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Abstract. Existence and uniqueness results for solutions of system of Riemann-Liouville

(R-L) fractional differential equations with initial time difference are obtained. Monotone

technique is developed to obtain existence and uniqueness of solutions of system of R-L

fractional differential equations with initial time difference.

1. Introduction

Theory of fractional differential equations [7, 9, 17] parallel to the well-
known theory of ordinary differential equations [5, 6] has been attracted re-
searchers. Due to wide range of applications of fractional calculus in sciences,
engineering, nature and social sciences numerous methods of solving fractional
differential equations are developed [11, 12]. Lakshmikantham et al. [8] studied
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local and global existence results for solutions of Riemann-Liouville fractional
differential equations. Monotone iterative method for Riemann-Liouville frac-
tional differential equations with initial conditions is studied by McRae [10].
Devi obtained [1] the general monotone method for periodic boundary value
problem of Caputo fractional differential equations. The Caputo fractional dif-
ferential equation with periodic boundary conditions have been studied in [2, 3]
and developed monotone method for the problem. Existence and uniqueness
of solution of Riemann-Liouville fractional differential equation with integral
boundary conditions is proved in [14, 15].

Recently, initial value problems involving Riemann-Liouville fractional de-
rivative was studied by authors [4, 16]. Yaker et al. studied existence and
uniqueness of solutions of fractional differential equations with initial time
difference for locally Holder continuous functions [18]. Authors have general-
ized these results for the class of continuous functions [13].

Monotone iterative technique is a powerful technique to study qualitative
properties of solutions such as existence and uniqueness of solutions of frac-
tional differential equations. As population models, pharmacodynamic models
and economic models etc.are governed by system of fractional differential equa-
tions many researchers attracted towards such models and studied existence
and uniqueness of solutions of system of fractional differential equations. This
motivates us to study system of nonlinear fractional differential equations with
initial time difference.

In this paper, we consider the system of Riemann-Liouville fractional dif-
ferential equations with initial time difference when the function on the right
hand side is quasi-monotone non-decreasing and construct two monotone con-
vergent sequences to obtain existence and uniqueness of solution for the non-
linear system.

The paper is organized as follows: In section 2, basic definitions and results
are given. Section 3 is devoted to develop monotone technique to study exis-
tence and uniqueness results for the considered system. An example is given
to validate the obtained results.

2. Preliminaries

Basic definitions and results required to develop monotone technique for the
system are given in this section.

Definition 2.1. ([17]) The Riemann-Liouville fractional derivative of order
q (0 < q < 1) is defined as

Dq
au(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

a
(t− τ)n−q−1u(τ)dτ, for a ≤ t ≤ b.
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Lemma 2.2. ([1]) Let m ∈ Cp(J,R) and for any t1 ∈ (t0, T ] we have m(t1) = 0
and m(t) < 0 for t0 ≤ t ≤ t1. Then Dqm(t1) ≥ 0.

Theorem 2.3. ([14]) Let v, w ∈ Cp([t0, T ],R), f ∈ C([t0, T ]× R,R) and

Dqv(t) ≤ f(t, v(t)), Dqw(t) ≥ f(t, w(t)), t0 < t ≤ T.
Assume f(t, u) satisfy one sided Lipschitz condition

f(t, u)− f(t, v) ≤ L(u− v), u ≥ v, L > 0.

Then v0 < w0, where v0 = v(t)(t − t0)1−q|t=t0 and w0 = w(t)(t − t0)1−q|t=t0 ,
implies v(t) ≤ w(t), t ∈ [t0, T ].

Corollary 2.4. ([14]) The function f(t, u) = σ(t)u, where σ(t) ≤ L, is ad-
missible in Theorem 2.3 to yield u(t) ≤ 0 on t0 ≤ t ≤ T .

The results proved by Yakar et al. for the following problem:

Dqu(t) = f(t, u), u(t)(t− t0)1−q|t=t0 = u0, (2.1)

where 0 < q < 1, f ∈ C[R+ × R,R], are generalized by authors [13] for the
class of continuous functions u(t). These results will be stated in Theorem 2.5
and Theorem 2.6.

