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Abstract. In this paper, iterative algorithms for approximating a common fixed point of a

countable family of multi-valued demicontractive maps in the setting of Hadamard spaces are

presented. Under different mild conditions, the sequences generated are shown to strongly

convergent and ∆-convergent to a common fixed point of the considered family, accordingly.

Our theorems complement many results in the literature.

1. Introduction

The class of (single-valued) demicontractive maps was introduced by Hicks
and Kubicek in [15] as a proper superclass of the class of strictly pseudocon-
tractive maps ([4]) which is itself a superclass of the class of nonexpansive
maps. In [7], Chidume et al. introduced a multi-valued analogue of strictly
pseudocontractive map. They showed that a Krasnoseslkii-type sequence con-
verges to a fixed point of a strictly pseudocontractive map T in a Hilbert
space. Chidume and Ezeora [8] also proved strong convergence theorems for
a finite family of multi-valued strictly pseudocontractive maps in the setting
of Hilbert spaces.
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Several results concerning finding solutions of equations/inclusions (such as
fixed point equations/inclusions, zeros of monotone maps) have been obtained
in metric spaces that do not necessarily possess linear structure. Some of
these results can be found in, for example, Kirk [19, 20], Reich and Shafrir
[25], Kohlenbach and Leustean [21], Chaoha and Pho-on [5], Okeke et al. [24],
Dhompongsa and Panyanak [10], Saejung [26], Lerkchaiyaphum and Phuen-
grattana [22], Khan and Abbas [16], Eskandani et al. [14], Eskandani and
Raeisi [13], Kim et al. [17], Tang et al. [27] and Asidi et al. [2]. Dhom-
pongsa et al. [9], proved strong convergence theorems for fixed points of a
countable family of multi-valued nonexpansive maps in the setting of CAT (0)
spaces. They proved the following theorem, H denotes the Hausdorff metric
and K(C) denotes the family of nonempty compact subsets of C.

Theorem 1.1. ([9]) Let C be a nonempty, closed and convex subset of a
complete CAT (0) space X and Un, U : C → K(C) be nonexpansive such that
H(Un, U) → 0 uniformly on bounded subsets of C, Fix(U) =

⋂∞
n=1 Fix(Un)

and Un(p) = {p} for all p ∈ Fix(U). Suppose that u, z1 ∈ C are arbitrarily
chosen and {zn} is defined by

zn+1 = αnu⊕ (1− αn)un, un ∈ Un(zn)

such that d(un, un+1) ≤ d(zn, zn+1) + εn for all n ∈ N, where
∞∑
n=1

εn <∞ and

{αn} is a sequence in (0, 1) satisfying

limαn = 0;
∑
n

αn =∞; and
∑
n

|αn − αn+1| <∞(or limαn/αn+1 = 1).

Then {zn} converges strongly to the unique fixed point of U closest to u.

Also in [6], Chidume et al. considered a finite family of demicontractive
mappings in a complete CAT(0) space. They developed an iterative algorithm
and proved both ∆ and strong convergence of the sequence obtained to a
common fixed point of the family. They proved the following result.

Theorem 1.2. ([6]) Let K be a nonempty, closed and convex subset of a
complete CAT (0) space. Let Ti : K → CB(K), i = 1, 2, · · · ,m, be a family
of demicontractive mappings with constants ki ∈ (0, 1), i = 1, · · ·m such that⋂m

i=1 F (Ti) 6= ∅. Suppose for all i, Ti(p) = {p} for all p ∈
⋂m

i=1 F (Ti). Let a
sequence {xn} be define by

x1 ∈ K;

xn+1 = α0xn ⊕ α1y
1
n ⊕ α2y

2
n ⊕ · · · ⊕ αmy

m
n ; n ≥ 1,

yin ∈ Tixn, α0 ∈ (k, 1), αi ∈ (0, 1),

(1.1)
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where k = max{ki, i = 1, 2, · · · ,m},
∑m

i=0 αi = 1 and F (Ti) denotes the
set of fixed points of Ti. Then for every i, lim

n→∞
dist(p, Tixn) exists for every

p ∈
⋂m

i=1 F (Ti). If in addition Ti is ∆-demiclosed at 0 for i = 1, · · · ,m, then
{xn} is ∆-convergent to a point p ∈

⋂m
i=1 F (Ti). Furthermore, if at least one

of the Ti’s is semi-compact, then the convergence is strong.

