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Abstract. This paper deals with a nonlinear Langevin equation involving two fractional

orders with three-point boundary conditions. Our aim is to find the existence of solutions for

the proposed Langevin equation by using the Banach contraction mapping principle and the

Krasnoselskii’s fixed point theorem. Three examples are also given to show the significance

of our results.

1. Introduction

Fractional differential equations occur in various contexts, such as biol-
ogy, physics, biophysics, geophysics, fluid dynamics, control theory, etc. For
additional subtleties and applications, we allude the peruser to the books
[12, 13, 14, 16].

The Langevin equation has been broadly used to depict the evolution of
physical processes in fluctuating conditions (see more details in [1, 2, 4]).
For example, if white noise is believed to be the random fluctuating force,
then the Langevin equation describes the Brownian motion. Nonetheless,

0Received September 7, 2020. Revised November 6, 2020. Accepted April 11, 2021.
02010 Mathematics Subject Classification: 47H09, 47H10, 37C25.
0Keywords: Fractional derivative, Langevin equation, Banach contraction mapping prin-

ciple, Krasnoselskii’s fixed point theorem.
0Corresponding author: Wutiphol Sintunavarat(wutiphol@mathstat.sci.tu.ac.th).



1022 A. Turab and W. Sintunavarat

the ordinary Langevin equations do not grant an accurate description of the
elements for frameworks in complicated networks. Therefore, it is easier to
substitute the ordinary derivative with a fractional derivative and analyze the
fractional Langevin equation. The reader can see published research articles
concerning the fractional Langevin equation in [2, 3, 5, 6, 10, 11, 15, 17] and
references therein.

Here, we consider the following boundary value problem of the Langevin
equation with two different fractional orders{

CDω
(
CDϑ + κ

)
x(t) = φ(t, x(t)), 0 < t < 1,

x(0) = r1, x(η) = r2, x(1) = r3,
(1.1)

where x : [0, 1] → R is an unknown function, CD is the Caputo fractional
derivative, φ : [0, 1] × R → R is a given continuous function, 0 < ϑ ≤ 1,
1 < ω ≤ 2, 0 < η < 1 and κ, r1, r2, r3 ∈ R.

Our aim is to find the existence of solutions for the Langevin equation (1.1)
by using the Banach contraction mapping principle and the Krasnoselskii’s
fixed point theorem. For this, we first prove a new result for a linear Langevin
equation involving two fractional orders in different intervals with three-point
boundary conditions. After that, we investigate the existence results for the
three-point boundary value problem of nonlinear Langevin equation involving
two fractional orders. The first conclusion is based on the idea of the Banach
contraction mapping principle, whereas the second finding has relied on the
fixed point theorem of the Krasnoselskii. At the end, three examples are also
presented which show the significance of our results in this area.

2. Preliminaries

Let J = [0, 1] and F = C(J ,R) denotes the Banach space of all continuous
functions from J into R endowed with a norm ‖ · ‖ defined by ‖x‖ = sup

t∈J
|x(t)|

for all x ∈ J .

Following definitions and known results will be needed in the sequel.

Definition 2.1. ([7]) The Riemann-Lioville fractional integral of order ϑ > 0
for a continuous function φ : [0,∞)→ R, denoted by Iϑφ, is defined by

Iϑφ(τ) =
1

Γ(ϑ)

∫ τ

0
(τ − ς)ϑ−1φ(ς)dς

equipped with that the integral in the right-hand-side exists, where Γ(ϑ) is
defined by

Γ(ϑ) :=

∫ ∞
0

τϑ−1e−τdτ.
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Definition 2.2. ([13]) The Caputo fractional derivative of order ϑ > 0 for a
function φ : [0,∞)→ R, denoted by CDϑφ, is defined by

CDϑφ(τ) =
1

Γ(n− ϑ)

∫ τ

0
(τ − ς)n−ϑ−1φ(n)(ς)dς,

where n ∈ N with n− 1 < ϑ ≤ n.

Lemma 2.3. ([7, 13]) Let φ ∈ L1(0, 1) and ϑ, ω > 0.

