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Abstract. The purpose of this research is to formulate a new proximal-type algorithm to
solve the equilibrium problem in a real Hilbert space. A new algorithm is analogous to the
famous two-step extragradient algorithm that was used to solve variational inequalities in the
Hilbert spaces previously. The proposed iterative scheme uses a new step size rule based on
local bifunction details instead of Lipschitz constants or any line search scheme. The strong
convergence theorem for the proposed algorithm is well-proven by letting mild assumptions
about the bifunction. Applications of these results are presented to solve the fixed point
problems and the variational inequality problems. Finally, we discuss two test problems
and computational performance is explicating to show the efficiency and effectiveness of the

proposed algorithm.

1. INTRODUCTION

Suppose that C is a nonempty, closed and convex subset of a real Hilbert
space H. Assume that f: H x H — R is a bifunction having f(y,y) = 0 for
each y € C and a equilibrium problem (EP) for f on C is considered in the
following form: Find p* € C in such a way that

f(p*y) >0, VyeC. (EP)
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In this research work, the problem (EP) is studied based on the following
conditions. Let f : H x H — R be a bifunction (see for further details [4, 6])
satisfies the following conditions:

(C1) f is pseudomonotone on C, that is, if f(y1,y2) > 0 then

fy2,91) <0, Vyr,y2 € C. (1.1)

(C2) fis Lipschitz-type continuous [19] on C, that is, if there exist c¢i,ca > 0
such that

Flyiys) < Flynye) + fy2,y3) + allyn — v2ll” + callya — usll®, (1.2)

for all y1,y2,y3 € C.
(C3) for any weakly convergent {y,} C C (y, — y*) the following inequality
holds
limsup f(yn,y) < f(y",y), Yy € C. (1.3)

n—oo

(C4) f(y,-) is convex and sub-differentiable on H for every fixed y € H.

The general format of the problem of equilibrium draws a great deal of
interest to the researcher as it involves a variety of mathematical problems,
for example the fixed point problems, scalar and vector minimization problems,
the complementarity problems, the variational inequalities problems, the Nash
equilibrium problems in non-cooperative games, the saddle point problems
and the inverse minimization problems [1, 2, 6, 13, 14, 20, 23, 30, 33, 34]
with applications in economics [8] or the dynamics of offer and demand [3],
continuing to exploit the theoretical structure of non-cooperative games and
Nashs equilibrium idea [24, 25]. In the literature, as best of our knowledge
the term “equilibrium problem” was primarily introduced in 1992 by Muu and
Oettli [23] and studied extensively by Blum and Oettli [6] and other iterative
methods in [12, 21, 22, 26, 29, 31, 32, 35, 36, 37, 38, 40].

By applying the approach of Korpelevich extragradient algorithm [15], Flam
et al. [9] and Quoc et al. [27] suggested the following algorithm for dealing
with equilibrium problem containing pseudomonotone and Lipschitz-type bi-
function: Select a random starting point zy € C; looking at the given iterate
Ty, pick up the next iteration under the following scheme:

Ypn = arg min{Xf(xmy) + %H:Eﬂ - yHQ}a
vee 1 5 (1.4)
Tpt1 = arglélln{xf(yn,y) + 5llzn — yll*}s
ye

1

E} and c1, co are two Lipschitz-type constants of a

where 0 < x < min{ﬁ,
bifunction (1.2).
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It is noteworthy to point out that the above well-proven method carries two
serious drawbacks, the first is the constant step size that involves the knowl-
edge or approximation of the Lipschitz constant of the related bifunction and
it only converges weakly in Hilbert spaces. From the computational point of
regard, it might be problematic to determine the Lipschitz constant previously,
and hence the convergence rate and appropriateness of the method could be
affected. So a natural question arises:

Question: Is it possible to develop a new strongly convergent extragradient
algorithm independent of the Lipschitz-type constants with a monotone step
size rule to determine the numerical solution of the problem (EP) involving a
pseudomonotone bifunction?

In this study, we study about the positive answer to this question, that is,
the gradient methods still hold in case of monotonic step size rule for solving
equilibrium problems associated with pseudomonotone functions and retain
a strong convergence. Inspired by the works of [18, 27], we introduce a new
extragradient-type algorithm to figure out the problem (EP) in the context of
infinite-dimensional real Hilbert spaces.

(i) We introduce a self-adaptive subgradient extragradient algorithm by
using a monotone step size rule to figure out equilibrium problems and
also prove that generated sequence is strongly convergent. This results
seen as the modification of the method (1.4).

