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Abstract. In this paper, we consider and introduce some new concepts of the biconvex

functions involving an arbitrary bifunction and function. Some new relationships among

various concepts of biconvex functions have been established. We have shown that the

optimality conditions for the general biconvex functions can be characterized by a class of

bivariational-like inequalities. Auxiliary principle technique is used to propose proximal point

methods for solving general bivariational-like inequalities. We also discussed the conversance

criteria for the suggested methods under pseudo-monotonicity. Our method of proof is very

simple compared with methods. Several special cases are discussed as applications of our

main concepts and results. It is a challenging problem to explore the applications of the

general bivariational-like inequalities in pure and applied sciences.

1. Introduction

Convexity theory is a branch of mathematical sciences, which have impor-
tant and novel applications in industry, physical, social, regional, financial and
engineering sciences. For more details, see [1, 3, 8, 11, 12, 16, 20, 21, 22, 26]
and the references therein. It is worth mentioning that variational inequali-
ties represent the optimality conditions for the differentiable convex functions
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on the convex sets in normed spaces, which were introduced and considered
by Stampacchia [23]. Variational inequalities combine both theoretical and
algorithmic advances with new and novel domain of applications. Analysis
of these problems requires a blend of techniques from convex analysis, func-
tional analysis and numerical analysis. In recent years, considerable interest
has been shown in developing various generalizations of variational inequalities
and generalized convexity, both for their own sake and their applications.

Inspired by the research work going in this field, we introduce and con-
sider another class of nonconvex functions with respect to an arbitrary bi-
function and function. This class of nonconvex functions is called the general
biconvex functions. Relationship with other classes of convexity is discussed.
Several new concepts of monotonicity are introduced and are discussed. We
derive some new results under some mild conditions. It is shown that the
optimality conditions of the differentiable general biconvex functions can be
characterized by a class of variational-like inequalities, which is called general
bivariational-like inequality. Some iterative methods are suggested for solving
general bivariational-like inequalities using the auxiliary principle technique
[4, 6, 12, 16, 17, 18, 19, 21, 25, 26] involving Bregman distance functions.
Convergence criteria is also discussed using the pseudo monotonicity which is
a weaker condition than monotonicity. We have discussed only the theoretical
aspects of these new classes of bivariational-like inequalities. Implementation
of the these iterative methods and comparison with other techniques is an
open problem. It is expected that the ideas and techniques of this paper may
stimulate further research in this field.

2. Preliminaries

Let K be a nonempty closed set in a real Hilbert space H. We denote by
〈·, ·〉 and ‖ · ‖ is the inner product and norm, respectively. Let F : Kβ → R
be a continuous function and let β(. − .) : Kβ × Kβ → R be an arbitrary
continuous bifunction.

Definition 2.1. A set Kgβ in H is said to be a general biconvex set with
respect to an arbitrary function g and bifunction β(· − ·), if

g(u) + λβ(g(v)− g(u)) ∈ Kgβ, ∀u, v ∈ Kgβ, λ ∈ [0, 1].

The general biconvex set Kbβ is also called a gβ-connected set. Note that
the general biconvex set with β(v, u) = g(v) − g(u) is a convex set Kg, but
the converse is not true. For example, the set Kβ = R− (−1

2 ,
1
2) is an general
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biconvex set with respect to η, where

β(g(v)− g(u)) =

{
v − u, for v > 0, u > 0 or v < 0, u < 0,
u− v, for v < 0, u > 0 or v < 0, u < 0.

It is clear that Kgβ is not a convex set. From now onward Kgβ is a nonempty
closed general biconvex set in H with respect to the function g and bifunction
β(· − ·), unless otherwise specified.

If g = I, the identity operator, then Definition 2.1 reduces to:

Definition 2.2. A set Kβ in H is said to be a biconvex set with respect to
an arbitrary bifunction β(· − ·), if

u+ λβ(v − u) ∈ Kβ, ∀u, v ∈ Kβ, λ ∈ [0, 1].

The biconvex set Kβ is also called β-connected set, which was introduced
and studied by Noor et al [20]. We would like to point the β-biconvex set is
quite different from the invex set considered in [1].

We now introduce some new concepts of general biconvex functions and
their variants forms, which is the main motivation of this paper.

Definition 2.3. A function F on the general biconvex set Kgβ is said to be
general biconvex with respect to a function g and the bifunction β(· − ·), if

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v)), (2.1)

for all u, v ∈ Kgβ, λ ∈ [0, 1].

The function F is said to be general biconcave if and only if −F is a general
biconvex function. Consequently, we have a new concept.

Definition 2.4. A function F is said to be general affine biconvex involving
an arbitrary function g and a bifunction β(· − ·), if

F (g(u) + λβ(g(v)− g(u))) = (1− λ)F (g(u)) + λF (g(v)),

for all u, v ∈ Kgβ, λ ∈ [0, 1].

Note that every convex function is a general biconvex, but the converse is
not true. If β(g(v)− g(u)) = g(v)− g(u), then the general biconvex function
becomes general convex functions, that is,

Definition 2.5. A function F on the biconvex set Kgβ is said to be a general
biconvex with respect to a function g and the bifunction β(· − ·), if

F (g(u) + λ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v)),

for all u, v ∈ Kg, λ ∈ [0, 1].
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For the properties of the general convex functions in variational inequalities
and equilibrium problems, see Noor [15, 16, 17, 18, 19].

Definition 2.6. A function F on the biconvex set Kβ is said to be general
quasi biconvex with respect to the function g and the bifunction β(· − ·), if

F (g(u) + λβ(g(v)− gu))) ≤ max{F (g(u)), F (g(v))},

for all u, v ∈ Kgβ, λ ∈ [0, 1].