(i) If ϑ ∈ N, then Iϑφ(τ) = 1
(ϑ−1)!

∫ τ
0 (τ − ς)ϑ−1φ(ς)dς.

(ii) If ϑ = n ∈ N, then CDϑφ(τ) = φ(ϑ)(τ).
(iii) CDϑIϑφ(τ) = φ(τ).
(iv) IϑIωφ(τ) = Iϑ+ωφ(τ).

Lemma 2.4. ([7]) For each ϑ > 0, the general solution of the fractional dif-
ferential equation CDϑu(τ) = 0 is given by

u(τ) = c0 + c1τ + c2τ
2 + ...+ cn−1τ

n−1,

where ci ∈ R for all i = 0, 1, 2, . . . , n− 1 and n = [ϑ] + 1.

Lemma 2.5. ([7]) For each ϑ > 0, we have

Iϑ CDϑu(τ) = u(τ) + c0 + c1τ + c2τ
2 + ...+ cn−1τ

n−1,

where ci ∈ R for all i = 0, 1, 2, . . . , n− 1 and n = [ϑ] + 1.

For solving (1.1), we now discuss the following linear problem for the Langevin
equation involving two fractional orders in different intervals:{

CDω
(
CDϑ + κ

)
x(τ) = ψ(τ), 0 < τ < 1,

x(0) = r1, x(η) = r2, x(1) = r3,
(2.1)

where x : [0, 1]→ R is an unknown function, ψ ∈ F, 0 < ϑ ≤ 1, 1 < ω ≤ 2 and
0 < η < 1.

Lemma 2.6. The boundary value problem (2.1) is equivalent to the integral
equation given by

x(τ) =

∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

−τ
ϑ(1− τ)

ηϑ(1− η)

[∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

]
+
τϑ(η − τ)

(1− η)

[∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

]
+

τϑ

(1− η)

[
(η − τ) (r1 − r3)− 1

ηϑ
(1− τ) (r1 − r2) +

(1− η)

τϑ
r1

]
.

(2.2)
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Proof. As laid out in [9], the following problem

CDω
(
CDϑ + κ

)
x(τ) = ψ(τ)

is equivalent to

x(τ) =

∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

−c1
τϑ+1

Γ(ϑ+ 2)
− c2

τϑ

Γ(ϑ+ 1)
− c3. (2.3)

Using the boundary conditions for (2.1), we find that

c3 = −r1,

c2 =
ϑη

(1− η)

[
1

ηϑ+1

∫ η

0
(η − ξ)ϑ−1

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

−
∫ 1

0
(1− ξ)ϑ−1

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

]
+

Γ(ϑ+ 1)η

(1− η)

[
1

ηϑ+1
(r1 − r2)− (r1 − r3)

]
,

c1 =
ϑ(ϑ+ 1)

(1− η)

[∫ 1

0
(1− ξ)ϑ−1

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

− 1

ηϑ

∫ η

0
(η − ξ)ϑ−1

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
ψ(ς)dς − κx(ξ)

)
dξ

]
+

Γ(ϑ+ 2)

(1− η)

[
(r1 − r3)− 1

ηϑ
(r1 − r2)

]
.

Substituting the values of c1, c2, c3 in (2.3), we obtain the result in this theo-
rem. �

Keeping Lemma 2.6 in mind, we mutate Problem (1.1) as the following fixed
point problem

x = Zx, (2.4)

where Z : F→ F is defined for each x ∈ F by
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(Zx)(τ)

=

∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

− τϑ(1− τ)

ηϑ(1− η)

[∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
+
τϑ(η − τ)

(1− η)

[∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
+

τϑ

(1− η)

[
(η − τ) (r1 − r3)− 1

ηϑ
(1− τ) (r1 − r2) +

(1− η)

τϑ
r1

]
.

Observe that Problem (1.1) has solutions if the operator Z has fixed points.

We now give two famous fixed point results which are main tools for solving
the existence of at least one solution of our proposed model (1.1).