(ii) The implementations of our main findings are studied in order to solve
particular classes of equilibrium problems in real a real Hilbert space.

(iii) The numerical study of Algorithm 1 with Algorithm 3.2 (Alg3.2) in
[10] and Algorithm 4.1 in [11] (Alg4.1). The numerical results has
shown that the proposed algorithms are useful and performed better
compared to the existing ones.

The rest of the study has been drawn up as follows: Section 2 comprises
basic definitions and key lemmas used throughout the manuscript. Section 3
consists of proposed iterative scheme with variable step size rule and a theorem
of convergence analysis. Section 4 sets out the application of the proposed
results to solve the variational inequality problems and fixed point problems.
Section 5 given numerical results to illustrate the performance of the new
algorithms and equate them with two existing algorithms.

2. PRELIMINARIES

Assume that C is a nonempty, closed and convex subset of a real Hilbert
space H. The metric projection Pc(x) of x € H onto a closed and convex
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subset C of H is defined by

Pc(x) = argmin|y — z|. (2.1)
yeC

Next, some useful properties of the metric projection are given.

Lemma 2.1. [16] A metric projection Pc : H — C satisfy the following.
(i)
ly1 = Pe(y2)1? + 1 Pe(y2) = val® < lly1 — w2ll*, y1 € Coyo € H.
(ii) ys = Pc(y1) if and only if
(y1 —y3,y2 —y3) <0, Vya € C.
(i)
lyr — Pe(yo)ll < llyr —v2ll, y2 € C,y1 € H.

Definition 2.2. Let C be a subset of a real Hilbert space H and » : C — R
a given convex function.

(1) The subdifferential of s at x € C is defined by

On(x)={z€H: x(y) — »(z) > (z,y —x), Vy € C}. (2.2)
(2) The normal cone at x € C is defined by
Ne(z)={z€H: (z,y—x) <0,Vy e C}. (2.3)

Lemma 2.3. ([28]) Suppose that  : C — R is a sub-differentiable, lower semi-
continuous function on C. An element x € C is a minimizer of a function
if and only if

0 € 9s(x) + Nc(x),
where Osx(x) stands for the sub-differential of » at x € C and Nc¢(x) the
normal cone of C at x.

Lemma 2.4. ([39]) Suppose that {an} C (0,+00) is a sequence satisfying
ant+1 < (1= bp)ay + bunp, for all n € N.

Moreover, {b,} C (0,1) and {n,} C R are sequences such that lim,_ . b, =
0, D02 bp = +00 and limsup,,_,., 7n < 0. Then, limy, o0 an = 0.

Lemma 2.5. ([17]) Assume that {a,} C R be a sequence and there exists a

subsequence {n;} of {n} such that a,, < an,,, for all i € N. Then, there is

a nondecreasing sequence {my} C N such that my — oo as k — oo, and the

subsequent conditions are fulfilled by all (sufficiently large) numbers k € N:
amk S a/mk+1 and al{: S amk+1a

where my, = max{j <k :a; < a1}
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Lemma 2.6. ([5]) For all y1,y2 € H and & € R, the subsequent relationship
hold.

(1) 1Sy1+ (1= )w2ll? = Slgal? + (1 = )|ye]* = S(1 = )[ly1 — y2l*-
(i) [ly1 + w2ll* <yl + 2(y2, y1 + v2).

3. MAIN RESULTS

Next, we introduce a variant of algorithm (1.4) in which the constant step
size x is chosen adaptively and thus yield a sequence x, that does not require
the knowledge of the Lipschitz-like parameters of the bifunction f.

Algorithm 1 (Strongly convergent extragradient-type method)

Step 0: Choose zg € C, € (0,1), xo > 0, {7} C (a,b) C (0,1—46,) and
{6n} C (0,1) satisfies the conditions, that is,

+o00
ngrfoo 6, =0 and Zlén = +00.
n—

Step 1: Compute

. 1
yn = argmin{xn f(2n, y) + 5 [lzn — ylI*}-
yeC 2

If z,, = y,, then STOP. Otherwise go to Step 2.

Step 2: Firstly choose w,, € O2f(xn,yn) satisfying x, — Xpwn — Yn €
Nc(yn) and create a half-space

Hn:{ZGH:<xn_ann_ynaZ_yn>§O}

and compute z, = argmin{xn f(yn,y) + %Hiﬁn —y[I*}.
yeHn,

Step 3: Compute
Tn+l = (1 — TYn — 571)1'71 + TnZn-
Step 4: Compute

: pil|zn —yn |2 +4llzn—yn|? }
min {Xna 2[f (zns2n) = f (Tnsyn)—f (Yn,2n)]

Xn+1 = if f(l‘n, Zn) — f(l'ruyn) - f(yna Zn) >0,
Xns else.

