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Abstract. In this paper, we unify and enrich the well-known classical metrical coincidence

theorems on a complete metric space due to Machuca, Goebel and Jungck. We further

extend our newly proved results on a subspace Y of metric space X, wherein X need not

be complete. Finally, we slightly modify the existing results involving (E.A)-property and

(CLRg)-property and apply these results to deduce our coincidence and common fixed point

theorems.

1. Introduction and Preliminaries

Throughout the manuscript, the sets N, N0 and R stand for the sets of
natural numbers, whole numbers and real numbers, respectively. For a self-
mapping f on a nonempty set X, “x is fixed point of f” is equivalent to
saying that f(x) = I(x) (where I denotes identity mapping on X). This
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fact motivates whether the identity mapping can be replaced by another self-
mapping g on X. Henceforth, given two self-mappings f and g on a nonempty
set X, consider the problem regarding to find x, x ∈ X such that

f(x) = g(x) = x. (1.1)

Then

• x is called a coincidence point of f and g,
• x is called a point of coincidence of f and g,
• x is called a common fixed point of f and g provided x = x.

Clearly, every common fixed point of f and g is also a coincidence point as
well as point of coincidence. It is well known that the coincidence problem [1]
is, under appropriate conditions, equivalent to a fixed point problem.

Given two self-mappings f and g on a metric space (X, d), we say that f is
g-contraction if there exists k ∈ [0, 1) such that

d(fx, fy) ≤ kd(gx, gy), ∀ x, y ∈ X.

In 1967, Machuca [16] proved a first metrical coincidence theorem for a pair
of mappings f, g : X → Y , where X and Y are complete metric space and
T1-topological space satisfying the first axiom of countability respectively. We
particularize Machuca coincidence theorem by taking Y = X besides removing
some unnecessary conditions as follows:

Theorem 1.1. Let (X, d) be a complete metric space and f and g be two
self-mappings on X. Suppose that the following conditions hold:

(i) f(X) ⊆ g(X),
(ii) f is a g-contraction,

(iii) one of f(X) and g(X) is closed.

Then f and g have a coincidence point.

The condition “f(X) is closed” or “g(X) is closed” was only used to guaran-
tee that (fX, d) or (gX, d) is a complete metric space. The same thesis can be
deduced replacing “(X, d) is complete and g(X) is closed” by the weaker con-
dition “g(X) a complete”. Using this fact, in 1968, Goebel [6] enrich Theorem
1.1 for a pair of mappings f, g : X → Y , where X and Y are complete metric
space and an arbitrary set respectively. We particularize Goebel coincidence
theorem by taking Y = X as follows:

Theorem 1.2. Let (X, d) a metric space and f and g be two self-mappings
on X. Suppose that the following conditions hold:

(i) f(X) ⊆ g(X),
(ii) f is a g-contraction,

(iii) one of f(X) and g(X) is a complete subspace of X.
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Then f and g have a coincidence point.

Recall that two self-mappings f and g on a nonempty set X are said to be
commuting if f(gx) = g(fx) for all x ∈ X. Eldon Dyer (1954), Allen Lowell
Shields (1955) and Lester Dubins (1956) almost simultaneously posed an in-
teresting problem independently. The problem first appears in the literature
in 1957 as part of a more general question raised Isbell [11]. This problem
states below:

Problem: Let f and g be two commuting continuous self-mappings on a unit
interval. Do they have a common fixed point?

This conjecture was settled in negative by Boyce [4, 5] and Huneke [7, 8]
independently and the answer was given by constructing a pair of commuting
function with no common fixed point employing a limiting process. The func-
tions were discovered as the result of a computer aided search based in part on
necessary conditions derived by Baxter [3]. Thus in order to coin a common
fixed point theorem, one is required to impose extra conditions either on the
space or on the mappings under consideration which is evident in all existing
common fixed point theorems. In 1976, Jungck [12] generalized Banach con-
traction principle to obtain common fixed point for commuting mappings by
using a constructive procedure of sequence of iterations.

Theorem 1.3. ([12]) Let (X, d) a complete metric space and f and g be two
self-mappings on X. Suppose that the following conditions hold:

(i) f(X) ⊆ g(X),
(ii) f is a g-contraction,

(iii) g is continuous,
(iv) f and g are commuting.