Definition 2.7. A function F on the biconvex set Kβ is said to be general
log-biconvex with respect to the function g and the bifunction β(· − ·), if

F (g(u) + λβ(g(v)− g(u))) ≤ (F (g(u)))1−λ(F (g(v)))λ,

for all u, v ∈ Kgβ, λ ∈ [0, 1], where F (·) > 0.

We can rewrite the Definition 2.7 in the following equivalent form:

Definition 2.8. A function F on the biconvex set Kβ is said to be general
log-biconvex with respect to the function g and the bifunction β(· − ·), if

logF (g(u) + λβ(g(v(−g(u))) ≤ (1− λ) logF (g(u)) + λ logF (g(v)),

for all u, v ∈ Kgβ, λ ∈ [0, 1], where F (·) > 0.

This equivalent definition can be used to discus the properties of the differ-
entiable log-biconvex functions.

From the above definitions, we have

F (g(u) + λβ(g(v)− g(u))) ≤ (F (g(u)))1−λ(F (g(v)))λ

≤ (1− λ)F (g(u)) + λF (g(v))

≤ max{F (g(u)), F (g(v))}.

This shows that every log-biconvex function is a general biconvex function and
every general biconvex function is a general quasi-biconvex function. However,
the converse is not true.

For λ = 1, Definition 2.3 and 2.7 reduce to the following condition.

Condition A.

F (g(u) + β(g(v)− g(u))) ≤ F (g(v)), ∀ v ∈ Kgβ.

We now define the biconvex functions on the interval:

Kβ = Iβ = [g(a), g(a) + β(g(b)− g(a))].



General biconvex functions 27

Definition 2.9. Let Ig = [g(a), g(a) + β(g(b) − g(a))]. Then F is a general
biconvex function if and only if∣∣∣∣∣∣

1 1 1
g(a) g(x) g(a) + β(g(b)− g(a))

F (g(a)) F (g(x)) F (g(b))

∣∣∣∣∣∣ ≥ 0,

where g(a) ≤ g(x) ≤ g(a) + β(g(b)− g(a)).

One can easily show that the following are equivalent:

(1) F is a general biconvex function.

(2) F (g(x)) ≤ F (g(a)) + F (g(b))−F (g(a))
β(g(b)−g(a)) (g(x)− g(a)).

(3) F (g(x))−F (g(a))
g(x)−g(a) ≤ F (g(b))−F (g(a))

β(g(b)−g(a)) .

(4) F (g(a))
(β(g(b)−g(a)))(g(a)−g(x)) + F (g(x))

(g(x)−g(a)−β(g(b)−g(a)))(g(a)−g(x))

+ F (g(b))
β(g(b)−g(a))(g(x)−g(b)) ≤ 0,

where g(x) = g(a) + λβ(g(b)− g(a)) ∈ [g(a), g(a) + β(g(b)− g(a)].

3. Properties of biconvex functions

In this section, we consider some basic properties of general biconvex func-
tions and their variant forms.

Theorem 3.1. Let F be a strictly general biconvex function. Then any local
minimum of F is a global minimum.

Proof. Let the biconvex function F have a local minimum at u ∈ Kgβ. Assume
the contrary, that is, F (g(v)) < F (g(u)) for some v ∈ Kgβ. Since F is a strictly
general biconvex function, so we have

F (g(u) + λβ(g(v)− g(u))) < λF (g(v)) + (1− λ)F (g(u)), 0 < λ < 1.

Thus

F (g(u) + λβ(g(v)− g(u)))− F (g(u)) < λ[F (g(v))− F (g(u))] < 0,

from which it follows that

F (g(u) + λβ(g(v)− g(u))) < F (g(u)),

for arbitrary small λ > 0, contradicting the local minimum. �

Theorem 3.2. If the function F on the convex set Kβ is general biconvex,
then the level set

Lα = {g(u) ∈ Kgβ : F (g(u)) ≤ α, α ∈ R}
is a general biconvex set.
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Proof. Let u, v ∈ Lα. Then F (u) ≤ α and F (g(v)) ≤ α.
Now, for λ ∈ (0, 1), g(w) = g(u) + λβ(g(v) − g(u)) ∈ Kgβ, since Kgβ is a

general biconvex set. Thus, by the general biconvexity of F, we have

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v))

≤ (1− t)α+ tα = α,

from which it follows that g(u) + tβ(g(v)− g(u)) ∈ Lα Hence Lα is a general
biconvex set. �

Theorem 3.3. A positive function F is a general biconvex if and only if

epi(F ) = {(g(u), α) : g(u) ∈ Kbβ : F (g(u)) ≤ α, α ∈ R}

is a general biconvex set.

Proof. Assume thatF is a general biconvex function. Let

(g(u), α), (g(v), β1) ∈ epi(F ).

Then it follows that F (g(u)) ≤ α and F (g(v)) ≤ β1. Thus, for λ ∈ [0, 1], u, v ∈
Kgβ, we have

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v))

≤ (1− t)α+ tβ1,

which implies that

(g(u) + λβ(g(v)− g(u)), (1− λ)α+ λβ1) ∈ epi(F ).

Thus epi(F ) is a general biconvex set.
Conversely, let epi(F ) be a general biconvex set. Let u, v ∈ Kgβ. Then

(g(u), F (g(u))) ∈ epi(F ) and (g(v), F (g(v))) ∈ epi(F ). Since epi(F ) is a gen-
eral biconvex set, we must have

(g(u) + λβ(g(v)− g(u)), (1− λ)F (g(u)) + λF (g(v))) ∈ epi(F ),

which implies that

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v)).

This shows that F is a general biconvex function. �

Theorem 3.4. A positive function F is general quasi-biconvex if and only if
the level set

Lα = {g(u) ∈ Kβ, α ∈ R : F (g(u)) ≤ α}
is a general biconvex set.



