0,
(5.24)

fk(x) < fk(x) ⇒
{
〈ξk, x− x〉 6 0,

〈ξ(n)
k , x− x〉 6 0 (∀k ∈ L, k 6= k0),

(5.25)

gi(x) 6 0 = gi(x) ⇒ 〈η(n)
i , x− x〉 6 0 (∀i ∈ I(x)), (5.26)

hj(x) = 0 = hj(x) ⇒ 〈∇hj(x), x− x〉 = 0 (∀j ∈ J). (5.27)

Combining (5.23)-(5.27) yields that

〈
∑

k∈L

ξk + η, x− x〉 < 0,

which contradicts (5.22). Hence x is a weak minimum of (MP). ¤
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