Then f and g have a unique common fixed point.

With a view to improve commutativity conditions in Theorem 1.3, in 1982,
Sessa [20] introduced the notion of weakly commuting mappings which runs
as follows:

Definition 1.4. ([20]) Let (X, d) be a metric space and f and g be two self
mappings on X. We say that f and g are weakly commuting if

d(gfx, fgx) ≤ d(gx, fx), ∀ x ∈ X.

Clearly, commuting mappings are weakly commuting but the converse is
not true generally as shown by the following example.
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Example 1.5. ([20]) Consider X = [0, 1] with usual metric. Define the func-
tions f : X → X and g : X → X by

f(x) =
x

x+ 2
and g(x) =

x

2
, ∀ x ∈ X.

Then f and g are weakly commuting but not commuting mappings.

Soon after this definition, Jungck [13] extended the concept of weak com-
mutativity by defining compatible mappings in the following way:

Definition 1.6. ([13]) Let (X, d) be a metric space and f and g be two self-
mappings on X. We say that f and g are compatible if for any sequence
{xn} ⊂ X and z ∈ X, lim

n→∞
f(xn) = lim

n→∞
g(xn) = z, then

lim
n→∞

d(gfxn, fgxn) = 0.

It is well known that two weakly commuting mappings are compatible, but
the converse is not true. Some examples supporting this fact can be found in
[13].

Example 1.7. ([13]) Consider X = R with usual metric. Define the functions
f : X → X and g : X → X by

f(x) = x3 and g(x) = 2x3, ∀ x ∈ X.

Then f and g are compatible but not weakly commuting mappings.

Definition 1.8. ([14]) Let (X, d) be a metric space and f and g be two self-
mappings on X. We say that f and g are weakly compatible (or partially
commuting or coincidentally commuting) if f and g commute at their coinci-
dence points, that, for any x ∈ X, f(x) = g(x), then

f(gx) = g(fx).

Clearly two compatible mappings are weakly compatible but converse not
true in general as substantiated by the following example:

Example 1.9. Consider X = [1, 7] with usual metric. Define two self-
mappings f and g on X by

f(x) =

{
1 if x = 1 or x ∈ (3, 7]

5 if x ∈ (1, 3]

and

g(x) =

{
x if x ∈ [1, 3],

x− 2 if x ∈ (3, 7].
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Then 1 is the only coincidence point of f and g and f(g1) = g(f1) = 1.
Therefore f and g are weakly compatible. But, consider a sequence {xn} ⊂ X,
where xn = 3 + 1

n for all n ∈ N then f(xn) = 1 and g(xn) = 1 + 1
n .

Clearly, lim
n→∞

g(xn) = lim
n→∞

f(xn) = 1. Also, f(gxn) = f(1 + 1
n) = 5 and

g(fxn) = g(1) = 1, which implies that lim
n→∞

d(gfxn, fgxn) = 4 6= 0. It follows

that f and g are not compatible.

In subsequent years, various researchers of the domain studied so many
weaker forms of compatibility and utilized the same to develop common fixed
point theorems. The comprehensive and lucid collections of such conditions
and their interplay can be found in Murthy [17], Kadelburg et al. [15] and
Agarwal et al. [2].

On the other hand, fixed point theory for non-compatible mappings is
equally interesting. In fact, Pant [18] has initiated the concept of coincidence
and fixed point theorems for non-compatible mappings. One can establish
fixed point theorems for such mappings pairs not only under non-expansive
conditions but also under Lipschitz type conditions even without using the
usual contractive method of proof. The best examples of non-compatible maps
are found among pairs of mappings which are discontinuous at their common
fixed point.

Definition 1.10. ([18]) Let (X, d) be a metric space and f and g be two
self-mappings on X. We say that f and g are non-compatible if there exists a
sequence {xn} ⊂ X,

lim
n→∞

f(xn) = lim
n→∞

g(xn) = z,

for some z ∈ X but lim
n→∞

d(gfxn, fgxn) is either non-zero or non-existence.

Aamri and El Moutawakil [1] generalized the concept of non-compatible
mappings by defining the following notion:

Definition 1.11. ([1]) Let (X, d) be a metric space and f and g be two self-
mappings on X. We say that f and g satisfy (E.A)-property if there exists a
sequence {xn} ⊂ X such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = z

for some z ∈ X.

