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Abstract. In this paper, iterative algorithms for approximating a common fixed point of a
countable family of multi-valued demicontractive maps in the setting of Hadamard spaces are
presented. Under different mild conditions, the sequences generated are shown to strongly
convergent and A-convergent to a common fixed point of the considered family, accordingly.

Our theorems complement many results in the literature.

1. INTRODUCTION

The class of (single-valued) demicontractive maps was introduced by Hicks
and Kubicek in [I5] as a proper superclass of the class of strictly pseudocon-
tractive maps ([4]) which is itself a superclass of the class of nonexpansive
maps. In [7], Chidume et al. introduced a multi-valued analogue of strictly
pseudocontractive map. They showed that a Krasnoseslkii-type sequence con-
verges to a fixed point of a strictly pseudocontractive map 7' in a Hilbert
space. Chidume and Ezeora [8] also proved strong convergence theorems for
a finite family of multi-valued strictly pseudocontractive maps in the setting
of Hilbert spaces.
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Several results concerning finding solutions of equations/inclusions (such as
fixed point equations/inclusions, zeros of monotone maps) have been obtained
in metric spaces that do not necessarily possess linear structure. Some of
these results can be found in, for example, Kirk [I9] 20], Reich and Shafrir
[25], Kohlenbach and Leustean [21], Chaoha and Pho-on [5], Okeke et al. [24],
Dhompongsa and Panyanak [10], Saejung [26], Lerkchaiyaphum and Phuen-
grattana [22], Khan and Abbas [16], Eskandani et al. [I4], Eskandani and
Raeisi [13], Kim et al. [I7], Tang et al. [27] and Asidi et al. [2]. Dhom-
pongsa et al. [9], proved strong convergence theorems for fixed points of a
countable family of multi-valued nonexpansive maps in the setting of C AT'(0)
spaces. They proved the following theorem, H denotes the Hausdorff metric
and K (C') denotes the family of nonempty compact subsets of C.

Theorem 1.1. ([9]) Let C' be a nonempty, closed and conver subset of a
complete CAT(0) space X and Uy,U : C — K(C) be nonexpansive such that
H(U,,U) — 0 uniformly on bounded subsets of C, Fix(U) = (o~ Fiz(Uy,)
and Uy, (p) = {p} for all p € Fixz(U). Suppose that u,z € C are arbitrarily
chosen and {z,} is defined by

Znt1 = apu B (1 — ap)tp, up € Up(zy)

o0

such that d(up, un+1) < d(2n, 2nt+1) + €n for alln € N, where Zen < 00 and
n=1

{an} is a sequence in (0,1) satisfying

lim o, = O;Zan = oo; and Z lay, — apg1] < co(or limay, /a1 = 1).
n

n

Then {z,} converges strongly to the unique fixed point of U closest to .

Also in [6], Chidume et al. considered a finite family of demicontractive
mappings in a complete CAT(0) space. They developed an iterative algorithm
and proved both A and strong convergence of the sequence obtained to a
common fixed point of the family. They proved the following result.

Theorem 1.2. ([6]) Let K be a nonempty, closed and convexr subset of a
complete CAT(0) space. Let T; : K — CB(K), i = 1,2,--- ,m, be a family
of demicontractive mappings with constants k; € (0,1), i = 1,---m such that
Nizy F(T;) # 0. Suppose for all i, T;(p) = {p} for all p € Ny F(T;). Let a
sequence {x,} be define by

r1 € K
Tntl = 0Ty B o1yp S aoys & - B amyy; n > 1, (1.1)
vl € Tixy, ap € (k,1), a; € (0,1),
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where k = max{k;, i = 1,2,--- ,m}, > " ja; = 1 and F(T;) denotes the
set of fixed points of T;. Then for every i, lim dist(p, T;xy,) exists for every
n—oo

p e Nty F(T;). If in addition T; is A-demiclosed at 0 fori=1,---,m, then
{xn} is A-convergent to a point p € (i, F(T;). Furthermore, if at least one
of the T;’s is semi-compact, then the convergence is strong.

Our objective in this paper is two fold: the first is to develop an iterative
algorithm and prove A and strong convergence of the resulting sequence to a
common fixed point of a finite family of multi-valued demicontractive maps
in a Hadamard space setting. The second is to develop an iterative algorithm
and prove A and strong convergence of the resulting sequence to a common
fixed point of a countable family of multi-valued demicontractive maps also in
Hadamard space setting. The algorithm developed is fashioned after the one of
Akbar and Eslamian[1] for a finite family of a subclass of quasi-nonexpansive
mappings.