The corresponding Volterra fractional integral equation is given by

u(t) = u0(t) +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s))ds, (2.2)

where

u0(t) =
u(t)(t− t0)1−q

Γ(q)

and that every solution of (2.2) is a solution of (2.1).

Theorem 2.5. ([13]) Assume that

(i) v ∈ Cp[J,R], t0, T > 0, w ∈ C∗p [J∗,R] is continuous and p = 1−q where

Cp(J,R) = {u(t) ∈ C(J,R) and u(t)(t− t0)p ∈ C(J,R)},

C∗p(J∗,R) = {u(t) ∈ C(J∗,R) and u(t)(t− τ0)p ∈ C(J∗,R)},
f ∈ C[[t0, τ0 + T ]× R,R], J = [t0, t0 + T ], J∗ = [τ0, τ0 + T ] and

Dqv(t) ≤ f(t, v(t)), t0 ≤ t ≤ t0 + T,

Dqw(t) ≥ f(t, w(t)), τ0 ≤ t ≤ τ0 + T,

v0 ≤ u0 ≤ w0,

where v0 = v(t)(t− t0)1−q|t=t0 , w0 = w(t)(t− τ0)1−q|t=τ0 ,
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(ii) f(t, u) satisfies Lipschitz condition:

f(t, u)− f(t, v) ≤ L[u− v], for u ≥ v, and L ≥ 0,

(iii) τ0 > t0 and f(t, u) is nondecreasing in t for each u.

Then we have

(a) v(t) ≤ w(t+ η), t0 ≤ t ≤ t0 + T,
(b) v(t− η) ≤ w(t), τ0 ≤ t ≤ τ0 + T, where η = τ0 − t0.

Theorem 2.6. ([13]) Assume that

(i) Assumption (i) of Theorem 2.5 holds.
(ii) f(t, u) is nondecreasing in t for each u and v(t) ≤ w(t+ η),

t0 ≤ t ≤ t0 + T, where η = τ0 − t0.

Then there exists a solution u(t) of (2.1) with u0 = u(t)(t − t0)1−q|t=t0 satis-
fying v(t) ≤ u(t) ≤ w(t+ η) on [t0, t0 + T ].

In this paper, we develop monotone technique coupled with lower and up-
per solutions for the class of continuous functions for the following system of
Riemann-Liouville fractional differential equations with initial time difference
and obtain existence and uniqueness of solution for the system using monotone
technique.

Dqu1(t) = f1(t, u1(t), u2(t)), u1(t)(t− t0)1−q|t=t0 = u1
0,

Dqu2(t) = f2(t, u1(t), u2(t)), u2(t)(t− τ0)1−q|t=t0 = u2
0,

(2.3)

where t ∈ J = [t0, t0 + T ] f1, f2 in C(J × R2,R), 0 < q < 1.

Definition 2.7. A pair of functions v = (v1, v2) and w = (w1, w2) in Cp(J,R2),
p = 1− q are said to be ordered lower and upper solutions (v1, v2) ≤ (w1, w2)
of the problem (2.3) if

Dqvi(t) ≤ fi(t, v1(t), v2(t)), vi(t)(t− t0)1−q|t=t0 = vi
0

and

Dqwi(t) ≥ fi(t, w1(t), w2(t)), wi(t)(t− τ0)1−q|t=τ0 = wi
0.

Definition 2.8. A function fi = fi(t, u1, u2) in C(J × R2,R) is said to be
quasi-monotone non-decreasing if

fi(t, u1(t), u2(t)) ≤ fi(t, v1(t), v2(t)) if ui = vi and ui ≤ vj ,

i 6= j, i = j = 1, 2.
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Definition 2.9. A function fi = fi(t, u1, u2) in C(J × R2,R) is said to be
quasi-monotone non-increasing if

fi(t, u1(t), u2(t)) ≥ fi(t, v1(t), v2(t)) if ui = vi and ui ≤ vj ,
i 6= j, i = j = 1, 2.

3. Existence and uniqueness results

This section is devoted to develop monotone technique for system of Riemann-
Liouville fractional differential equations with initial time difference and obtain
existence and uniqueness of solution of the problem (2.3).