Set n :=n + 1 and move back to Step 1.

Lemma 3.1. Let {x,} be the sequence in the Algorithm 1.Then it is decreasing
monotonically with a lower bound value min {m’ XO}-
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Proof. Consider that f(xn,2zn) — f(ZnsYn) — f(Yn, 2n) > 0, s0

pll|zn — yn”2 + [|2n — ynHQ) > plllzn — ynH2 + [|2n — yn||2)

2[f (@n, 2n) = f(@n,yn) = F(Yn, 20)] ~ 2erl|zn — ynll? + c2llzn — ynl?]
w
~ 2max{cy,co}’

(3.1)

Thus, above expression implies that the sequences {x,} is bounded below by
a value min {72 max’{‘qm} , XO}- d

Theorem 3.2. Assume that the condition (C1)-(C4) are satisfied. Then the
sequence {x,} generated by Algorithm 1 converges strongly to an element

Tr*x = PEP(f,(C) (0)

Proof. First, now start to prove the boundedness of the sequence {z,}. By
Lemma 2.3, we have

0 € 3 {x0n () + lln — 9112} (z0) + Ni (2.
For w € 0f(yn, 2zn) there exists w € Ny, (z,) such that
XnW + 2n — xn +w = 0.
It follows that
(@n = zn,y = 2n) = Xn (W, Y = 2n) + (@0, Y = 2n), Vy € Hp.
Due to w € Ny, (2n), follows that (w,y — z,) <0, for all y € H,,. Thus

(X — 2n, Y — 2n) < Xnlw,y — 2p), Yy € H,. (3.2)

Moreover, w € 9f(yn, zn), we have
Fnsy) = (Yns 2n) = (w,y = 20), Vy € H. (3:3)

Combining (3.2) and (3.3), we get
X f (Ynr ¥) = XS (Yns 2n) 2 (&0 = 20,y — 2n), Vy € Hy. (3.4)

Due to description of H,,, we have
Xn(@n; Zn = Yn) = (Tn = Yns Zn = Yn)- (3.5)
Now, using w,, € df(xn,yn), we obtain
f@n,y) = F(@n, yn) 2 (Wn,y = yn), Yy € H.

By letting y = z,, we have

[, 2n) = f(@n,yn) 2 (Wns 20 — yn), Vy € H. (3.6)
From (3.5) and (3.6), we get

Xnd f (@, 2n) = f(@n,yn) } > (@0 = Yn, 20 — Yn)- (3.7)
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By replacing y = p* in (3.4), we get
X Wns P%) = Xnf (Yny 2n) = (Tn — 20, " — 2n).

(3.8)

Since p* € EP(f,C), we have f(p*,y,) > 0. From the pseudomonotonicity of

bifunction f, we get f(yn,p*) < 0. Thus

<xn — Zn,&n T P*> 2 an<ynvzn)-
From description of x,41, we get

I2 I?

(s 2n) — F@m ) — Fln, z) < AT = Ynll”+ pllzn =
2Xn+1

From (3.9) and (3.10), we obtain

<xn — Zn,&n — P*> > Xn{f(xna zn) - f(xnv yn)}
UXn 2 HXn
2 —yull” -

I2.

2Xn+1 2Xn+ H " "
From (3.7) and (3.11), we have
(Tn = 2ny2n — P°) 2 (Tn = Yns Zn — Yn)
HXn 2 HXn 2
- Ty — - Zn — Ynl|”-
We have the given formula in place:
—2(Tp — 2n, 20 — p°) = |70 — P*H2 + lzn — xn||2 + lzn — P*||2a
2(yn — Tny Yn — Zn) = ||Tn — yn||2 + llzn — yn||2 — [|zn — Zn||2~

Combining (3.12) and (3.14), we get
* X X
O e g L T i (e I A
Xn+1 Xn+1

Since x,, — X, there is a fixed number € € (0,1 — u) such that

HXn
Xn+1

lim (1 _

Jim )zl—u>e>0,Vn2n0.
Thus, expression (3.15) implies that

Iz = "I < llzw = o717, Y10 > n0.
Given that p* € EP(f,C), we obtain
= [[(1 =70 = dn)(@n = p7) + (20 — p7) — dnp”||