2. PRELIMINARIES

Given a metric space (X,d), a geodesic from = to y is a map v : [0,]] C
R — X, for some [ > 0, such that v(0) = x, v(I) = y; d(v(t),v(s)) = |t — s3],
V t,s € [0,{]. In particular v is an isometry and d(z,y) = . The image of
v, 7([0,1]), is called a geodesic segment joining = and y. When the geodesic
is unique, it is denoted by [z,y]. For z,y € X having unique geodesic and
for any o € [0, 1], we denote by ax @ (1 — a)y the unique vector z in [z, y]
satisfying d(z, z) = ad(x,y) and d(z,y) = (1 — a)d(z,y). If for every pair of
points x,y in the space (X, d) there exists a geodesic joining them, then the
space is called a geodesic space and if the geodesic is unique for each such pair,
it is called a uniquely geodesic space. We shall say a subset C' of X is convex if
for every pair of points x,y in C, every segment joining x and y is contained
in C.

A geodesic triangle A(x1,x2,73) in a geodesic metric space (X,d) con-
sists of three points in X (the wertices of A) and three geodesic segments-
each for a pair of the vertices (these segments are called edges of the tri-
angle). A comparison triangle for a geodesic triangle A(x1,z9,23) in (X, d)
is a triangle A(z1, 29, 73) which we shall denote by A(Z1,Z2,Z3), such that
dg2(Zi, ;) = d(z;, ;) for i,j € {1,2,3}. A geodesic space (X,d) is called a
CAT(0) space if every geodesic triangle A in (X, d) having comparison triangle
A, the inequality

d(xa y) < dR2 (i‘? g)
holds for all points z,y in /A and, respective, comparison points Z,7 in A
(where a point z € [Z,y] is called a comparison point of a point z € [x,y]
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if dg2(7,2) = d(z,2)). A complete CAT(0) space is called Hadamard space.
Further details on general C AT (k) spaces can be found in, for example, [3].

For a bounded sequence {z,} in a metric space (X,d), let

r(xz,{z,}) :=limsupd(z, z,), =€ X.

The asymptotic radius r({x,}) of {x,} is defined as

r({z,}) = inf {r(z,{z,}) : z€ X}

and the asymptotic centre A({xyn}) of {zy} is the set
A{wn}) ={r e X : r(@,{zn}) = r({zn})} .

Remark 2.1. It is known (see, e.g., [I1]) that in a CAT'(0) space, A({z,}) is
a singleton set.

Let (X,d) be a metric space. A sequence {x,} C X is said to be A-
convergent (see [23]) to x € X if limsup d(zp,, x) < limsup d(zy,,y), for every
k k

{zn, } subsequence of {z,} and for every y € X. In any CAT(0) space, by
virtue of Remark if the sequence {z,} is bounded, then A-convergence of
{z,} to x is equivalent to saying that x is the unique asymptotic centre for

every subsequence {zp, } of {z,}. We write A —limz, = z or z, 25 2 to
n

mean {x,} is A-convergent to x and we call z the A-limit of {z,}. When a
sequence {z,} converges to z in the usual sense, that is when d(z,,z) — 0,
we say it is strongly convergent to x, denoted x,, — .

Let (X, d) be a metric space. We denote the family of nonempty closed and
bounded subsets of X by CB(X) and define dist(b, A) := in£ d(b,a) for any
ac

b € X and for any A C X. Let dy denote the Hausdorff metric, that is the
map dy : CB(X) x CB(X) — R defined by

dg (B, D) := max {supdist(b, D), sup dist(d, B)}, V B,D € CB(X).
beB deD

Let T : X — CB(X) be multi-valued map. We denote by F(T') the set of all
fixed points of T, that is, F(T') := {p € X : p € T'p}. The map T is called:
nonexpansive if
dp (T, Ty) < d(z,y), ¥V ,y € X;
quasinonezxpansive if for any p € F(T),
dg(Tz,Tp) < d(z,p), V z € X;
demicontractive if there exists k € [0, 1) such that for any p € F(T),

dp(Tx, Tp)? < d(z,p)? + kdist(x,Tz)* ¥V z € X.
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In the sequel, we shall say that the map T has demiclosedness-type prop-
erty if for any sequence {z,} C D and = € D, {z,} A-converges to x and
dist(xy, Txy) — 0, imply x € F(T).