Our objective in this paper is two fold: the first is to develop an iterative
algorithm and prove ∆ and strong convergence of the resulting sequence to a
common fixed point of a finite family of multi-valued demicontractive maps
in a Hadamard space setting. The second is to develop an iterative algorithm
and prove ∆ and strong convergence of the resulting sequence to a common
fixed point of a countable family of multi-valued demicontractive maps also in
Hadamard space setting. The algorithm developed is fashioned after the one of
Akbar and Eslamian[1] for a finite family of a subclass of quasi-nonexpansive
mappings.

2. preliminaries

Given a metric space (X, d), a geodesic from x to y is a map γ : [0, l] ⊂
R → X, for some l > 0, such that γ(0) = x, γ(l) = y; d(γ(t), γ(s)) = |t − s|,
∀ t, s ∈ [0, l]. In particular γ is an isometry and d(x, y) = l. The image of
γ, γ([0, l]), is called a geodesic segment joining x and y. When the geodesic
is unique, it is denoted by [x, y]. For x, y ∈ X having unique geodesic and
for any α ∈ [0, 1], we denote by αx ⊕ (1 − α)y the unique vector z in [x, y]
satisfying d(x, z) = αd(x, y) and d(z, y) = (1 − α)d(x, y). If for every pair of
points x, y in the space (X, d) there exists a geodesic joining them, then the
space is called a geodesic space and if the geodesic is unique for each such pair,
it is called a uniquely geodesic space. We shall say a subset C of X is convex if
for every pair of points x, y in C, every segment joining x and y is contained
in C.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) con-
sists of three points in X (the vertices of 4) and three geodesic segments-
each for a pair of the vertices (these segments are called edges of the tri-
angle). A comparison triangle for a geodesic triangle 4(x1, x2, x3) in (X, d)
is a triangle 4(x1, x2, x3) which we shall denote by 4(x̄1, x̄2, x̄3), such that
dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A geodesic space (X, d) is called a
CAT (0) space if every geodesic triangle4 in (X, d) having comparison triangle
4, the inequality

d(x, y) ≤ dR2(x̄, ȳ)

holds for all points x, y in 4 and, respective, comparison points x̄, ȳ in 4
(where a point z̄ ∈ [x̄, ȳ] is called a comparison point of a point z ∈ [x, y]
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if dR2(x̄, z̄) = d(x, z)). A complete CAT (0) space is called Hadamard space.
Further details on general CAT (κ) spaces can be found in, for example, [3].

For a bounded sequence {xn} in a metric space (X, d), let

r(x, {xn}) := lim sup
n

d(x, xn), x ∈ X.

The asymptotic radius r({xn}) of {xn} is defined as

r({xn}) := inf {r(x, {xn}) : x ∈ X}
and the asymptotic centre A({xn}) of {xn} is the set

A({xn}) := {x ∈ X : r(x, {xn}) = r({xn})} .

Remark 2.1. It is known (see, e.g., [11]) that in a CAT (0) space, A({xn}) is
a singleton set.

Let (X, d) be a metric space. A sequence {xn} ⊂ X is said to be ∆-
convergent (see [23]) to x ∈ X if lim sup

k
d(xnk

, x) ≤ lim sup
k

d(xnk
, y), for every

{xnk
} subsequence of {xn} and for every y ∈ X. In any CAT (0) space, by

virtue of Remark 2.1, if the sequence {xn} is bounded, then ∆-convergence of
{xn} to x is equivalent to saying that x is the unique asymptotic centre for

every subsequence {xnk
} of {xn}. We write ∆ − lim

n
xn = x or xn

∆−→ x to

mean {xn} is ∆-convergent to x and we call x the ∆-limit of {xn}. When a
sequence {xn} converges to x in the usual sense, that is when d(xn, x) → 0,
we say it is strongly convergent to x, denoted xn → x.

Let (X, d) be a metric space. We denote the family of nonempty closed and
bounded subsets of X by CB(X) and define dist(b, A) := inf

a∈A
d(b, a) for any

b ∈ X and for any A ⊆ X. Let dH denote the Hausdorff metric, that is the
map dH : CB(X)× CB(X)→ R defined by

dH(B,D) := max

{
sup
b∈B

dist(b,D), sup
d∈D

dist(d,B)

}
, ∀ B,D ∈ CB(X).