General biconvex functions 29

Proof. Let u, v ∈ Lα. Then g(u), g(v) ∈ Kgβ and max(F (g(u)), F (g(v))) ≤ α.
Now for λ ∈ (0, 1), g(w) = g(u) + λβ(g(v) − g((u)) ∈ Kgβ, we have to prove
that g(u) + λβ(g(v)− g(u)) ∈ Lα. By the quasi-biconvexity of F, we have

F (g(u) + λβ(g(v)− g(u))) ≤ max (F (g(u)), F (g(v))) ≤ α,
which implies that g(u) +λβ(g(v)− g(u)) ∈ Lα, showing that the level set Lα
is indeed a general biconvex set.

Conversely, assume that Lα is a general biconvex set. Then for all u, v ∈
Lα, λ ∈ [0, 1],

g(u) + λβ(g(v)− g(u)) ∈ Lα.
Let u, v ∈ Lα for

α = max (F (g(u)), F (g(v)) and F (g(v)) ≤ F (g(u)).

From the definition of the level set Lα, it follows that

F (g(u) + λβ(g(v)− g(u))) ≤ max (F (g(u)), F (g(v))) ≤ α.
Thus F is a general quasi-biconvex function. This completes the proof. �

Theorem 3.5. Let F be a general biconvex function. Let µ = infg(u)∈Kgβ F (u).
Then the set

E = {g(u) ∈ Kgβ : F (g(u)) = µ}
is a general biconvex set of Kgβ. If F is strictly general biconvex, then E is a
singleton.

Proof. Let u, v ∈ E. For 0 < λ < 1, let g(w) = g(u) + λβ(g(v) − g(u)). Since
F is a general biconvex function, we have

F (w) = F (g(u) + λβ(g(v)− g(u)))

≤ (1− λ)F (g(u)) + λF (g(v))

= λµ+ (1− λ)µ

= µ,

which implies that w ∈ E and hence E is a general biconvex set. For the
second part, assume to the contrary that F (g(u)) = F (g(v)) = µ. Since Kgβ is
a general biconvex set, for 0 < λ < 1, g(u) + λβ(g(v)− g(u)) ∈ Kgβ. Further,
since F is strictly general biconvex function,

F (g(u) + λβ(g(v)− g(u))) < (1− λ)F (g(u)) + λF (g(v))

= (1− t)µ+ tµ

= µ.

This contradicts the fact that µ = infg(u)∈Kgβ F (u) and hence the result fol-
lows. �
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Theorem 3.6. If F is a general biconvex function such that

F (g(v)) < F (g(u)), ∀ u, v ∈ Kgβ,

then F is a strictly general quasi-biconvex function.

Proof. By the general biconvexity of the function F, ∀u, v ∈ Kgβ, λ ∈ [0, 1],
we have

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v)) < F (g(u)),

since F (g(v)) < F (g(u)), which shows that the function F is strictly general
quasi-biconvex. �

4. Properties of log-biconvex functions

We now discuss some properties of the differentiable log-biconvex functions.
To obtain the main results, we need the following assumption regarding the
bifunction β(· − ·).
Condition M. We assume that the bifunction β(,−, ) is homogeneous, that
is,

β(γ(v − u)) = γβ(v − u), ∀ u, v ∈ Kβ, γ ∈ Rn.

Remark 4.1. Let β(· − ·) : Kβ ×Kβ → H satisfy the assumption:

β(g(v)− g(u)) = β(g(v)− g(z)) + β(g(z)− g(u)), ∀ u, v, z ∈ Kgβ.

Then we can easily show that β(g(v) − g(u)) = 0 for all u, v ∈ Kgβ. Conse-
quently β(0) = 0, for v = u ∈ Kgβ. Also β(g(v)− g(u)) + β(g(u)− g(v)) = 0.
This implies that the bifunction β(.− .) is skew symmetric.

Theorem 4.2. Let F be a differentiable function on the biconvex set Kβ

and let the condition M hold. Then the function F is a general log-biconvex
function if and only if

logF (g(v))− logF (g(u)) ≥
〈F ′(g(u))

F (g(u))
, β(g(v)− g(u))

〉
, ∀ v, u ∈ Kgβ. (4.1)

Proof. Let F be a general log-biconvex function. Then, for all u, v ∈ Kgβ,

logF (g(u) + λβ(g(v)− g(u))) ≤ (1− λ) logF (g(u)) + λ logF (g(v)),

which can be written as

logF (g(v))− logF (g(u)) ≥
{ logF (g(u) + λβ(g(v)− g(u)))− logF (g(u))

λ

}
.

Taking the limit in the above inequality as λ→ 0 , we have

logF (g(v))− logF (g(u)) ≥
〈F ′(g(u))

F (g(u))
, β(g(v)− g(u))

〉
,
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which is (4.1), the required result.
Conversely, let (4.1) hold. Then for all u, v ∈ Kgβ, λ ∈ [0, 1],

g(vλ) = g(u) + λβ(g(v)− g(u)) ∈ Kgβ and using the condition M, we have

logF (g(v))− logF (g(vλ)) ≥
〈F ′(g(vλ))

F (g(vλ))
, β(g(v)− g(vλ)))

〉
= (1− λ)

〈F ′(g(vλ))

F (g(vλ))
, β(g(v)− g(u))

〉
.(4.2)

In a similar way, we have

logF (g(u))− logF (g(vλ)) ≥
〈F ′(g(vλ))

F (g(vλ))
, β(g(u)− g(vλ))

〉
= −λ

〈F ′(g(vλ))

F (g(vλ))
, β(g(v)− g(u))

〉
. (4.3)

Multiplying (4.2) by λ and (4.3) by (1− λ) and adding the resultant, we have

logF (g(u) + λβ(g(v)− g(u))) ≤ (1− λ) logF (g(u)) + λ logF (g(v)),

showing that F is a general log-biconvex function. �

Remark 4.3. From (4.1), we have

F (g(v)) ≥ F (g(u))exp{〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉}, u, v ∈ Kgβ.