Lemma 2.2. ([10]) Let (X,d) be a CAT(0) space. Let x,y,z € X and t €
[0,1]. Then

(i) d((1=t)r@ty,z) < (1—t)d(x,z) +td(y, 2),
(ii) d((1 —t)z D ty,2)? < (1 —t)d(x,2)? + td(y, 2)? — t(1 — t)d(z, y)%.

Lemma 2.3. ([I12]) Let D be a nonempty, closed and convex subset of a
Hadamard space (X,d) and {x,} be a bounded sequence in D. Then the as-
ymptotic centre A({x,}) of {zn} is in D.

Lemma 2.4. ([10]) If {z,} is a bounded sequence in a Hadamard space (X, d)
with A({z,,}) = {z} and {u,} is a subsequence of {x,} with A({u,}) = {u}
and the sequence {d(xy,u)} converges, then x = u.

Lemma 2.5. ([I8]) Every bounded sequence in a Hadamard space has a A-
convergent subsequence.

3. MAIN RESULTS

We first give the algorithm for a finite family of demicontractive maps. Let
(X, d) be a Hadamard space and let D C X be closed, convex and nonempty.
Let T; : D — CB(D) be multi-valued demicontractive mappings with constants
{ki} € (0,1), meN, i =1,--- ,m. Define a sequence {z,} in D by

r1 € D;
0) _ ..
y?’l‘ _',I;nv ) ) (3 1)
y’r(ll) = anin(Llil) @ (]- — Qni)zgilx 1= 17 e, — 1’ .
Tn+1 = anm:%(lmil) ® (1 - anm)%(lmil), n=12--,
where Z7(Li71) € zq’in(liil)a Qi € [kla 1]7 ne Na 1= 1) e, M.

Lemma 3.1. Let (X, d) be a CAT(0) space and let D C X be nonempty, closed
and convex. Let T; : D — CB(D) be multi-valued demicontractive mappings
with constants {k;} C (0,1), m € N, ¢ = 1,--- ,m and {x,,} be defined by
iterative process (3.1). Suppose F := 2y F(T;) # 0 and T;p = {p} for all
p € F and for alli € {1,2,--- ,m}. Then, lirrlnd(:vn,p) exists for all p € F.
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Proof. Let p € F and i € {1,--- ,m—1}. By Lemmal[2.2](ii), the scheme (3.1)
and the assumptions on T;’s we have

d(yt),p)?

s%(n #) + 0= an)d (7p)” — a1~ a2 )
< anid(yl ™, p)? + (1 = ani)dist(z{ 1, Tip)® — ani(1 — api)d(y™ ", 257 1)?
< anid(yy~ 1)»1?)2 + (1= ani)d (Tl ™, Tip)? — ani(1 — an)d(yl =, 257 Y)?
< and(y,p)? + (1= an)[d(y Y, p)* + kid(yl ™, 257 1)?)
— i (1 = ap)d(ylY, 2012
=d(yV,p)? — (1 = ami)(ani — k)d(yS™", 20702, i=1, m—1.

Thus,
d(.’L‘n+1,p)2 S anmd(ygm 1)7p)2 + (1 - anm)d(zT(mel)’p)Q
— anm<1 — anm)d(yg‘ 17 Zém_l))Q
< anmd (Y, p)? 4+ (1 — anm)dist(z{" Y, Trp)?
( (m—1) Z(mfl))Q

)
_ anm( anm)
< A d(B™ Y, p)2 + (1 — apm)dir (T ™D, Trp)?
— A (1 = G )d (™) | 2 (m=1)y2
< G ( ),p)2 +(1- anm)[d(yﬁbm_l),p)Q
+ knd(y{™ Y, 20N = @ (1 — an )d(yim Y, 2lm )2
<d(" ™, p)? = (1 = anm) (@nm — km)d(y" ™, 257 D)2,

So, from the above two inequalities, we have
A1) < A, ) + (1= ) i — )y, 2702
= d(fyr(zm_l),P) — (1 — apm)(anm — k )d<y7(lm—1)7 27(1m—1))2
< d(y™ 2, p)? = (1 = anm) (@nm—-1 — km—1)d(y{"=2), 2(m=2))2
— (1 = @) (@pm — K )d(y(m=1) 2m=1))2