It may be noticed that the (E.A)-property is equivalent to the previously
known notion of ‘tangential mappings’ introduced by Sastry et al. [19]. Clearly,
a pair of non-compatible mappings satisfies (E.A)-property. The concept of
(E.A)-property allows to replace the completeness requirement of the space
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with a more natural condition of closeness of the range. In fact the notion
of (E.A)-property circumvents the most crucial part of fixed point theorems
consisting of constructive procedures yielding a Cauchy sequence. For further
details of the concept of (E.A)-property, we refer [9, 10].

Sintunavarat and Kumam [21] introduced an interesting property, which
completely buys the condition of closedness of the ranges of the involved map-
pings and has an edge over the (E.A)-property.

Definition 1.12. ([21]) Let (X, d) be a metric space and f and g be two
self-mappings on X. We say that f and g satisfy (CLRg)-property (common
limit in the range of g property) if there exists a sequence {xn} ⊂ X such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(x)

for some x ∈ X.

Clearly, if f and g satisfy (CLRg)-property, then they satisfy (E.A)-property.

Definition 1.13. ([19]) Let (X, d) be a metric space, f and g be two self-
mappings on X and x ∈ X. We say that f is g-continuous at x if for all
sequence {xn} ⊂ X,

g(xn)
d−→ g(x) ⇒ f(xn)

d−→ f(x).

Moreover, f is called g-continuous if it is g-continuous at each point of X.

Notice that with g = I (the identity mapping on X) Definition 1.13 reduces
to the definition of continuity.

Theorem 1.14. ([19]) Let (X, d) be a metric space and f and g be two self-
mappings on X. Suppose that the following conditions hold:

(i) f and g satisfy (E.A)-property,
(ii) f is g-continuous,

(iii) either g(X) is closed or f(X) ⊆ g(X).

Then f and g have a coincidence point in X.

The main objective of the present article is three-fold:

• To unify the classical theorems of Machuca, Goebel and Jungck.
• To prove enriched and sharpened versions of these results via a new

subset Y .
• To generalize results involving (E.A)-property and (CLRg)-property

besides filling the gaps in existing results.
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2. Auxiliary results

In this section, we present some relevant results related to this section,
which are needed in our main results. For a pair of self-mappings f and g on
a nonempty set X, we denote the following sets:

C(f, g) = {x ∈ X : gx = fx},

that is, the set of all coincidence points of f and g.

C(f, g) = {x ∈ X : x = gx = fx, x ∈ X},

that is, the set of all points of coincidence of f and g.

F(f, g) = {x ∈ X : x = gx = fx},

that is, the set of all points of common fixed points of f and g.

The following relation is a straightforward fact.

F(f, g) ⊆ C(f, g) ∩ C(f, g).

Definition 2.1. Let X be a nonempty set, f and g two self-mappings on X
and {xn} ⊂ X a sequence. We say that {xn} is a sequence of joint iteration
of f and g based at a point x0 ∈ X if

g(xn+1) = f(xn), ∀ n ∈ N0.

Lemma 2.2. Let f and g be two self-mappings on a nonempty set X such
that f(X) ⊆ g(X). Then there exists a sequence of joint iteration of f and g
based on each point of X.

Proof. Choose x0 ∈ X arbitrarily and then by using assumption f(X) ⊆ g(X),
we can construct a sequence inductively {xn} ⊂ X such that g(xn+1) = f(xn)
for all n ∈ N0. �

For the sake of completeness, we recall the following two elementary results,
which indicates relation between the complete subspace and closed subspace
of a metric space.

Lemma 2.3. A complete subspace of a metric space is closed.

Lemma 2.4. A closed subspace of a complete metric space is complete.

The following result will be utilized to prove our uniqueness results.

Lemma 2.5. Let f and g be two self-mappings on a nonempty set X such
that f and g have a unique point of coincidence. Then
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(i) the point of coincidence remains a unique common fixed point provided
f and g are weakly compatible.

(ii) f and g have a unique coincidence point provided one of f and g is
one-one.

Proof. (i) Given that f and g have a unique point of coincidence, say, w.
Hence, we have C(f, g) = {w}. Now, show that w remains a unique common
fixed point of f and g. Clearly, for each x ∈ C(f, g), we get

w = g(x) = f(x).