Theorem 2.7. (Banach contraction mapping principle) Let (X ,D) be a com-
plete metric space. Suppose that T : X → X is a Banach contraction mapping,
that is,

D(T x, T y) ≤ kD(x, y) (2.5)

for all x, y ∈ X , where k ∈ [0, 1). Then T has a unique fixed point a ∈ X , that
is, T a = a.

Theorem 2.8. (Krasnoselskii fixed point theorem, [8]) Let O be a nonempty,
closed and convex subset of a Banach space B. Suppose that Z1,Z2 : O → B
are two operators satisfying the following conditions:

(1) Z1a+ Z2b ∈ O for all a, b ∈ O;
(2) Z1 is compact and continuous on O;
(3) Z2 is a Banach contraction mapping on O.

Then Z1+Z2 has a fixed point, that is, there exists a ∈ O such that Z1a+Z2a =
a.

3. Main results

In this section, we investigate the existence of solutions for the Langevin
equation (1.1). For the ease of computing, we set

A : =
(ϑ)ϑ

(1− η)(1 + ϑ)1+ϑ
, (3.1)

F : =
A
ηϑ

[
η2ϑ+1 |r1 − r3|+ |r1 − r2|+

ηϑ

A
r1

]
, (3.2)

∆ : = L∆1 + ∆2, (3.3)
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where

∆1 : =
1 +A(ηϑ+1 + ηω)

Γ(ϑ+ ω + 1)
, (3.4)

∆2 : =
|κ|
[
1 +A(1 + ηϑ+1)

]
Γ(ϑ+ 1)

. (3.5)

Theorem 3.1. Consider the boundary value problem of the Langevin equation
(1.1). Suppose that

|φ(τ, s)− φ(τ, t)| ≤ L |s− t| (3.6)

for all τ ∈ J and s, t ∈ R, where L > 0 is a constant. Then the Langevin
equation (1.1) has a unique solution provided that ∆ < 1, where ∆ is defined
in (3.3).

Proof. We first define Z : F → F for each x ∈ F by a function Zx which is
given for each τ ∈ J by

(Zx)(τ)

=

∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

− τϑ(1− τ)

ηϑ(1− η)

[∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
+
τϑ(η − τ)

(1− η)

[∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
+

τϑ

(1− η)

[
(η − τ) (r1 − r3)− 1

ηϑ
(1− τ) (r1 − r2) +

(1− η)

τϑ
r1

]
.

Let us set M := sup
τ∈J
|φ(τ, 0)| and choose

r ≥ M∆1 + F
1− Ξ

, (3.7)

where ∆ ≤ Ξ < 1.
Now, we will show that ZBr ⊂ Br, where Br = {x ∈ F : ‖x‖ ≤ r}. For each

x ∈ Br, we have
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‖Zx‖

= sup
τ∈J

∣∣∣∣∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

−τ
ϑ(1− τ)

ηϑ(1− η)

[∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
+
τϑ(η − τ)

(1− η)

[∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
+

τϑ

(1− η)

[
(η − τ) (r1 − r3)− 1

ηϑ
(1− τ) (r1 − r2) +

(1− η)

τϑ
r1

]∣∣∣∣
≤ sup

τ∈J

{∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
(|φ(ς, x(ς)− φ(ς, 0)|+ |φ(ς, 0)|) dς + |κx(ξ)|

)
dξ

+

∣∣∣∣τϑ(η − τ)

(1− η)

∣∣∣∣ [∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
(|φ(ς, x(ς)− φ(ς, 0)|+ |φ(ς, 0)|) dς + |κx(ξ)|

)
dξ

]
+

∣∣∣∣τϑ(1− τ)

ηϑ(1− η)

∣∣∣∣ [∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
(|φ(ς, x(ς)− φ(ς, 0)|+ |φ(ς, 0)|) dς + |κx(ξ)|

)
dξ

+

∣∣∣∣ τϑ

1− η

∣∣∣∣ (|(η − τ)| |r1 − r3|+
∣∣∣∣1− τηϑ

∣∣∣∣ |r1 − r2|+
∣∣∣∣1− ητϑ

∣∣∣∣ r1

)}
≤ sup

τ∈J

{∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
(L |x(ς)|+ |φ(ς, 0)|) dς + |κx(ξ)|

