Nonlinear Functional Analysis and Applications Vol. 27, No. 1 (2022), pp. 45-58 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2022.27.01.03 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \odot 2022 Kyungnam University Press

STRONG AND ∆-CONVERGENCE THEOREMS FOR A COUNTABLE FAMILY OF MULTI-VALUED DEMICONTRACTIVE MAPS IN HADAMARD SPACES

$Ma'aruf Shehu Minjibir¹ and Sani Salisu²$

¹African University of Science and Technology, Abuja, Nigeria Bayero University, Kano, Nigeria e-mail: msminjibir.mth@buk.edu.ng

²African University of Science and Technology, Abuja, Nigeria e-mail: ssalisu@aust.edu.ng

Abstract. In this paper, iterative algorithms for approximating a common fixed point of a countable family of multi-valued demicontractive maps in the setting of Hadamard spaces are presented. Under different mild conditions, the sequences generated are shown to strongly convergent and ∆-convergent to a common fixed point of the considered family, accordingly. Our theorems complement many results in the literature.

1. INTRODUCTION

The class of (single-valued) demicontractive maps was introduced by Hicks and Kubicek in [\[15\]](#page-13-0) as a proper superclass of the class of strictly pseudocontractive maps $([4])$ $([4])$ $([4])$ which is itself a superclass of the class of nonexpansive maps. In [\[7\]](#page-12-1), Chidume et al. introduced a multi-valued analogue of strictly pseudocontractive map. They showed that a Krasnoseslkii-type sequence converges to a fixed point of a strictly pseudocontractive map T in a Hilbert space. Chidume and Ezeora [\[8\]](#page-12-2) also proved strong convergence theorems for a finite family of multi-valued strictly pseudocontractive maps in the setting of Hilbert spaces.

⁰Received February 14, 2021. Revised August 27, 2021. Accepted December 9, 2021.

⁰2020 Mathematics Subject Classification: 47H09, 47H10, 47J25.

⁰Keywords: $CAT(0)$ space, multi-valued demicontractive maps, Hausdorff metric, strong convergence, Δ -convergence.

⁰Corresponding author: M. S. Minjibir(msminjibir.mth@buk.edu.ng).

Several results concerning finding solutions of equations/inclusions (such as fixed point equations/inclusions, zeros of monotone maps) have been obtained in metric spaces that do not necessarily possess linear structure. Some of these results can be found in, for example, Kirk [\[19,](#page-13-1) [20\]](#page-13-2), Reich and Shafrir [\[25\]](#page-13-3), Kohlenbach and Leustean [\[21\]](#page-13-4), Chaoha and Pho-on [\[5\]](#page-12-3), Okeke et al. [\[24\]](#page-13-5), Dhompongsa and Panyanak [\[10\]](#page-12-4), Saejung [\[26\]](#page-13-6), Lerkchaiyaphum and Phuengrattana [\[22\]](#page-13-7), Khan and Abbas [\[16\]](#page-13-8), Eskandani et al. [\[14\]](#page-13-9), Eskandani and Raeisi [\[13\]](#page-13-10), Kim et al. [\[17\]](#page-13-11), Tang et al. [\[27\]](#page-13-12) and Asidi et al. [\[2\]](#page-12-5). Dhompongsa et al. [\[9\]](#page-12-6), proved strong convergence theorems for fixed points of a countable family of multi-valued nonexpansive maps in the setting of $CAT(0)$ spaces. They proved the following theorem, H denotes the Hausdorff metric and $K(C)$ denotes the family of nonempty compact subsets of C.

Theorem 1.1. ([\[9\]](#page-12-6)) Let C be a nonempty, closed and convex subset of a complete CAT(0) space X and $U_n, U: C \to K(C)$ be nonexpansive such that $H(\tilde{U}_n, U) \to 0$ uniformly on bounded subsets of C, $Fix(U) = \bigcap_{n=1}^{\infty} Fix(U_n)$ and $U_n(p) = \{p\}$ for all $p \in Fix(U)$. Suppose that $u, z_1 \in C$ are arbitrarily chosen and $\{z_n\}$ is defined by

$$
z_{n+1} = \alpha_n u \oplus (1 - \alpha_n) u_n, \ \ u_n \in U_n(z_n)
$$

such that $d(u_n, u_{n+1}) \leq d(z_n, z_{n+1}) + \varepsilon_n$ for all $n \in \mathbb{N}$, where $\sum_{n=1}^{\infty}$ $n=1$ $\varepsilon_n < \infty$ and

 $\{\alpha_n\}$ is a sequence in $(0, 1)$ satisfying

$$
\lim \alpha_n = 0; \sum_{n} \alpha_n = \infty; \text{ and } \sum_{n} |\alpha_n - \alpha_{n+1}| < \infty \text{ (or } \lim \alpha_n/\alpha_{n+1} = 1).
$$

Then $\{z_n\}$ converges strongly to the unique fixed point of U closest to u.