Changing the role of u and v in the above inequality, we also have

F (g(u)) ≥ F (g(v))exp{〈F
′(g(v))

F (g(v))
, β(g(u)− g(v))〉}, u, v ∈ Kgβ.

Thus, we can obtain the following inequality:

F (g(u)) + F (g(v)) ≥ F (g(v))exp{〈F
′(g(v))

F (g(v))
, β(g(u)− g(v))〉},

+F (g(u))exp{〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉}.

Definition 4.4. The differentiable function F on the general biconvex set
Kgβ is said to be a general biconvex function with respect to the bifunction
β(· − ·), if

F (g(v))− F (g(u)) ≥
〈F ′(g(u))

F (g(u))
, β(g(v)− g(u))

〉
, ∀ u, v ∈ Kgβ,

where F ′(g(u))) is the differential of F at g(u).
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Theorem 4.5. Let F be a differentiable function on the general biconvex
set Kβ and Condition M hold. Then the function F is general log-biconvex
function if and only if

〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉+ 〈F

′(g(v))

F (g(v))
, β(g(u)− g(v))〉 ≤ 0, ∀v, u ∈ Kgβ.(4.4)

Proof. Let F be a differentiable function on the general biconvex set Kβ. Then
from Theorem 4.2, it follows that

logF (g(v))− logF (g(u)) ≥ 〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉, ∀ v, u ∈ Kgβ. (4.5)

Changing the role of u and v in (4.5), we have

logF (g(u))− logF (g(v)) ≥ 〈F
′(g(v))

F (g(v))
, β(g(v)− g(u))〉, ∀ v, u ∈ Kgβ. (4.6)

Adding (4.5) and (4.6), we have

〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉+ 〈F

′(g(v))

F (g(v))
, β(u− v)〉 ≤ 0, ∀ v, u ∈ Kgβ,

which is the required (4.4).
Since Kβ is a general biconvex set, so, for all u, v ∈ Kβ, λ ∈ [0, 1],

g(vλ) = g(u) + λβ(g(v)− g(u)) ∈ Kgβ.

Taking g(v) = g(vλ) in (4.4), we have

〈F
′(g(vλ))

F (g(vλ))
, β(g(u)− g(vλ))〉 ≤ 〈F

′(u)

F (u)
, β(u− g(vλ))〉

= −λ〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉, (4.7)

which implies that

〈F
′(g(vλ))

F (g(vλ))
, β(g(v)− g(u))〉 ≥ 〈F

′(g(u))

F (g(u))
, β(g(v)− g(u))〉. (4.8)

Consider the auxiliary function

ξ(λ) = logF (g(u) + λ(g(v)− g(u))) = F (g(vλ)),

from which, we have

ξ(1) = logF (g(v)), ξ(0) = logF (g(u)).
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Then, from (4.8), we have

ξ′(λ) = 〈F
′(g(vλ))

F (g(vλ))
, β(g(v)− g(u))〉

≥ 〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉. (4.9)

Integrating (4.9) between 0 and 1, we have

ξ(1)− ξ(0) =

∫ 1

0
ξ′(t)dt ≥ 〈F

′(g(u))

F (g(u))
, β(g(v)− g((u))〉.

Thus it follows that

logF (g(v))− logF (g(u)) ≥ 〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉,

which is the required (4.1). �

Definition 4.6. An operator T : Kβ → H with respect to the operator g is
said to be:

(1) gβ-monotone, if

〈Tu, β(g(v)− g(u))〉+ 〈Tv, β(g(u)− g(v))〉 ≤ 0, ∀ u, v ∈ Kgβ.

(2) gβ-pseudomonotone, if

〈Tu, β(g(v)− g(u))〉 ≥ 0⇒ −〈Tv, β(g(u)− g(v))〉 ≥ 0, ∀ u, v ∈ Kgβ.

(3) relaxed gβ-pseudomonotone, if

〈Tu, β(g(v)− g(u))〉 ≥ 0⇒ −〈Tv, β(g(u)− g(v))〉 ≥ 0, ∀ u, v ∈ Kgβ.

(4) strictly gβ-monotone, if

〈Tu, β(g(v)− g(u))〉+ 〈Tv, β(g(u)− g(v))〉 < 0, ∀ u, v ∈ Kgβ.

(5) gβ-pseudomonotone, if

〈Tu, β(g(v)− g(u))〉 ≥ 0⇒ 〈Tv, η(g(u)− g(v))〉 ≤ 0, ∀ u, v ∈ Kgβ.

(6) quasi gβ-monotone, if

〈Tu, β(g(v)− g(u))〉 > 0⇒ 〈Tv, β(g(u)− g(v))〉 ≤ 0, ∀ u, v ∈ Kgβ.

(7) strictly gβ-pseudomonotone, if

〈Tu, β(g(v)− g(u))〉 ≥ 0⇒ 〈Tv, β(g(u)− g(v))〉 < 0, ∀ u, v ∈ Kgβ.
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Definition 4.7. A differentiable function F on the general biconvex set Kη

is said to be a general pseudo β-biconvex function, if

〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉 ≥ 0

then
F (g(v))− F (g(u)) ≥ 0, ∀ u, v ∈ Kgβ.

Definition 4.8. A differentiable function F on Kgβ is said to be a general
quasi-biconvex function, if F (g(v)) ≤ F (g(u)) then

〈F
′(g(u))

F (g(u))
, β(v − u)〉 ≤ 0, ∀ u, v ∈ Kgβ.

Definition 4.9. The function F on the set Kgβ is said to be general pseudo-
biconvex, if

〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉 ≥ 0

then
F (g(v)) ≥ F (g(u)), ∀ u, v ∈ Kgβ.

Definition 4.10. The differentiable function F on the Kβ is said to be general
quasi-biconvex function, if F (g(v)) ≤ F (g(u)) then

〈F
′(g(u))

F (g(u))
, β(g(v)− g(u))〉 ≤ 0, ∀ u, v ∈ Kgβ.