(f,
Hmn+1 P H - H(l_%l_d Tn + Ynin — p*H
(
<[ = = 8)(@n — p*) + (20 — p) || + 0nl|p*]]-

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
(3.14)

(3.15)

(3.16)

(3.17)
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Next, we estimate the following:

11 = Y = 8n) (@n — p*) + Y (20 — 07|
= (1= = 60)en = " |I* + 92l 20 = ||
+2((1 =y = 0n) (@0 — p*)s Y20 — 7))
< (1= = 82|20 — p*|)* + 9220 — 7|
+29n(1 = = On) [[2n = p7[[|2n — 7]
< (U= = 00l = 7" + 32|20 = °|°
+ (1= Y = ) [[en = || + (1 = 0 = 6) |20 — p°|”
< (1=n = 6p)(1 = 6)||wn — p*H2 + Y (1= 6n)||2n — p*H2. (3.18)
Substituting (3.16) into (3.18), we obtain
1= 9 = 6) (@ = %) + (20 — 2|’

< (1 —Tn — 5n)(1 - 5n)H$n - p*H2 +'7n(1 - 5n>Hxn - p*H2
= (1—8)?|Jzn — |- (3.19)

Therefore, we have
(1= = 8n) (@ = p*) + (20 — p)|| < (U= 6n)||lzn — 07| (3:20)
Combining (3.17) and (3.20), we get
[zni1 = 27| < (1= 6n)[|n — o7 + dn| "]
o1}

< max { ||z = o[, "] }- (3.21)

)

< maX{Hmn —p*

Thus, the above expression implies that {x,} is bounded sequence.
Next, our aim is to prove that the sequence {x,} is strongly convergent.
Indeed, by the use of definition of {41}, we have
#2 1|2
H$n+1 —p H = H(l —Tn — 5n)$n + Yn2n —p H
* * k 2
= H(l =Y = ) (@n — P7) + n(zn — p*) — dup H
% 2 2
= [ = = ) (@n = p*) + mlen = )" + 37107
- 2<(1 —Yn = 6n)(Tn — p*) + V(20 — p*), 5n:0*>- (3.22)
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By the use of (3.18), we have
11 = = 80) (@ = ) + (20 — 07|
< (1= = 0) (L = 8)||2n — || + (1 = 8u)||2n — || (3:23)
Combining (3.22) and (3.23) (for some K3 > 0), we get
lenss = |
< (1= = 62)(1 = 8)[[n = o7 ||* + (1 = ) || 20 = || + 6 K2
< (1= = 80)(1 = 8) | = " ||” + 80
300 = ) [l = 1P = (1= 2 Y =l
= (1= 2l = P
= (1= 60)’llen — p"|I* + 8k

— (1= ) [(1= 25 Yl = gl + (1= LX) 12— gl
Xn+1 Xn+1

< lwn — p*|I? + 60 Ko
— (1= 80 [ (1= 25z = gl + (1 = X% 2w = gal?] - (3:24)
Xn+1 Xn+1

From the conditions (C1) and (C2), the solution set EP(f,C) is a closed
and convex set, see for example, [27]). Given that p* = Pgp(sc)(0), and by
Lemma 2.1 (ii), we have

(0—p*,y—p*) <0, Vy € EP(f,C). (3.25)

Now we divide the rest of the proof into the following two parts:
Case 1: Suppose that there is a fixed number n; € N such that
[2nt1 = Pl < llzn =PI, Vo = 1. (3.26)

Then lim,, oo ||zn, — p*|| exists. From (3.24), we have

(=80 [ (1= L2 Jam = gl + (1= L2 ) 20— gl
Xn+1 Xn+1

< lwn = p*|* + G ks — [[znts — p*|%. (3.27)
The existence of lim,,_,~ ||z, — p*|| and J,, — 0, we infer that
lim ||z, —yn|| = lim ||z, — yn|| = 0. (3.28)
It follows that
Tim o = zall € il — gl + lim g =zl =0 (329)
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It follows from (3.29) and §,, — 0, that
Hmn—H - an = H(l —In — 5n)xn + Ynzn — an
= Hxn — OnTn + YnZn — YnTn — wnH
< nllzn — | + On|za ], (3.30)
which gives that
|Znt1 — xnl] = 0 as n — +oo. (3.31)
We can also deduce that {y,} and {z,} are bounded. The reflexivity of
H and the boundedness of {x,} guarantee that there is a subsequence {xy, }
such that z,, — 2 € Has k — +o0.