)
dξ

+

∣∣∣∣τϑ(η − τ)

(1− η)

∣∣∣∣ [∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
(L |x(ς)|+ |φ(ς, 0)|) dς + |κx(ξ)|

)
dξ

]
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+

∣∣∣∣τϑ(1− τ)

ηϑ(1− η)

∣∣∣∣ [∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
(L |x(ς)|+ |φ(ς, 0)|) dς + |κx(ξ)|

)
dξ

]
+

(
τϑ

1− η

)(
|(η − τ)| |r1 − r3|+

(
1− τ
ηϑ

)
|r1 − r2|+

(
1− η
τϑ

)
r1

)}

≤ sup
τ∈J

{∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
dς

)
dξ

}
(L ‖x‖+ |M |)

+ |κ| ‖x‖
(

sup
τ∈J

∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)
dξ

)
+ sup
τ∈J

∣∣∣∣τϑ(η − τ)

1− η

∣∣∣∣ {∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
dς

)
dξ (L ‖x‖+ |M |)

+ |κ| ‖x‖
(∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)
dξ

)}
+ sup
τ∈J

∣∣∣∣τϑ(1− τ)

ηϑ(1− η)

∣∣∣∣ {∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
dς

)
dξ (L ‖x‖+ |M |)

+ |κ| ‖x‖
(∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)
dξ

)}
+ sup
τ∈J

∣∣∣∣τϑ(η − τ)

1− η

∣∣∣∣ |r1 − r3|+ sup
τ∈J

(
τϑ

1− η

)(
1− τ
ηϑ

)
|r1 − r2|

+ sup
τ∈J

(
τϑ

1− η

)(
1− η
τϑ

)
r1

}
≤ (Lr +M)

(
1 +

η(ϑη)ϑ

(1− η)(1 + ϑ)1+ϑ

)∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
dςdξ

+ |κ| r
(

1 +
η(ϑη)ϑ

(1− η)(1 + ϑ)1+ϑ

)∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)
dξ

+

(
(Lr +M)(ϑ)ϑ

(1− η)ηϑ(1 + ϑ)1+ϑ

)∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
dςdξ

+

(
|κ| r(ϑ)ϑ

(1− η)ηϑ(1 + ϑ)1+ϑ

)∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)
dξ

+
η(ϑη)ϑ

(1− η)(1 + ϑ)1+ϑ
|r1 − r3|+

(ϑ)ϑ

(1− η)ηϑ(1 + ϑ)1+ϑ
|r1 − r2|+ r1.

Using (3.1)-(3.5), (3.7) and the following relations:
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B(ω + 1, ϑ) =

∫ 1

0
(1− ξ)ϑ−1ξωdξ =

Γ(ϑ)Γ(ω + 1)

Γ(ϑ+ ω + 1)

and ∫ η

0
(η − ξ)ϑ−1ξωdξ =

Γ(ϑ)Γ(ω + 1)

Γ(ϑ+ ω + 1)
ηϑ+ω,

where B(·, ·) is a Beta function, then we obtain that

‖Zx‖ ≤ (∆ + 1− Ξ)r

≤ r.

Now, for each x, y ∈ F, we obtain

‖Zx−Zy‖
= sup

τ∈J
|(Zx)(τ)− (Zy)(τ)|

≤ sup
τ∈J

{∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
|φ(ς, x(ς))− φ(ς, y(ς))| dς + |κ| |x(ξ)− y(ξ)|

)
dξ

+

∣∣∣∣τϑ(1− τ)

ηϑ(1− η)

∣∣∣∣ [∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
|φ(ς, x(ς))− φ(ς, y(ς))| dς + |κ| |x(ξ)− y(ξ)|

)
dξ

]
+

∣∣∣∣τϑ(η − τ)

(1− η)

∣∣∣∣ [∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
|φ(ς, x(ς))− φ(ς, y(ς))| dς + |κ| |x(ξ)− y(ξ)|

