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Abstract. In the present paper, we study that under some weak conditions, the following
non-autonomous second order Hamiltonian systems

ü(t) +5F (t, u(t)) = 0 a. e. t ∈ R

have infinitely distinct subharmonic solutions. The results in this paper develop and gener-

alize some recent results.

1. Introduction and Preliminaries

Consider the second order Hamiltonian systems

ü(t) +5F (t, u(t)) = 0 a. e. t ∈ R (1)

where F : R×RN → R is T−periodic (T > 0) in t for all x ∈ RN , that is

F (t + T, x) = F (t, x) (2)
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for all x ∈ RN and a. e. t ∈ R, and satisfies the following assumption:
(A) F (t, x) is measurable in t for each x ∈ RN and continuously differ-

entiable in x for a. e. t ∈ [0, T ], and there exist a ∈ L1(R+; R+), b ∈
L1(0, T ; R+), such that |F (t, x)| ≤ a(|x|)b(t), | 5 F (t, x)| ≤ a(|x|)b(t) for
all x ∈ RN and a. e. t ∈ R.

A solution of problem (1) is called to be subharmonic if it is kT−periodic
solution for some positive integer k.

A function G : RN → R is called to be (λ, µ)−subconvex if

G(λ(x + y)) ≤ µ(G(x) + G(y))

for some λ, µ > 0 and all x, y ∈ RN .
Let H1

kT = {u : [0, kT ] → RN |u is absolutely continuous, u(0) = u(kT ) and
u̇ ∈ L2(0, kT ;RN )} is a Hilbert space with the norm defined by

‖u‖ = [
∫ kT

0
|u(t)|2dt +

∫ kT

0
|u̇(t)|2dt]

1
2

and ‖u‖∞ = max0≤t≤kT |u(t)| for u ∈ H1
kT .

The corresponding functional ϕk on H1
kT given by

ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt−

∫ kT

0
F (t, u(t))dt

is continuously differentiable and weakly lower semi-continuous on H1
kT (see

[1]). Moreover one has

< ϕ′k(u), v >=
∫ kT

0
[(u̇(t), v̇(t))− (5F (t, u(t)), v(t))]dt

for all u, v ∈ H1
kT , where (·, ·) denotes the inner product in RN . It is well known

that the kT−periodic solutions of problem (1) correspond to the critical points
of functional ϕk.

For u ∈ H1
kT , let u = (kT )−1

∫ kT
0 u(t)dt and ũ(t) = u(t)− u. Then one has

Sobolev’s inequality

‖ũ‖2
∞ ≤ kT

12

∫ kT

0
|u̇(t)|2dt (3)

and Wertinger’s inequality
∫ kT

0
|ũ(t)|2dt ≤ k2T 2

4π2

∫ kT

0
|u̇(t)|2dt. (4)

Under the conditions that there exists h ∈ L1(0, T ; R+) such that

| 5 F (t, x)| ≤ h(t) (5)
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for all x ∈ RN and a. e. t ∈ [0, T ], and that
∫ T

0
F (t, x)dt → +∞ (6)

as |x| → +∞, the existence of T−periodic solutions is proved in [1]. Mean-
while, [2] proves that problem has infinitely distinct subharmonic solutions
under (5) and the condition that

F (t, x) → +∞ (7)

as |x| → +∞ uniformly for t ∈ [0, T ]. Motivated by the results of [1, 2], a
natural question is whether problem (1) has infinitely distinct subharmonic
solutions under (5) and (6). In [3] a positive answer was given if in addition
F (t, x) is convex in x for every t ∈ [0, T ]. Tang in [4] generalizes the existence
result of T−periodic solutions in [1] to the sublinear case. The existence of
T−periodic solutions is proved in [4] under the conditions that there exist
g, h ∈ L1(0, T ;R+) and α ∈ [0, 1) such that

| 5 (F (t, x)| ≤ g(t)|x|α + h(t) (8)

for all x ∈ RN and a. e. t ∈ [0, T ], and that

|x|−2α

∫ kT

0
F (t, x)dt → +∞ as |x| → +∞. (9)

It has been proved that problem (1) has infinitely distinct subharmonic so-
lutions under suitable conditions (see [1-4]). Recently, Tang-Wu [5] considered
the nonconvex case and generalized the existence result of subharmonic solu-
tions to the sublinear case under a condition weaker than (6) but stronger
than (7) and Zhao-Wu [6] consider the existence of T−periodic solutions with
saddle point character. Inspired and motivated by the results due to Mawhin-
Willem [1], F. Giannoni [2], Fonda-Ramos [3],Tang[4], Tang-Wu[5] and Zhao-
Wu [6, 7, 8], we have studied in [9] the existence of subharmonic solutions
with saddle point character under condition (7) and in [10] the existence of
subharmonic solutions under some else other conditions. In this paper, we
shall continue to consider the existence of subharmonic solutions under some
weak conditions by using the critical point reduction method and using the
minimax methods. Therefore the results in this paper develop and generalize
the corresponding results.