Theorem 3.1. Assume that

(E1) v = (v1, v2) ∈ Cp[J,R], t0, T > 0 and w = (w1, w2) ∈ C∗p [J∗,R] are
continuous functions and p = 1− q, where

Cp(J,R2) = {u(t) ∈ C(J,R2) and u(t)(t− t0)p ∈ C(J,R2)},

C∗p(J∗,R2) = {u(t) ∈ C(J∗,R2) and u(t)(t− τ0)p ∈ C(J∗,R2)},
fi ∈ C[[t0, t0 + T ]× R2,R], J = [t0, t0 + T ], J∗ = [τ0, τ0 + T ] and

Dqv(t) ≤ fi(t, v1(t), v2(t)), t0 ≤ t ≤ t0 + T,

Dqw(t) ≥ fi(t, w1(t), w2(t)), τ0 ≤ t ≤ τ0 + T,

v0 ≤ u0 ≤ w0,

for v0 = v(t)(t− t0)1−q|t=t0 and w0 = w(t)(t− τ0)1−q|t=τ0,

(E2) fi(t, u1, u2) is quasi-monotone nondecreasing in t for each ui
and v(t) ≤ w(t+ η), t0 ≤ t ≤ t0 + T, where η = τ0 − t0,

(E3) fi satisfies one-sided Lipschitz condition,

fi(t, u1, u2)− fi(t, u1, u2) ≥ −Mi[ui − ui], for ui ≤ ui,Mi ≥ 0.

Then there exist monotone sequences {vn(t)} and {wn(t)} such that

vn(t)→ v(t) = (v1, v2) and wn(t)→ w(t) = (w1, w2) as n→∞,
where v(t) and w(t) are minimal and maximal solutions of the problem (2.3),
respectively.

Proof. Let wi0(t) = wi(t + η) and vi0(t) = vi(t) i = 1, 2 for t0 ≤ t ≤ t0 + T,
where η = τ0 − t0. Since fi(t, u1, u2) is nondecreasing in t for each ui we have

Dqwi0(t) = Dqwi(t+ η) ≥ fi(t+ η, w1(t+ η), w2(t+ η)) ≥ fi(t, w1(t), w2(t))
and

w0
i0 =wi0(t)(t−τ0)1−q|t=τ0 = wi(t+η)(t−τ0)1−q|t=τ0 = wi(t)(t−τ0)1−q|t=τ0 = w0.
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Also,

Dqvi0(t) = Dqvi(t) ≤ fi(t, v10(t), v20(t))

and

v0i0 = vi0(t)(t− t0)1−q|t=t0 = vi(t)(t− t0)1−q|t=t0 = v0, v0 ≤ u0 ≤ w0,

which proves that v0 and w0 are lower and upper solutions of IVP (2.3) re-
spectively.

For any θ(t) = (θ1, θ2) in Cp(J,R2) such that for α10 ≤ θ1 ≤ β10, α20 ≤
θ2 ≤ β20 on J , consider the following linear system of fractional differential
equations:

Dqui(t) = fi(t, θ1(t), θ2(t))−Mi[ui(t)− θi(t)],
u0i = ui(t)(t− t0)1−q|t=t0 .

(3.1)

Since the right hand side of IVP (3.1) satisfies Lipschitz condition, unique
solution of IVP (3.1) exists on J.

For each η(t) and µ(t) in Cp(J,R2) such that v0i (0) ≤ ηi(t), w
0
i (0) ≤ µi(t),

define a mapping A by A[η, µ] = u(t) where u(t) is the unique solution of the
problem (3.1).

Firstly, we prove that

(A1) v
0 ≤ A[v0, w0], w0 ≥ A[w0, v0],

(A2) A possesses the monotone property on the segment

[v0, w0] =

{
(t, u) ∈ C(J,R2) : v01 ≤ u1 ≤ w0

1, v
0
2 ≤ u2 ≤ w0

2

}
.

Set A[v0, w0] = v1i , where v1i = (v11, v
1
2) is the unique solution of system (3.1)

with ηi = v0i (t). Setting pi(t) = v0i (t)− v1i (t), then we see that

Dqpi(t) = Dqv0i (t)−Dqv1i (t)

= fi(t, v
0
1(t), v02(t))− fi(t, θ11(t), θ12(t)) +Mi(v

1
i (t)− θi(t))

≤ −Mi(v
0
i (t)− v1i (t)) +Mi(v

1
i (t)− θi(t))

≤ −Mi[v
0
i (t)− v1i (t)]

≤ −Mipi(t).