By using weakly compatibility of f and g, we have

g(w) = g(fx) = f(gx) = f(w),

which implies that w ∈ C(f, g) yielding thereby g(w)(= f(w)) ∈ C(f, g). It
follows that

w = g(w) = f(w).

Hence, w is a common fixed point of f and g, i.e., w ∈ F(f, g) so that
C(f, g) ⊆ F(f, g). But, obviously, we have F(f, g) ⊆ C(f, g), which yields
that F(f, g) = C(f, g) = {w} so that w is a unique common fixed point of f
and g.

(ii) Take x, y ∈ C(f, g), then by using uniqueness of point of coincidence, we
have

g(x) = f(x) = f(y) = g(y).

As f or g is one to one, we have x = y, which implies uniqueness of coincidence
point. �

Lemma 2.6. Let (X, d) be a metric space. Also, let f and g be two self-
mappings such that f is a g-contraction. Then

(i) f is g-continuous.
(ii) f is continuous provided g is continuous.

Proof. The proof of above result is easy and hence we skip it. �

3. On unifying classical coincidence and common fixed point
theorems

Now, we are equipped to prove a unified version of Theorems 1.1, 1.2 and
1.3 regarding the existence and uniqueness of point of coincidence as well as
coincidence point on a complete metric space.

Theorem 3.1. Let (X, d) be a complete metric space and f and g be two
self-mappings on X. Suppose that the following conditions hold:
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(a) f(X) ⊆ g(X),
(b) f is a g-contraction,
(c) g is continuous and f and g are compatible, or alternately,
(c′) there exists a closed subspace Y of X such that f(X) ⊆ Y ⊆ g(X).

Then f and g have a unique point of coincidence. Moreover, if one of f and
g is one to one, then f and g have a unique coincidence point.

Proof. Take arbitrary x0 ∈ X. Using assumption (a) and Lemma 2.2, we
construct a sequence {xn} ⊂ X such that

g(xn+1) = f(xn), ∀ n ∈ N0. (3.1)

By using Eq. (3.1) and g-contractivity of f , we obtain

d(gxn, gxn+1) = d(fxn−1, fxn) ≤ αd(gxn−1, gxn), ∀ n ∈ N.

By induction, we have, for all n ∈ N,

d(gxn, gxn+1) ≤ αd(gxn−1, gxn) ≤ α2d(gxn−2, gxn−1) ≤ · · · ≤ αnd(gx0, gx1),

so that

d(gxn, gxn+1) ≤ αnd(gx0, gx1), ∀ n ∈ N. (3.2)

For n < m, using Eq. (3.2), we obtain

d(gxn, gxm) ≤ d(gxn, gxn+1) + d(gxn+1, gxn+2) + · · ·+ d(gxm−1, gxm)

≤ (αn + αn+1 + · · ·+ αm−1)d(gx0, gx1)

=
αn − αm

1− α
d(gx0, gx1)

≤ αn

1− α
d(gx0, gx1)

→ 0 as m,n→∞,
which follows that the sequence {gxn} is Cauchy. As X is complete, there
exists z ∈ X such that

lim
n→∞

g(xn) = z. (3.3)

By using (3.1) and (3.3), we obtain

lim
n→∞

f(xn) = z. (3.4)

Now, we use assumptions (c) and (c′) to accomplish the proof. Assume that
(c) holds. Using (3.3), (3.4) and continuity of g, we obtain

lim
n→∞

g(gxn) = g( lim
n→∞

gxn) = g(z) (3.5)

and

lim
n→∞

g(fxn) = g( lim
n→∞

fxn) = g(z). (3.6)



1068 A. Alam, M. Hasan and M. Imdad

Using (3.3), (3.4) and compatibility of f and g, we obtain

lim
n→∞

d(fgxn, gfxn) = 0. (3.7)

By using assumption (b), we obtain

d(fz, fgxn) ≤ αd(gz, ggxn), ∀ k ∈ N0. (3.8)

By using triangular inequality, (3.5), (3.6), (3.7) and (3.8), we get

d(fz, gz) ≤ d(fz, fgxn) + d(fgxn, gfxn) + d(gfxn, gz)

≤ αd(gz, ggxn) + d(fgxn, gfxn) + d(gfxn, gz)

→ 0 as n→∞
so that

f(z) = g(z).