Next, we need to show that & € EP(f,C). By the use of expression (3.4),
the Lipschitz-type continuity of f and (3.10), we get

Xnkf(ynk7 y) > X”kf(ynk7 an) + <xnk —Zngy Y — an)
HXny

2
x Yny,
2Xnk+1 H " nkH

2 Xnkf($nkaxnk+1) - Xnkf(xnkaynk) -

X
- 2H 2k Hynk - an||2 =+ <xnk — Zng, Y — an>
Xng+1
129,6
> <xnk — Yny s Rny — ynk> - 2X nj_l Hxnk - ynkHQ
ng
= P — 2 P (B — 2 — 20, (3.32)
2X’l’bk+1

where y is an arbitrary point in H,. The boundedness of {x,} and from
(3.28), (3.29) right-hand side converge to zero. Since X, > 0, condition (C3)
and y,, — &, we have

0 <limsup f(Yn,,y) < f(2,9), Vy € Hi. (3.33)

k—o0

Thus, above implies that f(z,y) > 0, for all y € C, and hence & € EP(f,C).
Thus

limsup(p®, p* — a)

n—oo

= limsup(p”*, p* — xp,) = (p*,p* — 2) <0. (3.34)

k—o0

By the use of lim,, HfEn+1 — an = 0. We might conclude that

lim sup(p*, p* — Zp41)

n—oo
< limsup(p*, p* — x,) + limsup(p*, ,, — Tp4+1) < 0. (3.35)

Next, assume that ¢, = (1 — v, )@y + Ynzn. Then, we obtain

Tpg1l = tn— 0Ty, = (1=0,)tn—0n(Tn—1tn) = (1=0n)tn—0nyn(zn—25). (3.36)
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where x,, — t, = zp, — (1 — Yn)Tn — Ynzn = Yn(Tn — 2zn). Thus, we have
len1 = %"
= ||(1 = 8)tn + nbn(zn — n) — p*||°
= (1= 62)(tn = p7) + [1a0n (20 = 2n) = 6up”] ||
< (1= 60)?tn = 7|
+2(0n (20 — Tn) = 020", (1= 0n)(tn = p*) + Mbn(20 — Tn) — Gnp”)
= (1= 80)|[tn — "
+ 2(1n0n(2n — Tn) — Onp*, tn — Ontn — On(Tn — tn) — p*)
= (1= 00)|[tn — 0"||” + 2900020 — Tny Tns1 — ) + 200{p*, p* — Tpy1)
< (=80t = *|* + 2va0all 20 — @a|[znss = 07| +200(p", p" — wnia).
(3.37)
Next, we need to evaluate
ltn = o7
=/ = W)@ + mzn — |
= /(1 = ) (@n — ) + mlzn — )|
= (1= )Jzn — p*|* + 22120 — 27 |)* + 201 = ) (@n — p°), V(20 — p*))
< (L= )l|wn = o*|* +32llz0 = o°[1” + 2901 = )l = o[}z = 7|
< (0= )?||z0 = 2*|7 + 22|20 — 0[° + (X = Y0) [J2m — o7
+ (1 = )| — p*|”
= (1= ) |om = " [I* + 30|20 = 27
< (=) |en = " |* + ul|zn = 0|
= ||lzn — p*|>. (3.38)
Combining expressions (3.37) and (3.38) gives that
[l
< (1= 0@ = p*|I" + 80 |20 120 = @allllzner = o[ + 206", " = wat1)].
(3.39)

By the use of expressions (3.35), (3.39) and Lemma 2.4, we can derive that
Hxn — p*H — 0 as n = 4o00.
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Case 2: Assume that there is a subsequence {n;} of {n} such that
|20, — ol < ll@n,,, — p*|l, Vi€N.

Then, by Lemma 2.5, there exists a sequence {my} C N ({my} — 00), such
that

[2my =" < mppy =71 and - [lzg =p"[| < [[2my = o[, VE € N (3.40)

By the use of expression (3.27), we have

X KX
Yong (1= ) [ (1= 225 g, = g |2 4+ (1= L5 2, = i, 1]