By Corollary 2.4, we get pi(t) ≤ 0 on 0 ≤ t ≤ T and hence v0i (t)−v1i (t) ≤ 0
which implies v0i ≤ A[v0, w0]. Set A[v0, w0] = w1

i , where w1
i = (w1

1, w
1
2) is the

unique solution of the problem (3.1) with µi = w0
i (t).

Similarly, by Corollary 2.4, setting pi(t) = w0
i (t)−w1

i (t), we have w0
i ≥ w1

i .
Hence w0 ≥ A[w0, v0]. This proves (A1). Let η, β, µ ∈ [v0, w0] with η ≤ β.
Suppose that A[η, µ] = u(t), A[β, µ] = v(t). Then setting pi(t) = ui(t)− vi, (t)
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we find that pi(t) ≤ 0 and

Dqpi(t) = Dqui(t)−Dqvi(t)

= fi(t, η1, η2)−Mi[ui(t)− ηi(t)]− fi(t, β1, β2)
+Mi[vi(t)− βi(t)]
≤ −Mipi(t).

As before in (A1), we have A[η, µ] ≤ A[β, µ].
Similarly, if η(t), γ(t), µ(t) ∈ [v0, w0] satisfying γ(t) ≤ µ(t) and A[η, γ] =

u(t), A[η, µ] = v(t) we can prove that A[η, γ] ≥ A[η, µ]. Thus the mapping A
possesses monotone property on [v0, w0]. Define the sequences

vni (t) = A[vn−1i , wn−1i ], wni (t) = A[wn−1i , vn−1i ],

on the segment [v0, w0] by

Dqvni (t) = fi(t, v
n−1
1 , vn−12 )−Mi[v

n
i − vn−1i ], vni (t)(t− t0)1−q|t=t0 = vn0i ,

Dqwni (t) = fi(t, w
n−1
1 , wn−12 )−Mi[w

n
i − wn−1i ], wni (t)(t− τ0)1−q|t=τ0 = wn0i .

From (A1), we have v0i ≤ v1i , w
0
i ≥ w1

i . To prove vki ≤ vk+1
i , wki ≥ wk+1

i

and vki ≥ wki , define pi(t) = vki (t)−vk+1
i (t) and assume vk−1i ≤ vki , w

k−1
i ≥ wki .

Thus

Dqpi(t) = fi(t, v
k−1
1 , vk−12 )−Mi[v

k
i − vk−1i ]

− {fi(t, vk1 (t), vk2 (t))−Mi[v
k+1
i (t)− vki (t)]}

≤ −Mi[v
k−1
i − vki ]−Mi[v

k
i − vk−1i ] +Mi[v

k+1
i (t)− vki (t)]

≤ −Mi[v
k
i (t)− vk+1

i (t)]

≤ −Mipi(t).

It follows from Corollary 2.4 that pi(t) ≤ 0, which gives vki (t) ≤ vk+1
i (t).

Similarly we can prove wki (t) ≥ wk+1
i (t) and vki (t) ≥ wki (t). By induction, it

follows that

v0i (t) ≤ v1i (t) ≤ v2i (t) ≤ ... ≤ vni (t) ≤ wni (t) ≤ wn−1i (t) ≤ ... ≤ w1
i (t) ≤ w0

i (t).