<dE" ™ p)? = D (1= an)(an — k)d(ylY, 207Y)2

i=m—2
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Inductively, we obtain that

(1 - ani)(ani - kl)d(yg_l)7 Z'r(zi_l))2

Ms

d(zp41,p)* < Ay, p)* -
1

'Msﬂ'

= d(xn,p)z (1 — ap;)(an; — ki)d(y,(f_l), 27(12‘—1))2
=1
< d(zy, p)*.
This implies that lim d(x,,p) exists (in R). 0

Theorem 3.2. Let X, D, {T;}, F, {ki}, {ani} and {x,} be as in Lemma
. Let liminf a,; € (k;,1) for each i € {1,--- ,m} and let Ty,--- ,T,, be
n

Lipschitzian maps. Then lim dist(zy, Tjzy,) =0 for alli=1,--- m.
n

Proof. As in the proof of Lemma

m

Z(l — ani)(ani — ki)d(y$Y, 2{7D)? < d(an, p)? — d(zni1,p)?
i=1
and lim d(z,, p) exists for all p € F. Thus

B (1 — @) (ans — ki)d(y Y, 282 =0

foralli=1,--- ,m
Since liminf a,; € (k;, 1) for each i € {1,--- ,m}, it follows that
n
limd(y@—Y, 20"y =0 foreach i=1,--- ,m. (3.2)
n

Now, let i € {1,---,m}. Then,
d(2p, 207V)
Zd(yﬁ), 2 1))

< d(y (0)) d(yﬁﬂ),yﬁf)) c (] ( ),yﬁf D) +d(yl, 2{)
< d(y © ) & ) d(y7(1 )7 27(11)) +eeet d( (- )7 y1(11 1)) + d(yr(zl 1)7 21(11'71))

<d(y, 20) +d(yM, 20) + -+ di, 2Y) + dyl Y, 2 )

< dl Y Y.
k=1
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This and (3.2)) imply that
limd(z,, 28Y) =0 foreach i=1,---,m. (3.3)

Using d(z,, w?) < d(zn, 2n - 1)) + d(z(ifl) w!)), we obtain
dist (2, Tizn) < d(@p, 28 D) + d(z0D w?), V' € Tia,.

Thus, using the fact that 7; is L;—Lipschitzian for each ¢ € 1,--- ,m, we have
the following:

dist(zy, Tity) < d(zy, 207V) 4+ dist(207V, Tix,,)
< d(wn, 207V) + du( zyﬁf Y, Tiz,)
< d(@p, 287V) + Lid(y$Y )
< dwn, 20D) + Lild(yl ™D, 2t + d(z ).

Therefore, by 1 and 1) we have limdist(zy, Tiz,) = 0 for all i =
n
1, ,m. O

Corollary 3.3. Let X, D, {T;} and {z,} be as in Theorem[3.2] Suppose T;
is A-demiclosed at O for each i € {1,--- ,m}. Then {z,} is A-convergent to
a common fized point.

Proof. By Lemma we have lim d(z,, p) exists for all p € F. Hence {z,}
n

is bounded. Now, let u € |JA({wy}), where the union is taken over subse-
quences {wy} of {z,}. Then there exists a subsequence {u,} of {z,} such
that A({un}) = {u}. By Lemma [2.5 there exists {v,}, a subsequence of {u,}
such that A — lién vp, = v and by Lemma we have that v € D.

Using Theorem and the fact that T; 1s A-demiclosed at zero for each
i, we have v € F and hence {d(un,v)} converges by Lemma Moreover,
Lemma [2.4] implies that u = v € F. Thus

JA({wn}) € F.

To conclude, it suffices to show that the set | J A({wy}) is a singleton set.
To see this, let A({z,}) = {z} and let {u,} be an arbitrary subsequence of
{zp} with A({u,}) = {u}. We have u € F and by Lemma {d(xn,u)}
converges. Lemma [2.4] implies that v = z. O

Corollary 3.4. Let X, D, {T;, i =1,--- ,m}, F and {x,} be as in Theorem
. Suppose D is compact. Then {x,} converges strongly to a common fized
point of {T;, i =1,--- ,m}.
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Proof. It follows from Theorem that limdist(z,, T;z,) = 0 for all i =