Also in [\[6\]](#page-12-7), Chidume et al. considered a finite family of demicontractive mappings in a complete $CAT(0)$ space. They developed an iterative algorithm and proved both Δ and strong convergence of the sequence obtained to a common fixed point of the family. They proved the following result.

Theorem 1.2. ([\[6\]](#page-12-7)) Let K be a nonempty, closed and convex subset of a complete CAT(0) space. Let $T_i: K \to CB(K), i = 1, 2, \dots, m$, be a family of demicontractive mappings with constants $k_i \in (0,1)$, $i = 1, \dots m$ such that $\bigcap_{i=1}^m F(T_i) \neq \emptyset$. Suppose for all i, $T_i(p) = \{p\}$ for all $p \in \bigcap_{i=1}^m F(T_i)$. Let a sequence $\{x_n\}$ be define by

$$
\begin{cases}\nx_1 \in K; \\
x_{n+1} = \alpha_0 x_n \oplus \alpha_1 y_n^1 \oplus \alpha_2 y_n^2 \oplus \cdots \oplus \alpha_m y_n^m; \quad n \ge 1, \\
y_n^i \in T_i x_n, \ \alpha_0 \in (k, 1), \ \alpha_i \in (0, 1),\n\end{cases} \tag{1.1}
$$

where $k = \max\{k_i, i = 1, 2, \cdots, m\}, \sum_{i=0}^{m} \alpha_i = 1$ and $F(T_i)$ denotes the set of fixed points of T_i . Then for every i, $\lim_{n\to\infty} dist(p,T_ix_n)$ exists for every $p \in \bigcap_{i=1}^m F(T_i)$. If in addition T_i is Δ -demiclosed at 0 for $i = 1, \dots, m$, then ${x_n}$ is Δ -convergent to a point $p \in \bigcap_{i=1}^m F(T_i)$. Furthermore, if at least one of the T_i 's is semi-compact, then the convergence is strong.

Our objective in this paper is two fold: the first is to develop an iterative algorithm and prove Δ and strong convergence of the resulting sequence to a common fixed point of a finite family of multi-valued demicontractive maps in a Hadamard space setting. The second is to develop an iterative algorithm and prove Δ and strong convergence of the resulting sequence to a common fixed point of a countable family of multi-valued demicontractive maps also in Hadamard space setting. The algorithm developed is fashioned after the one of Akbar and Eslamian[\[1\]](#page-12-8) for a finite family of a subclass of quasi-nonexpansive mappings.

2. preliminaries

Given a metric space (X, d) , a geodesic from x to y is a map $\gamma : [0, l] \subset$ $\mathbb{R} \to X$, for some $l > 0$, such that $\gamma(0) = x$, $\gamma(l) = y$; $d(\gamma(t), \gamma(s)) = |t - s|$, $\forall t, s \in [0, l]$. In particular γ is an isometry and $d(x, y) = l$. The image of γ , $\gamma([0, l])$, is called a *geodesic segment* joining x and y. When the geodesic is unique, it is denoted by $[x, y]$. For $x, y \in X$ having unique geodesic and for any $\alpha \in [0,1]$, we denote by $\alpha x \oplus (1-\alpha)y$ the unique vector z in [x, y] satisfying $d(x, z) = \alpha d(x, y)$ and $d(z, y) = (1 - \alpha) d(x, y)$. If for every pair of points x, y in the space (X, d) there exists a geodesic joining them, then the space is called a *geodesic space* and if the geodesic is unique for each such pair, it is called a *uniquely geodesic space*. We shall say a subset C of X is *convex* if for every pair of points x, y in C , every segment joining x and y is contained in C .

A geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points in X (the vertices of \triangle) and three geodesic segmentseach for a pair of the vertices (these segments are called edges of the triangle). A comparison triangle for a geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\triangle}(x_1, x_2, x_3)$ which we shall denote by $\triangle(\bar{x}_1, \bar{x}_2, \bar{x}_3)$, such that $d_{\mathbb{R}^2}(\bar{x}_i, \bar{x}_j) = d(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$. A geodesic space (X, d) is called a $CAT(0) space if every geodesic triangle \triangle in (X, d) having comparison triangle$ \triangle , the inequality

$$
d(x, y) \le d_{\mathbb{R}^2}(\bar{x}, \bar{y})
$$

holds for all points x, y in \triangle and, respective, comparison points \bar{x}, \bar{y} in $\overline{\triangle}$ (where a point $\bar{z} \in [\bar{x}, \bar{y}]$ is called a *comparison point* of a point $z \in [x, y]$ if $d_{\mathbb{R}^2}(\bar{x}, \bar{z}) = d(x, z)$. A complete $CAT(0)$ space is called Hadamard space. Further details on general $CAT(\kappa)$ spaces can be found in, for example, [\[3\]](#page-12-9).

For a bounded sequence $\{x_n\}$ in a metric space (X, d) , let

$$
r(x, \{x_n\}) := \limsup_n d(x, x_n), \ \ x \in X.
$$

The *asymptotic radius* $r({x_n})$ of ${x_n}$ is defined as

$$
r(\{x_n\}) := \inf \{r(x, \{x_n\}) \ : \ x \in X\}
$$

and the *asymptotic centre* $A({x_n})$ of ${x_n}$ is the set

$$
A({x_n}) := {x \in X : r(x,{x_n}) = r({x_n})}.
$$

Remark 2.1. It is known (see, e.g., [\[11\]](#page-13-13)) that in a $CAT(0)$ space, $A({x_n})$ is a singleton set.

Let (X, d) be a metric space. A sequence $\{x_n\} \subset X$ is said to be Δ *convergent* (see [\[23\]](#page-13-14)) to $x \in X$ if $\limsup d(x_{n_k}, x) \leq \limsup d(x_{n_k}, y)$, for every ${x_{n_k}}$ subsequence of ${x_n}$ and for every $y \in X$. In any $CAT(0)$ space, by virtue of Remark [2.1,](#page-3-0) if the sequence $\{x_n\}$ is bounded, then Δ -convergence of ${x_n}$ to x is equivalent to saying that x is the unique asymptotic centre for every subsequence $\{x_{n_k}\}\$ of $\{x_n\}$. We write $\Delta - \lim_n x_n = x$ or $x_n \xrightarrow{\Delta} x$ to mean $\{x_n\}$ is Δ -convergent to x and we call x the Δ -limit of $\{x_n\}$. When a sequence $\{x_n\}$ converges to x in the usual sense, that is when $d(x_n, x) \to 0$, we say it is strongly convergent to x, denoted $x_n \to x$.

Let (X, d) be a metric space. We denote the family of nonempty closed and bounded subsets of X by $\mathcal{CB}(X)$ and define $dist(b, A) := \inf_{a \in A} d(b, a)$ for any $b \in X$ and for any $A \subseteq X$. Let d_H denote the Hausdorff metric, that is the map $d_H : \mathcal{CB}(X) \times \mathcal{CB}(X) \to \mathbb{R}$ defined by

$$
d_H(B, D) := \max\left\{\sup_{b \in B} \text{dist}(b, D), \sup_{d \in D} \text{dist}(d, B)\right\}, \ \forall B, D \in \mathcal{CB}(X).
$$

Let $T: X \to \mathcal{CB}(X)$ be multi-valued map. We denote by $\mathcal{F}(T)$ the set of all fixed points of T, that is, $\mathcal{F}(T) := \{p \in X : p \in Tp\}$. The map T is called: nonexpansive if

 $d_H(T x, Ty) \leq d(x, y), \ \forall \ x, y \in X;$

quasinonexpansive if for any $p \in \mathcal{F}(T)$,

$$
d_H(Tx,Tp) \le d(x,p), \ \forall \ x \in X;
$$

demicontractive if there exists $k \in [0,1)$ such that for any $p \in \mathcal{F}(T)$,

 $d_H(Tx,Tp)^2 \leq d(x,p)^2 + kdist(x,Tx)^2, \ \forall \ x \in X.$

In the sequel, we shall say that the map T has *demiclosedness-type prop*erty if for any sequence $\{x_n\} \subseteq D$ and $x \in D$, $\{x_n\}$ Δ -converges to x and $dist(x_n, Tx_n) \to 0$, imply $x \in F(T)$.

Lemma 2.2. ([\[10\]](#page-12-4)) Let (X,d) be a CAT(0) space. Let $x, y, z \in X$ and $t \in$ $[0, 1]$. Then

(i)
$$
d((1-t)x \oplus ty, z) \le (1-t)d(x, z) + td(y, z),
$$

\n(ii) $d((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2$

Lemma 2.3. ([\[12\]](#page-13-15)) Let D be a nonempty, closed and convex subset of a Hadamard space (X, d) and $\{x_n\}$ be a bounded sequence in D. Then the asymptotic centre $A({x_n})$ of ${x_n}$ is in D.