Let T : X → CB(X) be multi-valued map. We denote by F(T ) the set of all
fixed points of T , that is, F(T ) := {p ∈ X : p ∈ Tp}. The map T is called:
nonexpansive if

dH(Tx, Ty) ≤ d(x, y), ∀ x, y ∈ X;

quasinonexpansive if for any p ∈ F(T ),

dH(Tx, Tp) ≤ d(x, p), ∀ x ∈ X;

demicontractive if there exists k ∈ [0, 1) such that for any p ∈ F(T ),

dH(Tx, Tp)2 ≤ d(x, p)2 + kdist(x, Tx)2, ∀ x ∈ X.
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In the sequel, we shall say that the map T has demiclosedness-type prop-
erty if for any sequence {xn} ⊆ D and x ∈ D, {xn} ∆-converges to x and
dist(xn, Txn)→ 0, imply x ∈ F (T ).

Lemma 2.2. ([10]) Let (X, d) be a CAT(0) space. Let x, y, z ∈ X and t ∈
[0, 1]. Then

(i) d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z),
(ii) d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2.

Lemma 2.3. ([12]) Let D be a nonempty, closed and convex subset of a
Hadamard space (X, d) and {xn} be a bounded sequence in D. Then the as-
ymptotic centre A({xn}) of {xn} is in D.

Lemma 2.4. ([10]) If {xn} is a bounded sequence in a Hadamard space (X, d)
with A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u}
and the sequence {d(xn, u)} converges, then x = u.

Lemma 2.5. ([18]) Every bounded sequence in a Hadamard space has a ∆-
convergent subsequence.

3. Main results

We first give the algorithm for a finite family of demicontractive maps. Let
(X, d) be a Hadamard space and let D ⊆ X be closed, convex and nonempty.
Let Ti : D → CB(D) be multi-valued demicontractive mappings with constants
{ki} ⊂ (0, 1), m ∈ N, i = 1, · · · ,m. Define a sequence {xn} in D by

x1 ∈ D;

y
(0)
n = xn;

y
(i)
n = aniy

(i−1)
n ⊕ (1− ani)z(i−1)

n , i = 1, · · · ,m− 1;

xn+1 = anmy
(m−1)
n ⊕ (1− anm)z

(m−1)
n , n = 1, 2, · · · ,

(3.1)

where z
(i−1)
n ∈ Tiy(i−1)

n , ani ∈ [ki, 1], n ∈ N, i = 1, · · · ,m.

Lemma 3.1. Let (X, d) be a CAT (0) space and let D ⊆ X be nonempty, closed
and convex. Let Ti : D → CB(D) be multi-valued demicontractive mappings
with constants {ki} ⊂ (0, 1), m ∈ N, i = 1, · · · ,m and {xn} be defined by
iterative process (3.1). Suppose F :=

⋂m
i=1 F (Ti) 6= ∅ and Tip = {p} for all

p ∈ F and for all i ∈ {1, 2, · · · ,m}. Then, lim
n
d(xn, p) exists for all p ∈ F .
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Proof. Let p ∈ F and i ∈ {1, · · · ,m−1}. By Lemma 2.2 (ii), the scheme (3.1)
and the assumptions on Ti’s we have

d(y(i)
n , p)2

≤ anid
(
y(i−1)
n , p

)2
+ (1− ani)d

(
z(i−1)
n , p

)2
− ani(1− ani)d(yi−1

n , z(i−1)
n )2

≤ anid(y(i−1)
n , p)2 + (1− ani)dist(z(i−1)

n , Tip)
2 − ani(1− ani)d(y(i−1)

n , z(i−1)
n )2

≤ anid(y(i−1)
n , p)2 + (1− ani)dH(Tiy

(i−1)
n , Tip)

2 − ani(1− ani)d(y(i−1)
n , z(i−1)

n )2

≤ anid(y(i−1)
n , p)2 + (1− ani)[d(y(i−1)

n , p)2 + kid(y(i−1)
n , z(i−1)

n )2]

− ani(1− ani)d(y(i−1)
n , z(i−1)

n )2

= d(y(i−1)
n , p)2 − (1− ani)(ani − ki)d(y(i−1)

n , z(i−1)
n )2, i = 1, · · · ,m− 1.