Thus the sequences {vn(t)} and {wn(t)} are bounded from below and bounded
from above respectively and monotonically nondecreasing and monotonically
nonincreasing on J. Hence point-wise limit exist and are given by

lim
n→∞

vni (t) = vi(t), lim
n→∞

wni (t) = wi(t) on J.
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Using corresponding Volterra fractional integral equations

vni (t) = v0i +
1

Γ(q)

∫ T

0
(t− s)q−1

{
fi(s, v

n
1 (s), vn2 (s))−Mi[v

n
i − vn−1i ]

}
ds,

wni (t) = w0
i +

1

Γ(q)

∫ T

0
(t− s)q−1

{
fi(s, w

n
1 (s), wn2 (s))−Mi[w

n
1 − wn−11 ]

}
ds,

as n→∞, we get

vi(t) =
v0i (t− t0)q−1

Γ(q)
+

1

Γ(q)

∫ T

t0

(t− s)q−1fi(s, vn1 (s), vn2 (s))ds,

wi(t) =
w0
i (t− τ0)q−1

Γ(q)
+

1

Γ(q)

∫ T

τ0

(t− s)q−1fi(s, wn1 (s), wn2 (s))ds,

where v0i = vi(t)(t − t0)1−q|t=t0 , w0
i = wi(t)(t − τ0)1−q|t=τ0 . It follows that

v(t) and w(t) are solutions of system (2.3).
Lastly, we prove v(t) and w(t) are the minimal and maximal solutions of

the problem (2.3). Let u(t) = (u1, u2) be any solution of (2.3) other than v(t)
and w(t), so that there exists k such that vki (t) ≤ ui(t) ≤ wki (t) on J and

setting pi(t) = vk+1
i (t)− ui(t), then we have pi(t) ≤ 0 and

Dqpi(t) = fi(t, v
k
1 , v

k
2 )−Mi[v

k+1
i − vki ]− fi(t, u1, u2)

≤ −Mipi(t).

Thus vk+1
i (t) ≤ ui(t) on J . Since v0i (t) ≤ ui(t) on J , by induction it follows

that vki (t) ≤ ui(t) for all k. Similarly, we can prove ui ≤ wki for all k on J .
Hence vki (t) ≤ ui(t) ≤ wki (t) on J . Taking limit as n → ∞, it follows that
vi(t) ≤ ui(t) ≤ wi(t) on J . �

Now, we obtain the uniqueness of solution of the problem (2.3) in the fol-
lowing:

Theorem 3.2. Assume that

(U1) Assumptions (E1) and (E3) of Theorem 3.1 hold.
(U2) fi = fi(t, u1, u2) satisfies Lipschitz condition (two-sided),

|fi(t, u1, u2)− fi(t, u1, u2)| ≥ −Mi|ui − ui|,Mi ≥ 0.

Then the solution of the problem (2.3) is unique.
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Proof. It is sufficient to prove v(t) ≥ w(t). If pi(t) = wi(t) − vi(t), then
pi(t) = 0 and

Dqpi(t) = Dqwi(t)−Dqvi(t)

= fi(t, w1(t), w2(t))− fi(t, v1(t), v2(t))
≤ −Mi(wi(t)− vi(t))
≤ −Mipi(t).

Thus, by Corollary 2.4, we get pi(t) ≤ 0 implies wi(t) ≤ vi(t). Hence v(t) =
u(t) = w(t) is the unique solution of (2.3) on [t0, t0 + T ]. �

Example 3.3. We validate obtained results for the following system of R-L
fractional differential equations with initial time difference:

Dqu1(t) = 2tq(1− t)
1
2 − 1

4
u31 + u2, u1(t)(t− t0)1−q|t=t0 = 0,

Dqu2(t) = 5tq(1− t)
1
3 + u1 −

1

2
u22, u2(t)(t− t0)1−q|t=t0 = 1,

(3.2)

where t ∈ J = [t0, t0 + T ]. We have

|f1(t, u1, u2)− f1(t, u1, u2)| = | −
1

4
u31 + u2 −

1

4
u1

3 − u2|

≤ 1

4
|u1 − u1|

and

|f2(t, u1, u2)− f2(t, u1, u2)| = |u1 −
1

2
u22 − u1 +

1

2
u2

2|

≤ 1

2
|u2 − u2|.

Thus, assumptions of the Theorem 3.1 hold with Lipschitz constants 1
4 and 1

2 .
The unique solution u(t) = (u1, u2) of the system (3.2) exists satisfying v(t) ≤
u(t) ≤ w(t) where v(t) = (0, 0) is lower solution and w(t) = (2tq−1, 5tq−1) is
upper solution of the system (3.2).

Acknowledgments: The authors are thankful to the referees for careful
reading and useful comments.
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