Lemma 2.4. ([\[10\]](#page-12-4)) If $\{x_n\}$ is a bounded sequence in a Hadamard space (X, d) with $A(\lbrace x_n \rbrace) = \lbrace x \rbrace$ and $\lbrace u_n \rbrace$ is a subsequence of $\lbrace x_n \rbrace$ with $A(\lbrace u_n \rbrace) = \lbrace u \rbrace$ and the sequence $\{d(x_n, u)\}$ converges, then $x = u$.

Lemma 2.5. ([\[18\]](#page-13-16)) Every bounded sequence in a Hadamard space has a Δ convergent subsequence.

3. Main results

We first give the algorithm for a finite family of demicontractive maps. Let (X, d) be a Hadamard space and let $D \subseteq X$ be closed, convex and nonempty. Let $T_i: D \to \mathcal{CB}(D)$ be multi-valued demicontractive mappings with constants ${k_i} \subset (0,1), m \in \mathbb{N}, i = 1, \cdots, m$. Define a sequence ${x_n}$ in D by

$$
\begin{cases}\nx_1 \in D; \\
y_n^{(0)} = x_n; \\
y_n^{(i)} = a_{ni}y_n^{(i-1)} \oplus (1 - a_{ni})z_n^{(i-1)}, \quad i = 1, \cdots, m-1; \\
x_{n+1} = a_{nm}y_n^{(m-1)} \oplus (1 - a_{nm})z_n^{(m-1)}, \quad n = 1, 2, \cdots,\n\end{cases} \tag{3.1}
$$

where $z_n^{(i-1)} \in T_i y_n^{(i-1)}$, $a_{ni} \in [k_i, 1]$, $n \in \mathbb{N}$, $i = 1, \dots, m$.

Lemma 3.1. Let (X, d) be a CAT(0) space and let $D \subseteq X$ be nonempty, closed and convex. Let $T_i : D \to \mathcal{CB}(D)$ be multi-valued demicontractive mappings with constants $\{k_i\} \subset (0,1)$, $m \in \mathbb{N}$, $i = 1, \dots, m$ and $\{x_n\}$ be defined by iterative process [\(3.1\)](#page-4-0). Suppose $\mathcal{F} := \bigcap_{i=1}^m F(T_i) \neq \emptyset$ and $T_i p = \{p\}$ for all $p \in \mathcal{F}$ and for all $i \in \{1, 2, \cdots, m\}$. Then, $\lim_{n} d(x_n, p)$ exists for all $p \in \mathcal{F}$.

.

Proof. Let $p \in \mathcal{F}$ and $i \in \{1, \dots, m-1\}$. By Lemma [2.2](#page-4-1) (ii), the scheme [\(3.1\)](#page-4-0) and the assumptions on T_i 's we have

$$
d(y_n^{(i)}, p)^2
$$

\n
$$
\leq a_{ni}d\left(y_n^{(i-1)}, p\right)^2 + (1 - a_{ni})d\left(z_n^{(i-1)}, p\right)^2 - a_{ni}(1 - a_{ni})d(y_n^{i-1}, z_n^{(i-1)})^2
$$

\n
$$
\leq a_{ni}d(y_n^{(i-1)}, p)^2 + (1 - a_{ni})dist(z_n^{(i-1)}, T_i p)^2 - a_{ni}(1 - a_{ni})d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$

\n
$$
\leq a_{ni}d(y_n^{(i-1)}, p)^2 + (1 - a_{ni})d_H(T_i y_n^{(i-1)}, T_i p)^2 - a_{ni}(1 - a_{ni})d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$

\n
$$
\leq a_{ni}d(y_n^{(i-1)}, p)^2 + (1 - a_{ni})[d(y_n^{(i-1)}, p)^2 + k_i d(y_n^{(i-1)}, z_n^{(i-1)})^2]
$$

\n
$$
- a_{ni}(1 - a_{ni})d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$

\n
$$
= d(y_n^{(i-1)}, p)^2 - (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2, \quad i = 1, \dots, m - 1.
$$

Thus,

$$
d(x_{n+1}, p)^2 \le a_{nm} d(y_n^{(m-1)}, p)^2 + (1 - a_{nm}) d(z_n^{(m-1)}, p)^2
$$