Thus,

d(xn+1, p)
2 ≤ anmd(y(m−1)

n , p)2 + (1− anm)d(z(m−1)
n , p)2

− anm(1− anm)d(ym−1
n , z(m−1)

n )2

≤ anmd(y(m−1)
n , p)2 + (1− anm)dist(z(m−1)

n , Tmp)
2

− anm(1− anm)d(y(m−1)
n , z(m−1)

n )2

≤ anmd(y(m−1)
n , p)2 + (1− anm)dH(Tmy

(m−1)
n , Tmp)

2

− anm(1− anm)d(y(m−1)
n , z(m−1)

n )2

≤ anmd(y(m−1)
n , p)2 + (1− anm)[d(y(m−1)

n , p)2

+ kmd(y(m−1)
n , z(m−1)

n )2]− anm(1− anm)d(y(m−1)
n , z(m−1)

n )2

≤ d(y(m−1)
n , p)2 − (1− anm)(anm − km)d(y(m−1)

n , z(m−1)
n )2.

So, from the above two inequalities, we have

d(xn+1, p)
2 ≤ d(y(m−1)

n , p)2 + (1− anm)(km − anm)d(y(m−1)
n , z(m−1)

n )2

= d(y(m−1)
n , p)2 − (1− anm)(anm − km)d(y(m−1)

n , z(m−1)
n )2

≤ d(y(m−2)
n , p)2 − (1− anm)(anm−1 − km−1)d(y(m−2)

n , z(m−2)
n )2

− (1− anm)(anm − km)d(y(m−1)
n , z(m−1)

n )2

...

≤ d(y(m−3)
n , p)2 −

m∑
i=m−2

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2.
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Inductively, we obtain that

d(xn+1, p)
2 ≤ d(y(0)

n , p)2 −
m∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2

= d(xn, p)
2 −

m∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2

≤ d(xn, p)
2.

This implies that lim
n
d(xn, p) exists (in R). �

Theorem 3.2. Let X, D, {Ti}, F , {ki}, {ani} and {xn} be as in Lemma
3.1. Let lim inf

n
ani ∈ (ki, 1) for each i ∈ {1, · · · ,m} and let T1, · · · , Tm be

Lipschitzian maps. Then lim
n
dist(xn, Tixn) = 0 for all i = 1, · · · ,m.

Proof. As in the proof of Lemma 3.1,
m∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2 ≤ d(xn, p)
2 − d(xn+1, p)

2

and lim
n
d(xn, p) exists for all p ∈ F . Thus

lim
n

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2 = 0

for all i = 1, · · · ,m.
Since lim inf

n
ani ∈ (ki, 1) for each i ∈ {1, · · · ,m}, it follows that

lim
n
d(y(i−1)

n , z(i−1)
n ) = 0 for each i = 1, · · · ,m. (3.2)

Now, let i ∈ {1, · · · ,m}. Then,

d(xn, z
(i−1)
n )

= d(y(0)
n , z(i−1)

n )

≤ d(y(0)
n , y(1)

n ) + d(y(1)
n , y(2)

n ) + · · ·+ d(y(i−2)
n , y(i−1)

n ) + d(y(i−1)
n , z(i−1)

n )

≤ d(y(0)
n , z(0)

n ) + d(y(1)
n , y(2)

n ) + · · ·+ d(y(i−2)
n , y(i−1)

n ) + d(y(i−1)
n , z(i−1)

n )

≤ d(y(0)
n , z(0)

n ) + d(y(1)
n , z(1)

n ) + · · ·+ d(y(i−2)
n , y(i−1)

n ) + d(y(i−1)
n , z(i−1)

n )

...

≤ d(y(0)
n , z(0)

n ) + d(y(1)
n , z(1)

n ) + · · ·+ d(y(i−2)
n , z(i−2)

n ) + d(y(i−1)
n , z(i−1)

n )

≤
i∑

k=1

d(y(k−1)
n , z(k−1)

n ).



52 M. S. Minjibir and S. Salisu

This and (3.2) imply that

lim
n
d(xn, z

(i−1)
n ) = 0 for each i = 1, · · · ,m. (3.3)

Using d(xn, w
i
n) ≤ d(xn, z

(i−1)
n ) + d(z

(i−1)
n , wi

n), we obtain

dist(xn, Tixn) ≤ d(xn, z
(i−1)
n ) + d(z(i−1)

n , wi
n), ∀ wi

n ∈ Tixn.