Thus, z is a coincidence point of f and g and hence we are through.
Now, assume that (c′) holds. As Y is closed and f(X) ⊆ Y , using (3.6), we

have z ∈ Y . Owing to assumption Y ⊆ g(X), we can find some u ∈ X such
that z = g(u). Hence, (3.3) and (3.4) respectively reduce to

lim
n→∞

g(xn) = g(u) (3.9)

and

lim
n→∞

f(xn) = g(u). (3.10)

By using assumption (b) and (3.9), we obtain

d(fxn, fu) ≤ αd(gxn, gu)→ 0 as n→∞
so that

lim
n→∞

f(xn) = f(u). (3.11)

By using (3.10), (3.11) and uniqueness of limit, we get

f(u) = g(u).

Thus, u is a coincidence point of f and g and hence we are done.
To prove uniqueness of point of coincidence, take x, y ∈ C(f, g), then there

exist x, y ∈ C(f, g) such that

f(x) = g(x) = x and f(y) = g(y) = y. (3.12)

By using assumption (b) and (3.12), we have

d(x, y) = d(fx, fy) ≤ αd(gx, gy) = αd(x, y)

so that x = y. It follows that f and g have a unique point of coincidence.
Finally, uniqueness of coincidence point is directly followed by using part (ii)
of Lemma 2.5. �



Remarks on certain noted coincidence theorems 1069

Remark 3.2. In view of Theorem 3.1, we can say that the closedness of range
subspace (f(X), or g(X)) in the hypotheses of Theorem 1.1 is not necessary
as it can be alternately replace by the closedness of any arbitrary subspace
having the property that f(X) ⊆ Y ⊆ g(X).

Corollary 3.3. Let (X, d) be a complete metric space and f and g be two
self-mappings on X. Suppose that the following conditions hold:

(i) either g is onto or f(X) ⊆ g(X),
(ii) f is a g-contraction.

Then f and g have a unique point of coincidence. Moreover, if one of f and
g is one to one, then f and g have a unique coincidence point.

Proof. Notice that the assumption (ii) of above corollary remains same as
assumption (b) of Theorem 3.1. Thus, in order to prove our result, it is
enough to prove that rest conditions of the hypotheses of Theorem 3.1 are
also satisfied. To prove this, firstly suppose that g is onto, then g(X) = X
and assumptions (a) as well as (c′) trivially hold (as f(X) ⊆ Y = g(X) = X).

Secondly, if f(X) ⊆ g(X), then again assumptions (a) as well as (c′) hold (as

f(X) ⊆ Y = f(X) ⊆ g(X)). Therefore, in both the cases, the conclusion is
immediate by using Theorem 3.1. �

In the following lines, we prove a common fixed point theorem corresponding
to Theorem 3.1, which is indeed an improved version of classical common fixed
point theorem of Jungck (that is, Theorem 1.3).

Theorem 3.4. Let (X, d) be a complete metric space and f and g be two
self-mappings on X. Suppose that the following conditions hold:

(a) f(X) ⊆ g(X),
(b) f is a g-contraction,
(c) g is continuous and f and g are compatible,

or alternately,
(c′) there exists a closed subspace Y of X such that f(X) ⊆ Y ⊆ g(X) and

f and g are weakly compatible.

Then f and g have a unique common fixed point.

Proof. In both the cases (c) and (c′), the mappings f and g are weakly com-
patible. Hence, using part (i) of Lemma 2.5, our result follows. �

4. Enriched results on coincidence and common fixed points

Now, we prove a sharpened version of foregoing results on a metric space
(not necessarily complete) but have a complete subspace.
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Theorem 4.1. Let (X, d) be a metric space and Y a complete subspace of X.
Let f and g be two self-mappings on X. Suppose that the following conditions
hold:

(a) f(X) ⊆ g(X) ∩ Y ,
(b) f is a g-contraction,
(c) g is continuous and f and g are compatible,

or alternately,
(c′) Y ⊆ g(X).

Then f and g have a unique point of coincidence. Moreover, if one of f and
g is one to one, then f and g have a unique coincidence point.