Xmp+1 mg+1
< llwmy, = 1% + Oy Kz — |21 — p*1%- (3.41)
Due to 6,,, — 0, we can deduce the following:
nh_)nolo mek = Ymy, H = nh—g)lo ||ka — Ymy, H = 0. (3'42)
It continues from that
||55mk+1 — Ty, H = H(l = TYmy — 6mk)$mk + Yy Zmy, — Tmy H
< Vo ||2mi = T || + O |y || — 0. (3.43)
By using similar argument as in Case 1, we get

lim sup(p*, Zm,+1 — p*) < 0. (3.44)

k—o00

By the use of expressions (3.39) and (3.40), we have
lzmisr = o[
<(1- 5mk)mek - P*H
+ Omy, [277”1@ Hzmk — Tmy, H mekﬂ - p*H + 20, <p*, P = xmk+1>]
< (1= dmy)[[2mi s — p*||2

+ Omy, [Q'Ymk Hzmk — Tmy, H melﬁ-l - P*H + 20, <p*, Ja xmk+1>] . (3.45)

2

It follows that

mesr = p*H2 < 29m [z, = T ||| 11 = 0[] + 20m, (p7, P7 = Tmy11)-
(3.46)

Since 0, — 0 and ||z, — p*|| is bounded, (3.44) and (3.46), yield

|Zmpr1 — p*||> = 0, as k — oo. (3.47)
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This implies that

Tim |l — p*|* < lim 2,1 — p*[* < 0. (3.48)
As a result, x,, — p* and the desired result will be obtained. O

4. APPLICATIONS

In this section, we extracted the results from our main proposed results to
figure out variational inequalities. In the last few years, variational inequalities
have drawn a considerable amount of attention from both researchers and
readers. It is well established that variational inequalities deal with a broad
variety of topics in partial differential equations, optimal control, optimization
techniques, applied mathematics, engineering, finance, operational science.

The variational inequality problem for an operator A : H — H is described
as follows:

Find p* € C such that (A(p*),y — p*) >0, Vy € C. (VIP)

We consider the following conditions to study variational inequalities.

(A1) A solution set of the problem (VIP) indicate by VI(A, C) is nonempty.
(A2) A:H — H is pseudomonotone, that is, if <A(a:), y— :c> > 0, then

<.A(y),:1: — y> <0, Va,y € C.

(A3) A : H — H is Lipschitz continuous, that is, if there exits a constant
L > 0 such that

[A(z) — Al < Lljz = yll, Yo,y € C.

(A4) A : H — H is sequentially weakly continuous, that is, {A(zy)} con-
verges weakly to A(z) for every weakly convergent sequence {x,} to
x.

On the other hand, we have also developed the results to deal with fixed
point problems from our main results. The existence of a solution to a theo-
retical or real-world problem should be analogous to the existence of a fixed
point for an appropriate map or operator. There is, therefore, a great deal of
importance to fixed point theorems in several fields of mathematics, engineer-
ing and science. In many cases, it is not difficult to find an exact solution;
therefore, it is crucial to create effective techniques to approximate the desired
result.

The fixed point problem for an operator B : H — H is defined as follows:
Find p* € C such that B(p*) = p*. (FPP)

The following conditions are considered to solve the fixed point problems:



14 K. Muangchoo

(B1) The solution set of the problem (FPP) denoted by Fiz (B, C) is nonempty.
(B2) B:C — Cis a k-strict pseudo-contraction [7] on C, that is,

1Bz — Byl* < llz — y|I* + &l (z = Bx) = (y = By)|I*, Va,y € C.

(B3) B:H — H is weakly sequentially continuous.

Corollary 4.1. Assume that an operator A : C — H satisfies the conditions
(A1)-(A4). Let zg € C, x0 > 0, {7} C (a,b) C (0,1 —6y) and {5,} C (0,1)
such that

+0oo

nlg]go on, =0 and Zlén = +4o00.
n=

Consider the iterative sequence as follows:

Yn = P(C(xn - XRA('%'”))7
zn = Py, (n — xnA(yn)),
i I

where H,, = {z € H: (z), — xnA(Tn) — Yn, 2z — yn) < 0}.

Compute
min 4§ Xn, fillzn—yn > +ullzn —yn* }
_ {X 2 |:<A($n)—-f4(yn)7zn_yn>:|
Xn+1 = if  (A(x) — AYn), 20 — Yn) > 0,
Xn, others.

Then, {x,} strongly converges to p* € VI(A,C).