Thus, using the fact that Ti is Li−Lipschitzian for each i ∈ 1, · · · ,m, we have
the following:

dist(xn, Tixn) ≤ d(xn, z
(i−1)
n ) + dist(z(i−1)

n , Tixn)

≤ d(xn, z
(i−1)
n ) + dH(Tiy

(i−1)
n , Tixn)

≤ d(xn, z
(i−1)
n ) + Lid(y(i−1)

n , xn)

≤ d(xn, z
(i−1)
n ) + Li[d(y(i−1)

n , zi−1
n ) + d(zi−1

n , xn)].

Therefore, by (3.2) and (3.3) we have lim
n
dist(xn, Tixn) = 0 for all i =

1, · · · ,m. �

Corollary 3.3. Let X, D, {Ti} and {xn} be as in Theorem 3.2. Suppose Ti
is ∆-demiclosed at 0 for each i ∈ {1, · · · ,m}. Then {xn} is ∆-convergent to
a common fixed point.

Proof. By Lemma 3.1, we have lim
n
d(xn, p) exists for all p ∈ F . Hence {xn}

is bounded. Now, let u ∈
⋃
A({wn}), where the union is taken over subse-

quences {wn} of {xn}. Then there exists a subsequence {un} of {xn} such
that A({un}) = {u}. By Lemma 2.5 there exists {vn}, a subsequence of {un}
such that ∆− lim

n
vn = v and by Lemma 2.3 we have that v ∈ D.

Using Theorem 3.2 and the fact that Ti is ∆-demiclosed at zero for each
i, we have v ∈ F and hence {d(un, v)} converges by Lemma 3.1. Moreover,
Lemma 2.4 implies that u = v ∈ F . Thus⋃

A({wn}) ⊆ F .

To conclude, it suffices to show that the set
⋃
A({wn}) is a singleton set.

To see this, let A({xn}) = {x} and let {un} be an arbitrary subsequence of
{xn} with A({un}) = {u}. We have u ∈ F and by Lemma 3.1, {d(xn, u)}
converges. Lemma 2.4 implies that u = x. �

Corollary 3.4. Let X, D, {Ti, i = 1, · · · ,m}, F and {xn} be as in Theorem
3.2. Suppose D is compact. Then {xn} converges strongly to a common fixed
point of {Ti, i = 1, · · · ,m}.
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Proof. It follows from Theorem 3.2 that lim
n

dist(xn, Tixn) = 0 for all i =

1, · · · ,m. Since D is compact, there exists a subsequence {vn} of {xn} such
that lim

n
d(vn, w) = 0 for some w ∈ D. Therefore, for i ∈ {1, · · · ,m},

d(w, yi) ≤ d(w, vn) + d(vn, u
i
n) + d(uin, yi), ∀ uin ∈ Tivn.

This implies that

dist(w, Tiw) ≤ d(w, vn) + d(vn, u
i
n) + distd(uin, Tiw) ∀ yi ∈ Tiw, ∀ uin ∈ Tivn.

Using the fact that Ti is Lipschitzian, we obtain

dist(w, Tiw) ≤ d(w, vn) + d(vn, u
i
n) + dist(uin, Tiw)

≤ d(w, vn) + d(vn, u
i
n) + dH(Tivn, Tiw)

≤ d(w, vn) + d(vn, u
i
n) + Lid(vn, w)

≤ (1 + Li)d(w, vn) + d(vn, u
i
n),

for all uin ∈ Tivn and i. This implies that

dist(w, Tiw) ≤ (1 + Li)d(w, vn) + dist(vn, Tivn).

Thus, dist(w, Tiw) = 0.Hence, w ∈ F . By Lemma 3.1 we have that lim
n
d(xn, w)

exists. Thus lim
n
d(xn, w) = lim

n
d(vn, w) = 0. �

Theorem 3.5. Let X, D, {Ti}, F and {xn} be as in Lemma 3.1. Suppose
X is complete. Then {xn} converges strongly to a point p ∈ F if and only if
lim inf

n
dist(xn,F) = 0.