We remark that the concepts introduced in this paper represent signifi-
cant improvement of the previously known ones. All these new concepts may
play important and fundamental part in the development of mathematical
programming and optimization theory.

Theorem 4.11. Let F be a differentiable function on the general biconvex
set Kgβ in H and let the condition M hold. Then the function F is a general
biconvex function if and only if F is a general biconvex function.

Proof. Let F be a general biconvex function on the general biconvex set Kgβ.
Then, for all u, v ∈ Kgβ, λ ∈ [0, 1],

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v)),

which can be written as

F (g(v))− F (g(u)) ≥
{F (g(u) + λβ(g(v)− g(u)))− F (g(u))

λ

}
.

Taking the limit in the above inequality as λ→ 0 , we have

F (g(v))− F (g(u)) ≥ 〈F ′(g(u)), β(g(v)− g(u)))〉.
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This shows that F is a general biconvex function.
Conversely, let F be a biconvex function on the biconvex set Kβ. Then, for

all u, v ∈ Kgβ, λ ∈ [0, 1], vt = u + λβ(v − u) ∈ Kgβ and using the condition
M, we have

F (g(v))− F (g(u) + λβ(g(v)− g(u)))

≥ 〈F ′(g(u) + λβ(g(v)− g(u))), β(g(v)− g(u) + λβ(g(v)− g(u)))〉
= (1− λ)F ′(g(u) + λβ(g(v)− g(u))), β(g(v)− g(u))〉. (4.10)

In a similar way, we have

F (g(u))− F (g(u) + λβ(g(v)− g(u)))

≥ 〈F ′(g(u) + λβ(g(v)− g(u))), β(g(u)− g(u) + λβ(g(v)− g(u)))〉
= −λF ′(g(u) + λβ(g(v)− gu))), β(g(v)− g(u))〉. (4.11)

Multiplying (4.10) by λ and (4.11) by (1 − λ) and adding the resultant, we
have

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v)),

showing that F is a general biconvex function. �

Theorem 4.12. Let F be a differentiable general biconvex function on the
general biconvex set Kgβ. If F is a general biconvex function, then

〈F ′(g(u)), β(g(v)− g(u)))〉 + 〈F ′(g(v)), β(g(u)− g(v))〉
≤ 0, ∀ u, v ∈ Kgβ. (4.12)

Proof. Let F be a general biconvex function on the general biconvex set Kgβ.
Then

F (g(v))− F (g(u)) ≥ 〈F ′(g(u)), β(g(v)− g(u)))〉, ∀ u, v ∈ Kgβ. (4.13)

Changing the role of u and v in (4.13), we have

F (g(u))− F (g(v)) ≥ 〈F ′(g(v)), β(g(u)− g(v))〉, ∀ u, v ∈ Kgβ. (4.14)

Adding (4.13) and (4.14), we have

〈F ′(g(u)), β(g(v)− g(u)))〉 + 〈F ′(g(v)), β(g(u)− g(v))〉
≤ 0, ∀ u, v ∈ Kgβ,

which shows that F ′(.) is a gβ-monotone operator. �

Theorem 4.13. If the differential F ′(.) is a gβ-monotone, then

F (g(v))− F (g(u)) ≥ 〈F ′(g(u)), β(g(v)− g(u))〉.
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Proof. Let F ′(.) be a gβ-monotone. From (4.15), we have

〈F ′(g(v)), β(g(u)− g(v))〉 ≥ 〈F ′(g(u)), β(g(v)− g(u)))〉. (4.15)

Since Kgβ is a general biconvex set, for all u, v ∈ Kgβ, λ ∈ [0, 1],

g(vλ) = g(u) + λβ(g(v)− g(u)) ∈ Kgβ.

Taking g(v) = g(vλ) in (4.15) and using Condition M, we have

〈F ′(g(vλ)), β(−λβ(g(v)− g(u)))〉 ≤ 〈F ′(g(u)), η(λβ(g(v)− g(u))))〉
+‖β(−λβ(g(v)− g(u))‖2}

= −λ〈F ′(g(u)), β(g(v)− g(u))〉,
which implies that

〈F ′(g(vλ)), β(g(v)− g(u))〉 ≥ 〈F ′(g(u)), β(g(v)− g(u))〉. (4.16)

Let ξ(λ) = F (g(u) + λβ(g(v)− g(u))). Then, from (4.16), we have

ξ′(λ) = 〈F ′(g(u) + λβ(g(v)− g(u))), β(g(v)− g(u))〉
≥ 〈F ′(g(u)), β(g(v)− g(u))〉. (4.17)

Integrating (4.17) between 0 and 1, we have

ξ(1)− ξ(0) ≥ 〈F ′(g(u)), β(g(v)− g(u))〉,
that is,

F (g(u) + β(g(v)− g(u)))− F (g(u)) ≥ 〈F ′(g(u)), β(g(v)− g(u))〉.
By using Condition A, we have

F (g(v))− F (g(u)) ≥ 〈F ′(g(u)), β(g(v)− g(u))〉.
This completes the proof. �

We now give a necessary condition for general gβ-pseudo-biconvex function.

Theorem 4.14. Let F ′(.) be a relaxed general gβ-pseudomonotone opera-
tor and Conditions A and M hold. Then F is a general gβ-pseudo-biconvex
function.

Proof. Let F ′ be a relaxed general gβ-pseudomonotone. Then, for all u, v ∈
Kgβ,

〈F ′(g(u)), β(g(v)− g(u))〉 ≥ 0,

implies that

−〈F ′(g(v)), β(g(u)− g(v))〉 ≥ 0. (4.18)

Since Kgβ is a general biconvex set, for all u, v ∈ Kgη, λ ∈ [0, 1],

g(vλ) = g(u) + λβ(g(v)− g(u)) ∈ Kgβ.
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Taking g(v) = g(vλ) in (4.18) and using condition Condition M, we have

−〈F ′(g(u) + λβ(g(v)− g(u))), β(g(u)− g(v))〉 ≥ 0. (4.19)

Let

ξ(λ) = F (g(u) + λβ(g(v)− g(u))), ∀ u, v ∈ Kgβ, λ ∈ [0, 1].