Corollary 4.2. Assume that B : C — C is a mapping satisfying the conditions
(B1)-(B3) and Fix(B,C) # 0. Let z9 € C, xo > 0, {7} C (a,b) C (0,1 —5,)
and {0, } C (0,1) such that

—+o00
nh_{rgocsn =0 and 231571 = 4-00.
n—

Consider the iterative sequence update as follows:

yn = Pc [wn = Xn(Tn — B(xn))]7
Zn = PHn [ffn - Xn(yn - B(yn))]a
Tp+1 = (1 — Tn — 5n)xn + YnZn,

where H,, = {z € H: ((1 — xn)Zn + xuB(xn) — Yn, 2 — yn) < 0}.
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Compute
min ns MHxn_yn”2+ﬂ”Z'n_yn”2 }
B {X 2|:<(£En*yn)*[B(wn)fB(yn)]7znfyn>:|
Xn+1 if (0 —yn) — B(xa) = Bya)], 20 — yn) > 0,

Xn, Others.

Then, {x,} converges strongly to Fix(B,C).

5. NUMERICAL ILLUSTRATIONS

In this section, we include 2 numerical test problems and explain the nu-
merical behaviour of designed method in comparisons to some related works
in the literature.

Example 5.1. Suppose that the set C is defined by
C:={xeR™:-10 < z; <10}
and f: C x C — R is considered as follows
flz,y) =(Mz+ Ny+r,y—z), Yo,y € C,

where 7 € R™ and M, N are matrices of order m and ¢; = ¢» = || M — N||
(see [27] for details). Two matrices M, N are taken as follows:

312 0 0 O 16 1 0 0 O 1
2 36 0 0 O 1 16 0 0 O —2
M=]0 0 35 2 O, N=|0 0 15 1 O], r=]|-1
0 0 2 330 0 0 1 15 O 2
0o 0 0 0 3 0O 0 0 0 2 -1

Numerical results are presented in Figures 1-5 and Table 1 by letting y_; =
(1,1,1,1,1)7 and 29 = yo and TOL = 1075, The control parameters are taken
in the following way:

(i) x = %, Y = m and Dy, = ||z, — yn||? for Algorithm 3.2 (Alg3.2)
in [10];

(ii) Algorithm 4.1 in [11] (Alg4.1): x0 = 0.55, = 0.45, v, =

D, = max {Hxn—f—l - ynH2a ||xn - ynH2};

W and

(iii) xo0 = 0.55, p = 045, 60 = gor7ay> W = 19(1—0n) and Dy = [z —ya|?

for Algorithm 1 (Algl).
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10?

—oe—Alg3.2
- e -Algd.l
[ W A1g2

B85

©
0 10 20 30 40 50 60 70
Number of iterations

FIGURE 1. Numerical comparison between Algorithm 1 with
Algorithm 4.1 in [11] and Algorithm 3.2 in [10] with

(1,0,1,0,1)7.
102 ! !
—oe— Alg3.2
- e -Algd.l
[ W A1g2
100 ¢ 1
S 102t ]
10% F E
10°®

0 10 20 30 40 50 60 70 80 90
Number of iterations

FIGURE 2. Numerical comparison between Algorithm 1 with
Algorithm 4.1 in [11] and Algorithm 3.2 in [10] with

(2,3,0,3,2)7.
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10? w
—oe—Alg3.2
- e -Algd.l
[ W A1g2

0 10 20 30 40 50 60 70 80 90 100
Number of iterations

F1GURE 3. Numerical comparison between Algorithm 1 with
Algorithm 4.1 in [11] and Algorithm 3.2 in [10] with

(4a 27 _17 37 5)T

10? w
i —oe— Alg3.2
- e -Algd.l
100k [ W A1g2 ]

.
0 10 20 30 40 50 60 70 80 90 100
Number of iterations

FIGURE 4. Numerical comparison between Algorithm 1 with
Algorithm 4.1 in [11] and Algorithm 3.2 in [10] with

(_17 _17 37 47 _5)T'

17
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10* w
—oe—Alg3.2
- e -Algd.l

107 0 @ Alg2

0 20 40 60 80 100 120 140
Number of iterations

FIGURE 5. Numerical comparison between Algorithm 1 with

Algorithm 4.1 in [11] and Algorithm 3.2 in [10] with
(—5,1,3,9,-1)".

TABLE 1. Numerical values for Figures 1-5.