)
dξ

]}
≤ L

(
1 +

η(ϑη)ϑ

(1− η)(1 + ϑ)1+ϑ

)∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
dςdξ ‖x− y‖

+ |κ|
(

1 +
η(ϑη)ϑ

(1− η)(1 + ϑ)1+ϑ

)∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)
dξ ‖x− y‖

+

(
(ϑ)ϑL

(1− η)ηϑ(1 + ϑ)1+ϑ

)∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
dςdξ ‖x− y‖

+

(
|κ| (ϑ)ϑ

(1− η)ηϑ(1 + ϑ)1+ϑ

)∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)
dξ ‖x− y‖

= ∆ ‖x− y‖ ,
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where ∆ is given by (3.3) and relies only on the parameters involved in the
problem. As ∆ < 1, therefore Z is a Banach contraction mapping. Hence,
the theorem’s inference is accompanied by the idea of the Banach contraction
mapping principle. �

Theorem 3.2. Consider the boundary value problem of the Langevin equation
(1.1). Suppose that φ maps a bounded subset of J ×R into relatively compact
subset of R. Furthermore, assume that the following conditions hold:

(H1) there exists L > 0 such that

|φ(τ, s)− φ(τ, t)| ≤ L |s− t| (3.8)

for all τ ∈ J and s, t ∈ R;
(H2) there exists σ ∈ F such that

|φ(τ, s)| ≤ σ(τ) (3.9)

for all τ ∈ J and s ∈ R.

If

Θ :=
LA

Γ(ϑ+ ω + 1)
(ηϑ+1 + ηω) +

|κ| A
Γ(ϑ+ 1)

(1 + ηϑ+1) < 1, (3.10)

where A is given in (3.1), then the Langevin equation (1.1) has at least one
solution.

Proof. In view of (H2), let us fix

r ≥ [‖σ‖∆1 + F ]

(∣∣∣∣∣1− |κ|
[
1 +A(1 + ηϑ+1)

]
Γ(ϑ+ 1)

∣∣∣∣∣
)−1

. (3.11)

Let Br := {x ∈ F : ‖x‖ ≤ r}. We define operators Z1,Z2 : Br → F for each
x ∈ Br by

(Z1x)(τ) =

∫ τ

0

(τ − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ,

(Z2x)(τ)

=
τϑ(η − τ)

(1− η)

[∫ 1

0

(1− ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
− τϑ(1− τ)

ηϑ(1− η)

[∫ η

0

(η − ξ)ϑ−1

Γ(ϑ)

(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

]
+

τϑ

(1− η)

[
(η − τ) (r1 − r3)− 1

ηϑ
(1− τ) (r1 − r2) +

(1− η)

τϑ
r1

]
.



On the solvability of a nonlinear Langevin equation 1031

Then, for each x, y ∈ Br, it follows from (3.11) that

‖Z1x+ Z2y‖ ≤

(
‖σ‖∆1 +

|κ| r
[
1 +A(1 + ηϑ+1)

]
Γ(ϑ+ 1)

+ F

)
≤ r.

Thus Z1x+Z2y ∈ Br. In view of condition (3.10), it can be shown that Z2 is
a Banach contraction mapping. The continuity of φ implies that the operator
Z1 is continuous. Also, Z1 is uniformly bounded on Br as

‖Z1x‖ ≤
‖σ‖

Γ(ϑ+ ω + 1)
+

|κ| r
Γ(ϑ+ 1)

.

Now, we will prove the compactness of the operator Z1. Setting Ω := J×Br,
we define φ̄ := sup

(τ,x)∈Ω
|φ(τ, x(τ))| . Consequently, we have

|(Z1x)(τ1)− (Z1x)(τ2)| =
∣∣∣∣∫ τ1

0

(τ1 − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

−
∫ τ2

0

(τ2 − ξ)ϑ−1

Γ(ϑ)

×
(∫ ξ

0

(ξ − ς)ω−1

Γ(ω)
φ(ς, x(ς))dς − κx(ξ)

)
dξ

∣∣∣∣
≤ φ̄

Γ(ϑ+ ω + 1)