In the sequel, we set

ek(t) = k(cos k−1ωt)x0

for all t ∈ R and some x0 ∈ RN with |x0| = 1, where ω = 2π/T .
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2. MAIN RESULTS AND PROOF

Now we state and prove our main results.

Theorem 2.1. Suppose that F satisfies assumption (A), (2) and the following
conditions:

(i) there exists a function λ ∈ L1(0, T ; R) with
∫ T
0 λ(t)dt > 0 such that OF (t, ·)

is λ(t)−monotone, that is

(OF (t, x)− OF (t, y), x− y) ≥ λ(t)|x− y|2; (10)

for all x, y ∈ RN and a. e. t ∈ [0, T ];
(ii) there exist g, h ∈ L1(0, T ;R),M > 1 and α ∈ [1, 2) such that

F (t, x) ≤ g(t)|x|α + h(t)

for all x ∈ RN and |x| ≥ M and a. e. t ∈ [0, T ];
(iii) there exists some ek(t) = k(cosk−1ωt)x0 such that

(5F (t, x + sek), ek) ≥ k−1(ek, ek)

for all x ∈ RN and s ∈ [0, 1];
(iv) there exists some x ∈ RN such that

∫ T

0
F (t, x)dt ≥ 0.

Then problem (1) has kT−periodic solutions uk with saddle point character in
H1

kT for every positive integer k such that ‖uk‖∞ → +∞ as k → +∞.

Proof. Without loss of generality, we may assume that functions b in assump-
tion(A), λ in (10) and g, h in (8) are T− periodic and assumptions (A), (10),
(8) and (9) hold for all t ∈ R by the T− periodicity of F (t, x) in the first
variable.

Set H̃1
kT = {u ∈ H1

kT |u = 0}, then H1
kT = RN

⊕
H̃1

kT , obviously. Define
the function Ψ as follows:

Ψ(u) = sup
x∈RN

ϕk(u + x) ∀u ∈ H̃1
kT .

For each fixed u ∈ H̃1
kT and any x1, x2 ∈ RN , one has

∫ kT

0
(OF (t, u(t) + x1)− OF (t, u(t) + x2), x1 − x2)dt ≥ |x1 − x2|2

∫ kT

0
λ(t)dt

Consequently,

〈−ϕ′k(u(t) + x1)− (−ϕ′k(u(t) + x2)), x1 − x2〉 ≥ |x1 − x2|2
∫ kT

0
λ(t)dt.
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By virtue of Theorem 2.3 in [11] there exists a continuous mapping θ : H̃1
kT →

RN such that ϕk(u + θ(u)) = Ψ(u) for all u ∈ H̃1
kT , Ψ : H̃1

kT → R is contin-
uously differentiable, and Ψ′(u) = ϕ′k(u + θ(u))|

H̃1
kT

for all u ∈ H̃1
kT . Hence,

u ∈ H̃1
kT is a critical point of Ψ implies u + θ(u) is a critical point of ϕk.

Moreover, for each u ∈ H̃1
kT , by condition (ii) and Sobolev’s inequality one

has

Ψ(u) ≥ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt−

∫ kT

0
F (t, u(t))dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt−

∫ kT

0
g(t)|u(t)|αdt−

∫ kT

0
h(t)dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt− ‖u‖α

∞

∫ kT

0
|g(t)|dt−

∫ kT

0
h(t)dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt− C1(

∫ kT

0
|u̇(t)|2dt)

α
2 − C2

(11)

for all u ∈ H̃1
kT and some positive constants C1 and C2. By Wertinger’s

inequality, one has

‖u‖ → +∞⇔ ‖u̇‖2 → +∞
on H̃1

kT , then (11) implies that Ψ(u) → +∞ as ‖u‖ → +∞. Consequently,
there exists a point u0 ∈ H̃1

kT such that Ψ(u0) = min
H̃1

kT
Ψ(u), and hence

uk = u0 + θ(u0) is a solution with saddle point character of problem (1) in
H1

kT .
By the definition of uk, we have

ϕk(uk) = min
u∈H̃1

kT

sup
x∈RN

ϕk(x + u) ≤ sup
x∈RN

ϕk(x + ek) = sup
RN+ek

ϕk. (12)

Now we prove that ‖uk‖∞ → +∞ as k → +∞.
For ek(t) = k(cos k−1ωt)x0 we have

ėk(t) = −ω(sin k−1ωt)x0

for all t ∈ R which implies that
∫ kT

0
|ėk(t)|2dt =

1
2
kTω2.