Proof. The forward direction is immediate. Suppose that lim inf
n

dist(xn,F) =

0. It is seen in the proof of Lemma 3.1 that d(xn+1, p) ≤ d(xn, p) for all p ∈ F .
This implies that dist(xn+1,F) ≤ dist(xn,F). So the lim

n
dist(xn,F) exists,

and sing the hypothesis, lim
n

dist(xn+1,F) = 0. Therefore we can choose a

subsequence {xnk
} of {xn} and a sequence {pk} in F such that for all k ∈ N,

d(xnk
, pk) < 1

2k
. By Lemma 3.1 we have d(xnk+1

, pk) ≤ d(xnk
, pk) < 1

2k
. Hence

d(pk+1, pk) ≤ d(xnk+1
, pk+1) + d(xnk+1

, pk) <
1

2k+1
+

1

2k
<

1

2k−1
.

Thus {pk} is a Cauchy sequence in D and therefore converges (strongly) to
some point q ∈ D. It follows that lim

k
d(xnk

, q) = 0. Therefore, for i ∈
{1, · · · ,m},

dist(pk, Tiq) ≤ dH(Tipk, Tiq) ≤ Lid(pk, q)→ 0.



54 M. S. Minjibir and S. Salisu

As Tq ∈ CB(D), q ∈ F . Since lim
n
d(xn, q) exists, we conclude that

lim
n
d(xn, q) = 0.

�

Next we present our convergence theorems for a countable family.

Let (X, d) be a Hadamard space and let D be a nonempty, closed and convex
subset of X. Let Ti : D → CB(D) be multi-valued demicontractive mappings
with constants {ki} ⊂ (0, 1), i ∈ N . A sequence {xn} is defined iteratively as
follows:

x1 ∈ D;

y
(0)
n = xn;

y
(i)
n = aniy

(i−1)
n ⊕ (1− ani)z(i−1)

n , i = 1, · · · , n− 1;

xn+1 = anny
(n−1)
n ⊕ (1− ann)z

(n−1)
n , n = 1, 2, 3, · · · ,

(3.4)

where z
(i−1)
n ∈ Tiy(i−1)

n , ani ∈ [ki, 1], n ∈ N, i = 1, · · · , n.

Lemma 3.6. Let (X, d) be a CAT (0) space and let D be a nonempty, closed
and convex subset of X. Let Ti : D → CB(D) be multi-valued demicontractive
mappings with constants {ki} ⊂ (0, 1), i ∈ N and let {xn} be defined by the
iterative process in (3.4). Suppose F :=

⋂∞
i=1 F (Ti) 6= ∅ and Tip = {p} for all

p ∈ F . Then, lim
n
d(xn, p) exists for all p ∈ F .

Proof. Let p ∈ F . By lemma 2.2 (ii), the scheme (3.4) and the assumptions
on Ti’s we have

d(xn+1, p)
2 ≤ annd(y(n−1)

n , p)2 + (1− ann)d(z(n−1)
n , p)2

− ann(1− ann)d(yn−1
n , z(n−1)

n )2

≤ annd(y(n−1)
n , p)2 + (1− ann)dist(z(n−1)

n , Tnp)
2

− ann(1− ann)d(y(n−1)
n , z(n−1)

n )2

≤ annd(y(n−1)
n , p)2 + (1− ann)dH(Tny

(n−1)
n , Tnp)

2

− ann(1− ann)d(y(n−1)
n , z(n−1)

n )2

≤ annd(y(n−1)
n , p)2 + (1− ann)[d(y(n−1)

n , p)2 + knd(y(n−1)
n , z(n−1)

n )2]

− ann(1− ann)d(y(n−1)
n , z(n−1)

n )2

≤ d(y(n−1)
n , p)2 − (1− ann)(ann − kn)d(y(n−1)

n , z(n−1)
n )2
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≤ d(y(n−3)
n , p)2 −

n∑
i=n−2

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2

...

≤ d(y(0)
n , p)2 −

n∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2

= d(xn, p)
2 −

n∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2

≤ d(xn, p)
2.

This implies that lim
n
d(xn, p) exists, as a monotonic nonincreasing sequence

of real numbers that is bounded below by 0. �

Theorem 3.7. Let X, D, {Ti}, F and {xn} be as in Lemma 3.6. Suppose
lim inf

n
ani > ki for each i ∈ N and let Ti be Lipschitzian maps for all i ∈ N.

Then lim
n
dist(xn, Tixn) = 0 for all i ∈ N.