Then, using (4.19), we have

ξ′(λ) = 〈F ′(g(u) + λβ(g(v)− g(u))), β(g(u)− g(v))〉 ≥ 0.

Integrating the above relation between 0 to 1, we have

ξ(1)− ξ(0) ≥ 0,

that is,

F (g(u) + λβ(g(v)− g(u)))− F (g(u)) ≥ 0,

which implies, using Condition A,

F (v)− F (u) ≥ 0,

showing that F is a general gβ-pseudo-biconvex function. �

Definition 4.15. The function F is said to be sharply general pseudo bicon-
vex, if 〈F ′(g(u)), β(g(v)− g(u))〉 ≥ 0, then

F (g(v)) ≥ F (g(v) + λβ(g(v)− g(u))), ∀ u, v ∈ Kgβ, λ ∈ [0, 1].

Theorem 4.16. Let F be a sharply general pseudo biconvex function on Kgβ.
Then

−〈F ′(g(v)), β(g(v)− g(u))〉 ≥ 0, ∀ u, v ∈ Kgβ.

Proof. Let F be a sharply general pseudo biconvex function on Kgβ. Then

F (g(v)) ≥ F (g(v) + λβ(g(v)− g(u))), ∀ u, v ∈ Kgβ, λ ∈ [0, 1],

from which we have

F (g(v) + λβ(g(v)− g(u)))− F (g(v))

λ
≤ 0.

Taking limit in the above mentioned inequality, as λ→ 0, we have

−〈F ′(g(v)), β(g(v)− g(u))〉 ≥ 0,

the required result. �
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Definition 4.17. A function F is said to be a pseudo general biconvex func-
tion with respect to strictly positive bifunction W (., .), if F (g(v)) < F (g(u))
then

F (g(u) + λβ(g(v)− g(u))) < F (g(u)) + λ(λ− 1)W (g(v), g(u)),

for all u, v ∈ Kgβ, λ ∈ [0, 1].

Theorem 4.18. If the function F is a general biconvex function such that
F (g(v)) < F (g(u)), then the function F is pseudo general biconvex.

Proof. Since F (g(v)) < F (g(u)) and F is biconvex function, then for all, u, v ∈
Kgη, λ ∈ [0, 1], we have

F (g(u) + λβ(g(v)− g(u))) ≤ F (g(u)) + λ(F (g(v))− F (g(u)))

< F (g(u)) + λ(1− λ)(F (g(v))− F (g(u)))

= F (g(u)) + λ(λ− 1)(F (g(u))− F (g(v)))

< F (g(u)) + λ(λ− 1)W (g(u), g(v)),

where W (g(u), g(v)) = F (g(u)) − F (g(v)) > 0. This shows that the function
F is a pseudo general biconvex. �

5. Bivariational-like inequalities

In this section, we consider the bivariational-like inequalities and suggest
some iterative methods by using the auxiliary principle techniques involving
the Bregman distance functions.

For the readers, we recall some basic properties of the Bregman [2] convex
functions. For strongly convex function F, we define the Bregman distance
function as

B(v, u) = F (v)− F (u)− 〈F ′(u), v − u〉 ≥ α‖v − u‖2, ∀ u, v ∈ K. (5.1)

It is important to emphasize that various types of function F gives different
Bregman distance. For some practical important types of functions F and
their corresponding Bregman distance, see [5, 24].

We now discuss the optimality conditions for the differentiable general bi-
convex functions.

Theorem 5.1. Let F be a differentiable general biconvex function with modu-
lus µ > 0. If u ∈ Kgβ is the minimum of the function F if and only if u ∈ Kgβ

satisfies the

〈F ′(g(u)), β(g(v)− g(u))〉 ≥ 0, ∀ u, v ∈ Kgβ. (5.2)
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Proof. Let u ∈ Kgβ be a minimum of the general biconvex function F. Then

F (g(u)) ≤ F (g(v)), ∀ v ∈ Kgβ. (5.3)

Since Kgβ is a general biconvex set, for all u, v ∈ Kgβ, λ ∈ [0, 1],

g(vλ) = g(u) + λβ(g(v)− g(u)) ∈ Kgβ.

Taking g(v) = g(vλ) in (5.3), we have

0 ≤ lim
λ→0
{F (g(u) + λβ((g(v)− g(u)))− F (g(u))

λ
}

= 〈F ′(g(u)), β(g(v)− g(u))〉, (5.4)

which is the inequality (5.2).
Next, since F is differentiable general biconvex function, we have

F (g(u) + λβ(g(v)− g(u))) ≤ F (g(u)) + λ(F (g(v))− F (g(u))), ∀ u, v ∈ Kgβ,

from which, using (5.2), we have

F (g(v))− F (g(u)) ≥ lim
λ→0
{F (g(u) + λβ(g(v)− g(u)))− F (g(u))

λ
}

= 〈F ′(g(u)), β(g(v), g(u))〉 ≥ 0,

from which, we have

F (g(u)) ≤ F (g(v)), ∀ v ∈ Kgβ. (5.5)

This implies that u ∈ Kgβ is the minimum of the general biconvex functions.
�

Remark 5.2. We would like to mention that, if u ∈ Kgβ satisfies the inequal-
ity

〈F ′(g(u)), β(g(v), g(u))〉 ≥ 0, ∀ u, v ∈ Kgβ, (5.6)

then u ∈ Kgβ is the minimum of the differentiable general biconvex function F.
The inequality of the type (5.6) is called the bivariational-like inequality and
appears to new one. It is worth mentioning that inequalities of the type (5.6)
may not arise as the minimization of the biconvex functions. This motivated
us to consider a more general bivariational-like inequality of which (5.6) is a
special case.