1,---,m. Since D is compact, there exists a subsequence {v,} of {z,} such
that 1i7rln d(vp,w) = 0 for some w € D. Therefore, for i € {1,--- ,m},
d(w,y;) < d(w,v,) + d(vp, ul) +d(ul, y;), Y ul, € Ty,
This implies that
dist(w, Tyw) < d(w,vy) + d(vn, ul,) + distd(u, Tiw) YV y; € Tow, Y ul, € Tivy,.
Using the fact that 7T; is Lipschitzian, we obtain
dist(w, Tyw) < d(w, vy) + d(vn, u?) + dist(ul, Tiw)
< d(w,vy) + d(vg, ul) + dg (Tyv,, Tw)
< d(w,vy) + d(vp, ul) + Lid(v,, w)
< (1 + Ly)d(w,vy) + d(vy, ul),
for all u}l € T;v, and i. This implies that
dist(w, Tyw) < (14 L;)d(w, vy,) + dist(vy, Tivy,).
Thus, dist(w, T;w) = 0. Hence, w € F. By Lemmawe have that li}ln d(xp,w)

exists. Thus lim d(z,,w) = lim d(v,, w) = 0.
n n

Theorem 3.5. Let X, D, {T;}, F and {z,} be as in Lemma 3.1l Suppose
X is complete. Then {x,} converges strongly to a point p € F if and only if
lim inf dist(z,, F) = 0.

n

Proof. The forward direction is immediate. Suppose that lim inf dist(z,,, F) =
n

0. It is seen in the proof of Lemma [3.1]that d(zn11,p) < d(zn,p) for all p € F.
This implies that dist(z,41,F) < dist(zy,F). So the limdist(x,,F) exists,
n

and sing the hypothesis, limdist(zy4+1,F) = 0. Therefore we can choose a
n

subsequence {zy, } of {z,} and a sequence {pi} in F such that for all k € N,
d(zp,,pr) < 2% By Lemmawe have d(2y, ., Pk) < d(Tn,,pk) < 2% Hence

1 1 1
d(Prt1,k) < ATy g Prt1) + ATy Pi) < o1 + ok < oh—1°

Thus {px} is a Cauchy sequence in D and therefore converges (strongly) to
some point ¢ € D. It follows that li]f;nd(xnk,q) = 0. Therefore, for i €

{1, ,m},
dist(px, Tiq) < du(Tipk, Tiq) < Lid(pk, q) — 0.
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As Tq € CB(D), q € F. Since limd(zy, q) exists, we conclude that
n

limd(zy,q) = 0.

Next we present our convergence theorems for a countable family.

Let (X, d) be a Hadamard space and let D be a nonempty, closed and convex
subset of X. Let T; : D — CB(D) be multi-valued demicontractive mappings
with constants {k;} C (0,1), i € N. A sequence {z,} is defined iteratively as
follows:

x1 € D;
y’ELO) = Tn;

. ro . 3.4
W = aniyy VO (1—an)z Y, i=1 -1 34

Tn+1 = annygnil) ©® (1 - ann)ZT(lnil)a n=1, 27 3, Tty

where Zr(Liil) € J"in(liil)aani € [klv 1]) ne N) 1= 17 e, N

Lemma 3.6. Let (X,d) be a CAT(0) space and let D be a nonempty, closed
and convex subset of X. Let T; : D — CB(D) be multi-valued demicontractive
mappings with constants {k;} C (0,1), i € N and let {x,} be defined by the
iterative process in (3.4). Suppose F := (2 F(T;) # 0 and T;p = {p} for all
p € F. Then, liTJEn d(xn,p) exists for all p € F.

Proof. Let p € F. By lemma (ii), the scheme and the assumptions
on T;’s we have
d(@n41,9)° < annd(y" D, p)* + (1 = ann)d(z Y, p)?
— ann(1 — ann)d(ygilv Zfznil))Q
< annd(?/gn_l)yp)Q +(1- ann)dz’st(z,(l"_l),Tnp)Q
— ann(1 — ann)d(yv(mn_l)a Zv(mn_l))Q
< annd(yﬁbn_l)yp)Q +(1- ann)dH<Tnyr(zn_l)anp)2
— ann(1 — ann)d(yr(zn_l)a Zr(zn_l))Q
< apnd(y Y, p)? + (1= ann)[d(y ™, 0)* + knd (™Y, 2077
— ann(1 — ann)d(%(zn_l)v 27(171_1))2

< d(y ) = (1= @) (@nn — ka)d(y ™D, 207 D)?

n



Strong and A-convergence theorems 55

n
<d(yd D, p) = 3 (1 = an)(an — ko)d(y Y, 26D)?
i=n—2
< d(ys))vp)Q - (1 - ani)(am - kz)d(yg 1)7 Z# 1))2

< d(2n,p)*.