Hence one has

ϕk(x + ek) =
1
4
kTω2 −

∫ kT

0
F (t, x + ek)dt
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for all x ∈ RN . By condition (iii) we have

k−1ϕk(x + ek)

=
1
4
Tω2 − k−1

∫ kT

0
[F (t, x + ek)− F (t, x)]dt− k−1

∫ kT

0
F (t, x)dt

=
1
4
Tω2 − k−1

∫ kT

0

∫ 1

0
(5F (t, x + sek), ek)dsdt−

∫ T

0
F (t, x)dt

≤ 1
4
Tω2 − k−2

∫ kT

0
(ek, ek)dt−

∫ T

0
F (t, x)dt

≤ 1
4
Tω2 −

∫ kT

0
cos2(k−1ωt)dt−

∫ T

0
F (t, x)dt

=
1
4
Tω2 − Tk

2
−

∫ T

0
F (t, x)dt

(13)

Hence by assumption (A) and condition (iv) there exists some constant C such
that

sup
x∈RN

k−1ϕk(x + ek) ≤ C − Tk

2

for all k, so we obtain

lim sup
k→+∞

sup
x∈RN

k−1ϕk(x + ek) = −∞. (14)

Then following the same way in [5] we complete our proof. ¤

Remark 2.2. There indeed exist functions F (t, u) satisfy the condition (iii),
for example,

F (t, u) = (ek, u).

Remark 2.3. Theorem 2.1 is not required any coercive condition on the func-
tion F (t, x), so our result is a real improvement to some extent.

Theorem 2.4. Suppose that F satisfies assumption (A), (2) and the following
conditions:
(i) there exist g, h ∈ L1(0, T ; R+) and α ∈ [0, 1) such that

| 5 F (t, x)| ≤ g(t)|x|α + h(t)

for all x ∈ RN and a. e. t ∈ [0, T ];
(ii) there exists some ek(t) = k(cos k−1ωt)x0 such that

(5F (t, x + sek), ek) ≥ k−1(ek, ek)

for all x ∈ RN and s ∈ [0, 1];
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(iii)

|x|−2α

∫ T

0
F (t, x) → +∞ as |x| → +∞.

Then problem (1) has kT−periodic solutions uk ∈ H1
kT for every positive in-

teger k such that ‖uk‖∞ → +∞ as k → +∞
Proof. It is well known that ϕk satisfies the (PS) condition under conditions
(i), (iii)(see [5]). To complete our theorem, we now prove that ϕk satisfies the
other conditions of the saddle point theorem. Since

|x|−2α

∫ T

0
F (t, x)dt → +∞

as |x| → +∞, so for every β > 0 there exists M ≥ 1 such that

|x|−2α

∫ T

0
F (t, x)dt ≥ β (15)

which implies that ∫ T

0
F (t, x)dt ≥ βM2α (16)

for all |x| ≥ M.
For ek(t) = k(cos k−1ωt)x0 we have ėk(t) = −ω(sin k−1ωt)x0 for all t ∈ R

which implies that ∫ kT

0
|ėk(t)|2dt =

1
2
kTω2.

Hence one has

ϕk(x + ek) =
1
4
kTω2 −

∫ kT

0
F (t, x + k(cos k−1ωt)x0)dt

for all x ∈ RN . So by (16) one has

ϕk(x + ek) =
1
4
kTω2 −

k−1∑

i=0

∫ T

0
F (t, x + k(cos k−1ω(t + iT ))x0)dt

≤ 1
4
kTω2 − kβM2α

for all |x| ≥ M + k, which implies that

ϕk(x + ek) → −∞ (17)

as |x| → +∞ by the arbitrariness of β.
On the other hand, we have

ϕk(u) → +∞ (18)
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as ‖u‖ → ∞ in H̃1
kT = {u ∈ H1

kT |u = 0}. In fact, we have

|
∫ kT

0
[F (t, u(t))− F (t, 0)]dt|

≤ C3(
∫ kT

0
|u̇(t)|2dt)

α+1
2 + C4(

∫ kT

0
|u̇(t)|2dt)

1
2

for all u ∈ H̃1
kT and some positive constants C3 and C4. Hence we have

ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt−

∫ kT

0
[F (t, u(t))− F (t, 0)]dt−

∫ kT

0
F (t, 0)dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt− C3(

∫ kT

0
|u̇(t)|2dt)

α+1
2

− C4(
∫ kT

0
|u̇(t)|2dt)

1
2 −

∫ kT

0
F (t, 0)dt

for all u ∈ H̃1
kT . By Wertinger’s inequality, one has

‖u‖ → ∞⇔ ‖u̇‖2 →∞
on H̃1

kT . Hence (18) follows from the above inequality.
So by (17), (18) and the saddle point Theorem (see Theorem 4.6 in [1]),

there exists a critical point uk ∈ H̃1
kT for ϕk such that

−∞ < inf
H̃1

kT

ϕk ≤ ϕk(uk) ≤ sup
RN+ek

ϕk.