Proof. The proof of above result runs analogously on the lines of the proof
of Theorem 3.1. Firstly, we notice that the hypothesis f(X) ⊆ g(X) ∩ Y is
equivalent to saying that f(X) ⊆ g(X) and f(X) ⊆ Y . Following the lines
of the proof of Theorem 3.1, we can construct a sequence {xn} ⊂ X of joint
iteration of f and g based at an arbitrary point x0 ∈ X (due to availability
of f(X) ⊆ g(X) ) and then, we can show that the sequence {gxn} (and hence
{fxn} also) is Cauchy. As {gxn} ⊂ f(X) ⊆ Y , {gxn} is a Cauchy sequence
in Y . By completeness of Y , there exists z ∈ Y such that (3.3) and (3.4) are
satisfied.

If assumption (c) holds, then followed by the similar lines of the proof of
Theorem 3.1, we can prove that z remains a coincidence point of f and g in Y .
On the other hand, if (c′) holds, then using assumption Y ⊆ g(X), we can find
some u ∈ X such that z = g(u) such that (3.9) and (3.10) hold. Proceeding
on the lines of the proof of Theorem 3.1, one can show that u is a coincidence
point of f and g. The proof of uniqueness part is similar to the corresponding
part of the proof of Theorem 3.1. �

Remark 4.2. As a consequence, Theorem 3.1 can be deduced from Theorem
4.1. The result corresponding to part (c) follows easily on setting Y = X,
while the same (result) in the presence of part (c′) follows using Lemma 2.4.

Now, we present a common fixed point theorem corresponding to Theorem
4.1 as follows:

Theorem 4.3. Let (X, d) be a metric space and Y be a complete subspace
of X. Let f and g be two self-mappings on X. Suppose that the following
conditions hold:

(a) f(X) ⊆ g(X) ∩ Y ,
(b) f is a g-contraction,
(c) g is continuous and f and g are compatible, or alternately,
(c′) Y ⊆ g(X) and f and g are weakly compatible.

Then f and g have a unique common fixed point.
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Proof. In both the cases (c) and (c′), the mappings f and g are weakly com-
patible. Hence, using part (i) of Lemma 2.5, the conclusion is immediate. �

Remark 4.4. Using an argument similar to Remark 4.2, we can deduce The-
orem 3.4 from Theorem 4.3.

Combining assumptions (a) and (c′), we can rewrite the form of Theorem
4.1 (also Theorem 4.3) corresponding to assumption (c′) as follows.

Corollary 4.5. Let (X, d) be a metric space and Y be a complete subspace
of X. Let f and g be two self-mappings on X. Suppose that the following
conditions hold:

(a) f(X) ⊆ Y ⊆ g(X),
(b) f is g-contraction.

Then f and g have a unique point of coincidence. Moreover,

(i) the point of coincidence remains a unique common fixed point provided
f and g are weakly compatible,

(ii) f and g have a unique coincidence point provided one of f and g is
one to one.

Remark 4.6. Notice that above corollary improves the result corresponding
to the part (c′) of Theorem 3.1 (also, Theorem 3.4) on a metric space (not
necessarily complete) but have a complete subspace. In view of Corollary
4.5, we can say that the completeness of range subspace (f(X), or g(X))
in the hypotheses of Theorem 1.2 is not necessary as it can be alternately
replace by the completeness of any arbitrary subspace having the property
that f(X) ⊆ Y ⊆ g(X).

Remark 4.7. In view of Lemmas 2.3 and 2.4, if X is complete then the
notions of ‘closedness’ and ‘completeness’ are equivalent. It concludes that the
results corresponding to the part (c′) of Theorem 3.1 remains a consequence
of Corollary 4.5.

5. Results involving (E.A)-property and (CLRg)-property

The following result establishes the superiority of the ideas of (E.A)- prop-
erty and (CLRg)-property over another assumptions involved in the hypothe-
ses classical coincidence and common fixed point theorems.

Lemma 5.1. Let (X, d) be a metric space and f and g be two self-mappings
on X such that f is a g-contraction. If Y is a complete subspace of X such
that f(X) ⊆ g(X), then f and g satisfy (E.A)-property. In addition, if there
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exists a closed subspace Y of X such that f(X) ⊆ Y ⊆ g(X), then the pair f
and g satisfy (CLRg)-property.