Number of Iterations Execution Time in Seconds
0 Alg2 Alg4.1  Algl | Alg2 Alg4.1 Algl
(1,0,1,0,1)T 67 37 26 0.5769519  0.3086849  0.229005400
(2,3,0,3,2)T 85 42 25 0.7270275 0.3868875 0.2305259
4,2,-1,3,5)7T 94 54 29 0.8391188  0.463802 0.2518623
(—1,-1,3,4,-5)T 92 40 26 0.8199833 0.3376767  0.24075900
(-5,1,3,9,-1)T 135 60 31 1.2119099  0.4957612 0.2694812

Example 5.2. Let a bifunction f: C x C — R is defined by
5

Fl@y) = (yi —zi)zll, Va,y € R?,

i=2
where C C R® is taken as follows:
(C:{(xl,... ,x5) x> =l >1,1=2,--- ’5}'

Then, f is Lipschitz-like continuous with ¢; = ¢o = 2, and satisfies the con-
ditions (C1)-(C4). All numerical results are reported in Table 2-4 by letting
different initial points and TOL = 1073. The control parameters are taken in
the following way:
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N1 1
() X = 27> ™ = o7

in [10];

(ii) Algorithm 4.1 in [11] (Alg4.1): x0 = 0.45, = 0.75, v, =

D,, = max {”l’n+1 - ynH27 ‘

(iii) xo = 0.45, u = 0.75, 6, =

for Algorithm 1 (Algl).

|xn - ynH2}§

1

TABLE 2. Example 5.2: Numerical results of Algorithm 3.2 in
[10] while zo = (5,2,1,3,4)7.

It.(n) x1 To z3 T4 Ts5
1 4.99999 1.49676 1.00000 2.49676 3.49676
2 4.99999 1.06668 1.00000 2.04283 3.04283
3 4.99999 1.05000 1.00000 1.61835 2.61835
4 4.99999 1.04000 1.00000 1.21606 2.21606
5 5.00000 1.03333 1.00000 1.06666 1.82696
6 4.99999 1.02857 1.00000 1.05714 1.44679
7 5.00000 1.02500 1.00000 1.05000 1.07534
8 4.99999 1.02222 1.00000 1.04444 1.06666
71 4.99999 1.00277 1.00000 1.00555 1.00833
72 4.99999 1.00273 1.00000 1.00547 1.00821
73 4.99999 1.00270 1.00000 1.00540 1.00810
74 4.99999 1.00266 1.00000 1.00533 1.00800
75 4.99999 1.00263 1.00000 1.00526 1.00789
CPU time is seconds  2.206290

TABLE 3. Example 5.2: Numerical results of Algorithm 4.1 in
[11] while 2o = (5,2,1,3,4)T .

Tter (n) T To T3 T4 Ts5
1 4.99999  1.46880 1.00000 2.46880 3.46880
2 4.99999  1.03572 1.00000 1.98570 2.98570
3 4.99999  1.02777 1.00000 1.53336 2.53336
4 4.99999 1.02272 1.00000 1.10451 2.10449
5 4.99999  1.01923 1.00000 1.03846 1.68846
6 4.99999  1.01666 1.00000 1.03333 1.28191
7 5.00000 1.01470 1.00000 1.02941 1.04412
8 4.99999  1.01315 1.00000 1.02631 1.03947
43 4.99999  1.00280 1.00000 1.00561 1.00842
44 4.99999 1.00274 1.00000 1.00549 1.00824
45 4.99999  1.00268 1.00000 1.00537 1.00806
46 4.99999  1.00263 1.00000 1.00526 1.00789
47 4.99999  1.00257 1.00000 1.00515 1.00773
CPU time is seconds 1.395494

19

and D,, = ||z, — yn||? for Algorithm 3.2 (Alg3.2)

and

10y Tn = 19 (1=0s) and Dy, = [, —yn|?
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TABLE 4. Example 5.2: Numerical results of Algorithm 1 while
zo = (5,2,1,3,4)T.

It.(n) T T2 T3 Tq 5

1 4.97500 1.19400  0.99500 1.39300 1.6223
2 4.95841 1.03533  0.99567  1.07500 1.1207
3 4.94602 1.00455  0.99663 1.01246 1.0215
4 4.93612  0.99890  0.99732 1.00048 1.0023
5 4.92790  0.99811  0.99780  0.99843  0.9987
6 4.92086  0.99819  0.99813  0.99825 0.9983
7 4.91471  0.99839  0.99837  0.99840 0.9984
8 4.90925 0.99856  0.99856  0.99857 0.9985
22 4.86499  0.99945 0.999450 0.99945 0.9994
23 4.86296  0.99947  0.999474 0.99947 0.9994
24 4.86102  0.99949 0.999495 0.99949 0.9994
25 4.85915  0.99951 0.999515 0.99951  0.9995
26 4.85735  0.99953  0.999533 0.99953  0.9995

CPU time is seconds 0.697144
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