This implies that lim d(x,,p) exists, as a monotonic nonincreasing sequence
n

of real numbers that is bounded below by 0. g

Theorem 3.7. Let X, D, {T;}, F and {x,} be as in Lemma [3.6] Suppose
liminf a,; > k; for each i € N and let T; be Lipschitzian maps for all i € N.
n

Then lim dist(xy,, Tix,) = 0 for all i € N.

Proof. As in the proof of Lemma [3.6

n

2(1 — ani)(ani — ki)d(yl ™, 2{7)? < d(2,p)* = d(zn1,p)”
i=1

for all n € N. This implies that

n

Z(l — ) (ani — ki)d(y{™Y, 2{7 )2 < d(21, p)
=1

for all n € N. And so

exists in R. Thus

(1 — ang) (an; — ki)d(y{Y, 289) = 0

n

for all 7 € N. Since liminf a,; > k; for each 7 € N, it follows that

limd(y$Y,20"Vy =0 for each ieN. (3.5)

n
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Now, let ¢ € N. Then

d(2p, 2071)
=d(y, z7)

V) + (i) u?) 4 dl )+ d Y, A7)

A0) + A0, o) + -+ Ay, 98) + Ay, )
7Z£LO)) + d(yg )a Zq(q,l)) +eoet d(y'r(z Z)a y'r(zZ 1)) + d(y'r(zi_l)a Zni_l))

),
o,
o

< d(yy
<d(y
<d(y

IN

Ay, 20) + d(yf), 20) + -+ d(yY, 27P) + d(yiY, 207Y)

<l ).
k=1

This and (3.5)) imply that
lin d(y, 2 =Dy =0 foreach ieN. (3.6)

Thus, d(z,,w?) < d(zn, 2n (i 1)) + d(zg_l),wfl) for all w?, € T;z,. Therefore,
dist(xy, Tizy) < d(zp, zﬁf_l)) + dist(zﬁf_l),TizL'n).
Using the fact that T; is L;—Lipschitzian for each ¢ € N, we have the following
dist (2, Tizp) < d(@n, 2879 + dist(z07D | Tyz,)

< d(xn,zg 1) )+dH( Zyn 1 ,Tixy)
< d(wn, 277 V) + Lid(y{ ™", 20)
< d(wn, 27Y) + Lld(y$™ 1) vz )+ d(zh T 2n)]

< (14 Lo)d(wn, 2070) + Lid(yi ™, 27).
Therefore, by 1' and 1) we have lim dist(z,, Tjz,) = 0 for all i e N. [

Corollary 3.8. Let X, D, {T;} and {x,} be as in Theorem[3.7 Suppose T; is
A-demiclosed at zero for each i € N. Then {x,} is A-convergent to a common
fized point of {T;}.

Proof. Using Lemma in place of Lemma [3.1] and Theorem [3.7] in place of
Theorem the proof follows similar arguments as in the proof of Corollary

B3l O

Corollary 3.9. Let X, D, {T;} and {z,} be as in Theorem[3.7 Suppose D
is compact. Then {x,} converges strongly to a common fixed point of {T;}.
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Proof. Using Lemma [3.6] in place of Lemma and Theorem in place of
Theorem [3.2] the proof follows similar arguments as in the proof of Corollary

B.4 O

Theorem 3.10. Let X, D, {T;}, F and {z,} be as in Lemma[3.6] Then {x,}
converges strongly to a point p € F if and only if lim inf dist(z,,, F) = 0.
n

Proof. Using Lemma [3.6] in place of Lemma the proof follows similar
arguments as in the proof of Theorem O

4. CONCLUSION

In this work we have been able to develop algorithms for fixed points of finite
and countable families of demicontractive multi-valued maps. Our theorems
concern more general maps than quasi-nonexpansive maps whose finite families
were considered by Akbar and Eslamian [I] in the setting of C AT'(0) spaces.
In addition, our work complements the work of Chidume et al. in [6].
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