Proof. As in the proof of Lemma 3.6,

n∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2 ≤ d(xn, p)
2 − d(xn+1, p)

2

for all n ∈ N. This implies that

n∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2 ≤ d(x1, p)

for all n ∈ N. And so

lim
n

n∑
i=1

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2

exists in R. Thus

lim
n

(1− ani)(ani − ki)d(y(i−1)
n , z(i−1)

n )2 = 0

for all i ∈ N. Since lim inf
n

ani > ki for each i ∈ N, it follows that

lim
n
d(y(i−1)

n , z(i−1)
n ) = 0 for each i ∈ N. (3.5)
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Now, let i ∈ N. Then

d(xn, z
(i−1)
n )

= d(y(0)
n , z(i−1)

n )

≤ d(y(0)
n , y(1)

n ) + d(y(1)
n , y(2)

n ) + · · ·+ d(y(i−2)
n , y(i−1)

n ) + d(y(i−1)
n , z(i−1)

n )

≤ d(y(0)
n , z(0)

n ) + d(y(1)
n , y(2)

n ) + · · ·+ d(y(i−2)
n , y(i−1)

n ) + d(y(i−1)
n , z(i−1)

n )

≤ d(y(0)
n , z(0)

n ) + d(y(1)
n , z(1)

n ) + · · ·+ d(y(i−2)
n , y(i−1)

n ) + d(y(i−1)
n , z(i−1)

n )

...

≤ d(y(0)
n , z(0)

n ) + d(y(1)
n , z(1)

n ) + · · ·+ d(y(i−2)
n , z(i−2)

n ) + d(y(i−1)
n , z(i−1)

n )

≤
i∑

k=1

d(y(k−1)
n , z(k−1)

n ).

This and (3.5) imply that

lim
n
d(xn, z

(i−1)
n ) = 0 for each i ∈ N. (3.6)

Thus, d(xn, w
i
n) ≤ d(xn, z

(i−1)
n ) + d(z

(i−1)
n , wi

n) for all wi
n ∈ Tixn. Therefore,

dist(xn, Tixn) ≤ d(xn, z
(i−1)
n ) + dist(z(i−1)

n , Tixn).

Using the fact that Ti is Li−Lipschitzian for each i ∈ N, we have the following

dist(xn, Tixn) ≤ d(xn, z
(i−1)
n ) + dist(z(i−1)

n , Tixn)

≤ d(xn, z
(i−1)
n ) + dH(Tiy

(i−1)
n , Tixn)

≤ d(xn, z
(i−1)
n ) + Lid(y(i−1)

n , xn)

≤ d(xn, z
(i−1)
n ) + Li[d(y(i−1)

n , zi−1
n ) + d(zi−1

n , xn)]

≤ (1 + Li)d(xn, z
(i−1)
n ) + Lid(y(i−1)

n , zi−1
n ).

Therefore, by (3.6) and (3.5) we have lim
n

dist(xn, Tixn) = 0 for all i ∈ N. �

Corollary 3.8. Let X, D, {Ti} and {xn} be as in Theorem 3.7. Suppose Ti is
∆-demiclosed at zero for each i ∈ N. Then {xn} is ∆-convergent to a common
fixed point of {Ti}.

Proof. Using Lemma 3.6 in place of Lemma 3.1 and Theorem 3.7 in place of
Theorem 3.2, the proof follows similar arguments as in the proof of Corollary
3.3. �

Corollary 3.9. Let X, D, {Ti} and {xn} be as in Theorem 3.7. Suppose D
is compact. Then {xn} converges strongly to a common fixed point of {Ti}.
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Proof. Using Lemma 3.6 in place of Lemma 3.1 and Theorem 3.7 in place of
Theorem 3.2, the proof follows similar arguments as in the proof of Corollary
3.4. �

Theorem 3.10. Let X, D, {Ti}, F and {xn} be as in Lemma 3.6. Then {xn}
converges strongly to a point p ∈ F if and only if lim inf

n
dist(xn,F) = 0.

Proof. Using Lemma 3.6 in place of Lemma 3.1, the proof follows similar
arguments as in the proof of Theorem 3.5. �

4. Conclusion

In this work we have been able to develop algorithms for fixed points of finite
and countable families of demicontractive multi-valued maps. Our theorems
concern more general maps than quasi-nonexpansive maps whose finite families
were considered by Akbar and Eslamian [1] in the setting of CAT (0) spaces.
In addition, our work complements the work of Chidume et al. in [6].
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