Proof. Using the same argument as in the proof of Theorem 3.1, due to avail-
ability of assumption f(X) ⊆ g(X), we define a sequence {xn} ⊂ X of joint
iteration of f and g based at an arbitrary point x0 ∈ X and then by using
g-contractility of f , it can be shown that {fxn} and {gxn} both are Cauchy
sequences in X. By completeness of X, there exists z ∈ X such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = z. (5.1)

If follows that f and g satisfy (E.A)- property,
Further, suppose that Y is closed. Then z ∈ Y as f(X) ⊆ Y . Due to the

relation Y ⊆ g(X), we have z = g(u), for some u ∈ X. Hence, Eq. (5.1)
reduces to

lim
n→∞

f(xn) = lim
n→∞

g(xn) = f(u). (5.2)

�

Now, we present the main result of this section, which sharpens Theorem
1.14 and runs as follows:

Theorem 5.2. Let (X, d) be a metric space. Let f and g be two self-mappings
on X satisfying (E.A)-property. Suppose that one of the following conditions
hold:

(i) f and g are compatible as well as continuous,

(ii) either g(X) is closed or f(X) ⊆ g(X). Also, f is g-continuous.

Then f and g have a coincidence point.

Proof. As f and g satisfy (E.A)- property, there exists a sequence {xn} ⊂ X
such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = z (5.3)

for some z ∈ X.
Firstly, suppose that (i) holds. Using (5.3) and continuity of f , we have

lim
n→∞

f(gxn) = f( lim
n→∞

gxn) = f(z). (5.4)

Using (5.3) and continuity of g, we have

lim
n→∞

g(fxn) = g( lim
n→∞

fxn) = g(z). (5.5)
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By using (5.3), (5.4), (5.5), continuity of d and compatibility of f and g, we
obtain

d(fz, gz) = d( lim
n→∞

fgxn, lim
n→∞

gfxn)

= lim
n→∞

d(fgxn, gfxn)

= 0

so that

f(z) = g(z).

Thus z ∈ X is a coincidence point of f and g and hence we are through.
Secondly, assume that (ii) holds. Owing to the closedness of g(X), we have

z = lim
n→∞

g(xn) ∈ g(X).

Otherwise, we obtain

z = lim
n→∞

f(xn) ∈ f(X) ⊆ g(X).

Henceforth, in both the cases, we conclude that z ∈ g(X), which ensures the
existence of u ∈ X such that z = g(u). Therefore, (5.3) reduces to

lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(u). (5.6)

Using (5.6) and g-continuity of f , we get

lim
n→∞

f(xn) = f(u). (5.7)

By using (5.6) and (5.7), we get

g(u) = f(u).

Hence, u ∈ X is a coincidence point of f and g. This completes the proof.
(E.A)-property and (CLRg)-property �

Using the fact that (CLRg)-property implies (E.A)-property, we can say
that the term (E.A)-property can be replaced by (CLRg)-property in Theorem
5.2. But main advantage of (CLRg)-property is that the assumption: “either

g(X) is closed or f(X) ⊆ g(X)” can be relaxed in condition (ii). For the sake of
completeness, we present the results involving (CLRg)-property corresponding
to part (ii) as follows:

Theorem 5.3. Let (X, d) be a metric space. Let f and g be two self-mappings
on X satisfying (CLRg)-property. If f is g-continuous, then f and g have a
coincidence point.
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Proof. As f and g satisfy (CLRg)-property, there exists a sequence {xn} ⊂ X
such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(w) (5.8)

for some w ∈ X. Next, following the lines similar to the proof of previous
result, we use g-continuity of f to prove that w ∈ X is a coincidence point of
f and g. �

Conclusion: Although, Theorems 5.2 and 5.3 admit unnatural weaker condi-
tions, yet the behaviour of such results are similar as topological coincidence
theorems on metrical structure rather than metrical coincidence theorems.
Recall that topological fixed point results refers those results in which under-
lying mapping admits topological properties (such as: continuity) rather than
geometric property (such as: contraction). A topological space X is said to
have the fixed point property if every continuous mapping on X admits a fixed
point. Using Lemmas 2.6 and 5.1, Theorem 5.2 and Theorem 5.3 deduce our
results proved in Section 3.

Acknowledgments: All the authors are grateful to a learned referee for
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manuscript.
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