∣∣∣τϑ+ω
1 − τϑ+ω

2

∣∣∣+
|κ| r

Γ(ϑ+ 1)

∣∣∣τϑ1 − τϑ2 ∣∣∣ ,
which is independent of x and tends to zero as τ2 → τ1. Thus, Z1 is relatively
compact on Br. Hence, by the Arzelá-Ascoli theorem, Z1 is compact on Br.
Thus all assumptions of Theorem 2.8 are satisfied and the conclusion of The-
orem 2.8 implies that the boundary value problem of the Langevin equation
(1.1) has at least one solution. �

Example 3.3. Consider the following boundary value problem:{
CD

5
2

(
CD

1
3 + 1

6

)
x(τ) = 1

(τ+2)2
[x(τ)]2

1+[x(τ)]2
, 0 < τ < 1,

x(0) = r1, x
(

1
8

)
= r2, x(1) = r3.

(3.12)

Now, we set a function φ : J × R→ R by

φ(τ, s) =
1

(τ + 2)2

s2

1 + s2
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for all τ ∈ J and s ∈ R. By setting ϑ = 1
3 , ω = 5

2 , η = 1
8 and κ = 1

6 , the
boundary value problem (3.12) has the form of (1.1). Clearly,

|φ(τ, s)− φ(τ, t)| ≤ L |s− t|

for all τ ∈ J and s, t ∈ R, where L = 1
4 . Further, we have

∆ = L∆1 + ∆2 ≈ 0.34 < 1.

Thus, by Theorem 3.1, the boundary value problem (3.12) has a unique solu-
tion.

Example 3.4. Consider the following boundary value problem:{
CD

3
2

(
CD

1
2 + 1

4

)
x(τ) = 1

15 (x(τ) cos τ)− 1, 0 < τ < 1,

x(0) = 0, x
(

1
5

)
= 0, x(1) = 0.

(3.13)

Here, we set a function φ : J × R→ R by

φ(τ, s) =
1

15
(s cos τ)− 1

for all τ ∈ J and s ∈ R. By setting ϑ = 1
2 , ω = 3

2 , η = 1
5 and κ = 1

2 , the
boundary value problem (3.13) has the form of (1.1). Clearly,

|φ(τ, x)− φ(τ, y)| ≤ L |x− y|

for all τ ∈ J and s, t ∈ R, where L = 1
15 . Further, we have

∆ = L∆1 + ∆2 ≈ 0.90 < 1

Thus, by Theorem 3.1, the boundary value problem (3.13) has a unique solu-
tion.

Example 3.5. Consider the following boundary value problem:{
CD

6
5

(
CD

4
5 + 1

4

)
x(τ) = 1

(τ+3)2
[x(τ)]2

1+[x(τ)]2
, 0 < τ < 1,

x(0) = 3
10 , x

(
3
10

)
= 9

10 , x(1) = 23
10 .

(3.14)

Here, we set a function φ : J × R→ R by

φ(τ, s) =
1

(τ + 3)2

s2

1 + s2

for all τ ∈ J and s ∈ R. By setting ϑ = 4
5 , ω = 6

5 , η = 3
10 and κ = 1

4 , the
boundary value problem (3.14) has the form of (1.1). Clearly

|φ(τ, s)− φ(τ, t)| ≤ L |s− t|
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for all τ ∈ J and s, t ∈ R, where L = 1
9 . Further, we have A ≈ 0.415 and

Θ =
LA

Γ(ϑ+ ω + 1)
(ηϑ+1 + ηω) +

|κ| A
Γ(ϑ+ 1)

(1 + ηϑ+1)

≈ 0.4955

< 1.

Thus, by Theorem 3.2, the boundary value problem (3.14) has at least one
solution.

4. Conclusion

In this paper, we have discussed the existence and uniqueness of solutions
of nonlinear Langevin equation for a three-point boundary value problem in-
volving two fractional orders in different intervals. We used the Banach and
Krasnoselskii fixed point theorems to find out the desire results. Indeed, our
method is straightforward and can be quickly extended to several real-world
situations. Three examples illustrating our approach are also discussed.
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