By the condition (ii) we can prove Theorem 2.4 in the same way as in
Theorem 2.1. ¤
Theorem 2.5. Suppose that F satisfies assumption (A), (2) and the following
conditions:
(i) there exists a function γ ∈ L1(0, T ; R) with

∫ T
0 γ(t)dt > 0 and α ∈ [1, 2)

such that
(5F (t, x)−5F (t, y), x− y) ≤ γ(t)|x− y|α (19)

for all x, y ∈ RN and a. e. t ∈ [0, T ];
(ii) F (t, ·) is (λ, µ)−subconvex, and 5F (t, 0) = 0, and there exist g, h ∈
L1(0, T ; R+) and δ ∈ [1, 2) such that

F (t, x) ≤ g(t)|x|δ + h(t) (20)

for all x ∈ RN and a. e. t ∈ [0, T ];
(iii) there exists some ek(t) = k(cos k−1ωt)x0 such that

(5F (t, x + sek), ek) ≥ k−1(ek, ek)

for all x ∈ RN and s ∈ [0, 1];
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(iv) assume that a(t) is bounded and that
∫ T

0
F (t, x)dt → +∞ as |x| → +∞. (21)

Then problem (1) has kT−periodic solutions uk ∈ H1
kT for every positive in-

teger k such that ‖uk‖∞ → +∞ as k → +∞.

Proof. Without loss of generality, we may assume that γ in (19) and g, h in
(20) are T− periodic and assumption (A) , (19) and (20) hold for all t ∈ R by
the T− periodicity of F (t, x) in the first variable.

Let us prove that ϕk satisfies the (PS) condition. Suppose that {un} is
a (PS) sequence for ϕk. As a(t) is bounded function, we can assume that
a0 = maxt∈R+ |a(t)| < +∞. By condition (i), (ii) and Sobolev’s inequality, it
follows that

‖ũn(t)‖ ≥< ϕ′k(un), ũn >=
∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
(5F (t, un(t)), ũn(t))dt

=
∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
(5F (t, un(t))−5F (t, un), ũn(t))dt

−
∫ kT

0
(5F (t, un), ũn(t))dt

≥
∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
γ(t)|ũn(t)|αdt− a0‖ũn‖∞

∫ kT

0
b(t)dt

≥
∫ kT

0
|u̇n(t)|2dt− C ′

1‖ũn‖α
∞ − C ′

2‖ũn‖∞
(22)

for large n. By Wertinger’s inequality, we have
∫ kT

0
|u̇(t)|2dt ≤ ‖ũ‖2 ≤ (

k2T 2

4π2
+ 1)

∫ kT

0
|u̇(t)|2dt. (23)

By (22) and (23) we have

C(
∫ kT

0
|u̇n(t)|2dt)α/2 ≥

∫ kT

0
|u̇n(t)|2dt− C1(

∫ kT

0
|u̇n(t)|2dt)1/2,

that is

(
∫ kT

0
|u̇n(t)|2dt)1/2 − C(

∫ kT

0
|u̇n(t)|2dt)α/4 ≤ C2

which implies ∫ kT

0
|u̇n(t)|2dt ≤ C3 (24)
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for large n and some constant C3 as α ∈ [1, 2). Then by the boundedness of
{ϕk(un)}, condition (ii) and Sobolev’s inequality one has

C4 ≤ ϕk(un) =
1
2

∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
F (t, un)

≤ 1
2

∫ kT

0
|u̇n(t)|2dt− 1

µ

∫ kT

0
F (t, λun)dt +

∫ kT

0
F (t,−ũn(t))dt

≤ 1
2

∫ kT

0
|u̇n(t)|2dt− 1

µ

∫ kT

0
F (t, λun)dt +

∫ kT

0
[g(t)|ũn(t)|δ + h(t)]dt

≤ 1
2

∫ kT

0
|u̇n(t)|2dt− 1

µ

∫ kT

0
F (t, λun)dt + C5(

∫ kT

0
|u̇n(t)|2dt)δ/2 + C6

(25)
for all large n and some constants C4, C5 and C6. Hence by (21), (24) and
(25) we obtain |un| ≤ C7 for all large n and some constant C7. Hence {un} is
a bounded sequence, and (PS) condition is satisfied.

Then the rest of proof continue as similar as in Theorem 2.4. We omit the
details. So we complete our proof. ¤
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