For given operators T, g, and bifunction β(. − .), we consider the problem
of finding u ∈ Kgβ, such that

〈Tu, β(g(v)− g(u))〉 ≥ 0, ∀ v ∈ Kgβ, (5.7)

which is called the general bivariational-like inequality.
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For suitable and appropriate choice of the operators, biconvex sets and
spaces, we can obtain a wide class of variational-like inequalities and opti-
mization problems as special cases of the general bivariational-like inequality
(5.7). This shows that the general bivariational-like inequalities are quite flex-
ible and unified ones.

We now introduce some iterative methods for solving the problem (5.7). We
remark that due to the inherent nonlinearity, the projection method, Wiener-
Hopf equations and their variant forms can not be used to consider the iterative
methods for solving the general bivariational-like inequalities. To overcome
these drawback, one may use the auxiliary principle technique of Glowinski et
al. [4] as developed by Noor [9, 10, 12, 13, 14] and Noor et al. [15, 16, 21] to sug-
gest and analyze some iterative methods. This technique does not involve the
concept of the projection, which is the main advantage of this technique. We
again use the auxiliary principle technique coupled with Bergman functions.
These applications are based on the type of convex functions associated with
the Bregman distance. We now suggest and analyze some iterative methods
for bivariational-like inequalities (5.7) using the auxiliary principle technique
coupled with Bregman functions.

For a given u ∈ Kgβ satisfying the bivariational-like inequality (5.7), we
consider the auxiliary problem of finding a w ∈ Kgβ such that

〈ρTw, β(g(v)− g(w)) + 〈E′(g(w))− E′(g(u)), β(v − w)〉
≥ 0, ∀v ∈ Kgβ, (5.8)

where ρ > 0 is a constant and E′(g(u)) is the differential of a strongly biconvex
function E(g(u)) at u ∈ Kgβ.

Remark 5.3. The function

B(g(w), g(u)) = E(g(w))− E(g(u))− 〈E′(g(u)), β(g(w)− g(u))〉

associated with the general biconvex function E(g(u)) is called the generalized
Bregman distance function. By the strongly general biconvexity of the function
E(g(u)), the Bregman function B(., .) is nonnegative and B(g(w), g(u)) = 0, if
and only if g(u) = g(w), for all u,w ∈ Kgβ. For the applications of the Bregman
function in solving variational inequalities and complementarity problems, see
[13, 14, 15, 16, 21, 26].

We note that, if w = u, then clearly w is solution of the general bivariational-
like inequality (5.7). This observation enables us to suggest and analyze the
following iterative method for solving (5.7).
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Algorithm 5.4. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative scheme

〈ρTun+1, β(g(v)−g(un+1))〉 + 〈E′(g(un+1))−E′(g(un)), β(g(v)−g(un+1))〉
≥ 0, ∀ v ∈ Kgβ, (5.9)

where ρ > 0 is a constant. Algorithm 5.4 is called the proximal method
for solving the general bivariational-like inequalities (5.7). In passing we re-
mark that the proximal point method was suggested in the context of convex
programming problems as a regularization technique. If β(g(v) − g(u)) =
g(v)− g(u), then Algorithm 5.4 collapses to:

Algorithm 5.5.. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative scheme

〈ρT (un+1), g(v)− g(un+1)〉 + 〈E′(g(un+1))− E′(g(u)), g(v)− g(un+1)〉
≥ 0, ∀ v ∈ Kg,

for solving the general variational inequality.

For suitable and appropriate choice of the operators and the spaces, we
can obtain a number of known and new algorithms for solving variational
inequalities and related problems.

Theorem 5.6. Let the bifunction T be pseudomonotone, If E is a differen-
tiable general biconvex function with module β > 0, Condition M hold and g−1

exists, then the approximate solution un+1 obtained from Algorithm 5.4 con-
verges to a solution u ∈ Kgβ satisfying the general bivariational-like inequality
(5.7).

Proof. Let u ∈ K be a solution of the general bivariational-like inequality
(5.7). Then

〈Tu, β(g(v)− g(u))〉 ≥ 0, ∀ v ∈ Kgβ,

implies that

−〈Tv, β(g(u)− g(v)))〉 ≥ 0, ∀ v ∈ Kgβ, (5.10)

since T is β-pseudomonotone. Taking v = u in (5.9) and v = un+1 in (5.10),
we have

〈ρT (un+1), β(g(u), g(un+1))〉 + 〈E′(g(un+1))− E′g(un), β(g(u)− g(un+1))〉
≥ 0 (5.11)

and

−〈Tun+1, β(g(u)− g(u)n+1))〉 ≥ 0. (5.12)
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We now consider the Bregman function

B(g(u), g(w)) = E(g(u))− E(g(w))− 〈E′g(w), β(u− w)〉 ≥ 0, (5.13)

using higher order strongly biconvexity of E.
Now combining (5.11),(5.12) and (5.13), we have

B(g(u), g(un))−B(g(u), g(un+1)) = E(g(un+1))− E(g(un))

−〈E′(g(un)), β(g(u)− g(un))〉+ 〈E′(g(un+1)), β(g(u)− g(un+1))〉
= E(g(un+1))− E(g(un))− 〈E′(g(un))− E′(g(un+1)), β(g(u)− g(un+1))〉
−〈E′(g(un), g(un+1)− g(un)〉
≥ β‖β(g(un+1)− g(un))‖2 + 〈E′(g(un+1))− E′(g(un)), β(g(u)− g(un+1))〉
≥ β‖β(g(un+1)− g(un))‖2 − ρ〈T (un+1), β(g(u)− g(un+1))〉
−ρµ‖β(g(u)− g(un+1))‖2

≥ β‖β(g(un+1)− g(un))‖2.
If g(un+1) = g(un), then clearly g(un) is a solution of the problem (5.7).

Otherwise, it follows that B(g(u), g(un))−B(g(u), g(un+1)) is nonnegative and
we must have

lim
n→∞

‖β(g(un+1)− g(un))‖ = 0,

from which, we have

lim
n→∞

‖g(un+1)− g(un)‖ = 0 −→ un+1 = un,

since g−1 exists. It follows that the sequence {un} is bounded. Let ū be
a cluster point of the subsequence {uni}, and let {uni} be a subsequence
converging toward ū. Now using the technique of Zhu and Marcotte [26], it
can be shown that the entire sequence {un} converges to the cluster point ū
satisfying the bivariational-like inequality(5.7). �

It is well known that to implement the proximal point methods, one has
to find the approximate solution implicitly, which is itself a difficult problem.
To overcome this drawback, we now consider another method for solving the
bivariational-like inequality(5.7) using the auxiliary principle technique.

For a given u ∈ Kgbη, find w ∈ Kgβ such that

〈ρT (u, β(g(v)− g(w))〉 + 〈E′(g(w))− E′(g(u)), β(g(v)− g(w))〉
≥ 0, ∀ v ∈ Kgβ, (5.14)

where E′(g(u)) is the differential of a biconvex function E(g(u)) at u ∈ Kgβ.
Problem (5.7) has a unique solution, since E is strongly biconvex function.

Note that problems (5.14) and (5.9) are quite different problems. It is clear
that for g(w) = g(u), w is a solution of (5.7). This fact allows us to suggest
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and analyze another iterative method for solving the general bivariational-like
inequalities (5.7).

Algorithm 5.7. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative scheme

〈ρTun, β(g(v)− g(un+1))〉 + 〈E′(g(un+1))− E′(g(un)), β(g(v)− g(un+1))〉
≥ 0, ∀ v ∈ Kgβ, (5.15)

for solving the general bivariational-like inequality (5.7).

Remark 5.8. For suitable and appropriate choice of the operators and
the spaces, one can obtain various known and new algorithms for solving
bivariational-like inequality (5.7) and related optimization problems. It is an
interesting problem from both analytically and numerically point of views.

Acknowledgements: We wish to express our deepest gratitude to our col-
leagues, students, collaborators and friends, who have direct or indirect con-
tributions in the process of this paper.

References

1. A. Ben-Isreal and B. Mond, What is invexity? J. Austral Math. Soc. Ser. B, 28(1)
(1986), 1-9.

2. L.M. Bregman, The relaxation method for finding common points of convex sets and its
application to the solution of problems in convex programming, USSR Comput. Math.
Math. Phys., 7 (1967), 200-217.

3. G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Aca-
demic Publisher, Dordrechet, 2002.

4. R. Glowinski, J.L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequal-
ities, North-Holland, Amsterdam, 1981.

5. L.O. Jolaoso, M. Aphane and S.H. Khan, Two Bregman projection methods for solving
variational inequality problems in Hilbert spaces with applications to signal processing,
Symmetry, 12 (2020); doi:10.3390/sym12122007.

6. S.A. Khan and F. Suhel, Vector variational-like inequalities with pseudo semi-monotone
mappings, Nonlinear Funct. Anal. Appl., 16(2) (2011), 191-200.

7. J.L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math.,
20 (1967), 493-519,

8. C.P. Niculescu and L.E. Persson, Convex Functions and Their Applications, Springer-
Verlag, New York, 2018.

9. M.A. Noor. On Variational Inequalities, PhD Thesis, Brunel University, London, U. K.,
1975.

10. M.A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-333.
11. M.A. Noor, New approximation schemes for generalvariational inequalities, J. Math.

Anal. Appl., 151 (2000), 217-229.
12. M.A. Noor, Some developments in general variational inequalities, Appl. Math. Comput.,

251 (2004), 199-277.
13. M.A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.



44 M. Aslam Noor

14. M.A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl., 9(3) (2006),
529-566.

15. M.A. Noor, K.I. Noor and E. Al-Said, Auxiliary Principle Technique for Solving Bifunc-
tion Variational Inequalities, J. Optim. Theory Appl., 149 (2011), 441-445.

16. M.A. Noor, K.I. Noor and Th.M. Rassias, New trends in general variational inequalities,
Acta Appl. Math., 170(1) (2020), 981-1046.

17. M.A, Noor and K.I. Noor, Higher order strongly general convex functions and variational
inequalities, AIMS Math., 5(4) (2020), 3646-3663.

18. M.A, Noor and K.I. Noor, General biconvex functions and bivariational inequalities,
Numer. Algebr. Contro, Optim., 12 (2022): doi: 10.3934/naco.2021041.

19. M.A. Noor and K.I. Noor, Higher order strongly biconvex functions and biequilibrium
problems, Adv. Lin. Algeb, Matrix Theory, 11 (2021), 31-53.

20. M.A. Noor and K.I. Noor, Strongly general bivariational inequalities, Trans. J. Math.
Mech., 13(102) (2021), 45-58.

21. M.A. Noor, K.I. Noor and Th.M. Rassias, Some aspects of variational inequalities, J.
Appl. Math. Comput., 47 (1993), 485-512.

22. J. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Sta-
tistical Applications, Academic Press, New York, 1992.

23. G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad.
Paris, 258 (1964), 4413-4416.

24. P. Sunthrayuth and P. Cholamjiak, Modified extragradient method with Bregman distance
for variational inequalities, Appl. Anal., 2020, doi.org/10.1080/00036811.2020.1757078.

25. H. Yu, S. Wu and C.Y. Jung, Solvability of a system of generalized nonlinear mixed
variational-like inequalities, Nonlinear Funct. Anal. Appl., 23(1) (2018), 181-203.

26. D.L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative
schemes for solving variational inequalities, SIAM J. Optim., 6 (1996), 714-726.