\n
$$
- a_{nm} (1 - a_{nm}) d(y_n^{m-1}, z_n^{(m-1)})^2
$$

\n
$$
\le a_{nm} d(y_n^{(m-1)}, p)^2 + (1 - a_{nm}) dist(z_n^{(m-1)}, T_m p)^2
$$

\n
$$
- a_{nm} (1 - a_{nm}) d(y_n^{(m-1)}, z_n^{(m-1)})^2
$$

\n
$$
\le a_{nm} d(y_n^{(m-1)}, p)^2 + (1 - a_{nm}) d_H (T_m y_n^{(m-1)}, T_m p)^2
$$

\n
$$
- a_{nm} (1 - a_{nm}) d(y_n^{(m-1)}, z_n^{(m-1)})^2
$$

\n
$$
\le a_{nm} d(y_n^{(m-1)}, p)^2 + (1 - a_{nm}) [d(y_n^{(m-1)}, p)^2
$$

\n
$$
+ k_m d(y_n^{(m-1)}, z_n^{(m-1)})^2] - a_{nm} (1 - a_{nm}) d(y_n^{(m-1)}, z_n^{(m-1)})^2
$$

\n
$$
\le d(y_n^{(m-1)}, p)^2 - (1 - a_{nm}) (a_{nm} - k_m) d(y_n^{(m-1)}, z_n^{(m-1)})^2.
$$

So, from the above two inequalities, we have

$$
d(x_{n+1}, p)^2 \le d(y_n^{(m-1)}, p)^2 + (1 - a_{nm})(k_m - a_{nm})d(y_n^{(m-1)}, z_n^{(m-1)})^2
$$

\n
$$
= d(y_n^{(m-1)}, p)^2 - (1 - a_{nm})(a_{nm} - k_m)d(y_n^{(m-1)}, z_n^{(m-1)})^2
$$

\n
$$
\le d(y_n^{(m-2)}, p)^2 - (1 - a_{nm})(a_{nm-1} - k_{m-1})d(y_n^{(m-2)}, z_n^{(m-2)})^2
$$

\n
$$
- (1 - a_{nm})(a_{nm} - k_m)d(y_n^{(m-1)}, z_n^{(m-1)})^2
$$

\n:
\n:
\n
$$
\le d(y_n^{(m-3)}, p)^2 - \sum_{i=m-2}^m (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2.
$$

Inductively, we obtain that

$$
d(x_{n+1}, p)^2 \le d(y_n^{(0)}, p)^2 - \sum_{i=1}^m (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$

= $d(x_n, p)^2 - \sum_{i=1}^m (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2$
 $\le d(x_n, p)^2$.

This implies that $\lim_{n} d(x_n, p)$ exists (in \mathbb{R}).

Theorem 3.2. Let X, D, $\{T_i\}$, F, $\{k_i\}$, $\{a_{ni}\}$ and $\{x_n\}$ be as in Lemma [3.1](#page-4-2). Let $\liminf_{n} a_{ni} \in (k_i, 1)$ for each $i \in \{1, \cdots, m\}$ and let T_1, \cdots, T_m be Lipschitzian maps. Then $\lim_{n} dist(x_n, T_i x_n) = 0$ for all $i = 1, \dots, m$.

Proof. As in the proof of Lemma [3.1,](#page-4-2)

$$
\sum_{i=1}^{m} (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2 \le d(x_n, p)^2 - d(x_{n+1}, p)^2
$$

and $\lim_{n} d(x_n, p)$ exists for all $p \in \mathcal{F}$. Thus

$$
\lim_{n}(1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2 = 0
$$

for all $i = 1, \cdots, m$.

Since $\liminf_{n} a_{ni} \in (k_i, 1)$ for each $i \in \{1, \dots, m\}$, it follows that

$$
\lim_{n} d(y_n^{(i-1)}, z_n^{(i-1)}) = 0 \text{ for each } i = 1, \cdots, m. \tag{3.2}
$$

Now, let $i\in\{1,\cdots,m\}.$ Then,

$$
d(x_n, z_n^{(i-1)})
$$

\n
$$
= d(y_n^{(0)}, z_n^{(i-1)})
$$

\n
$$
\leq d(y_n^{(0)}, y_n^{(1)}) + d(y_n^{(1)}, y_n^{(2)}) + \cdots + d(y_n^{(i-2)}, y_n^{(i-1)}) + d(y_n^{(i-1)}, z_n^{(i-1)})
$$

\n
$$
\leq d(y_n^{(0)}, z_n^{(0)}) + d(y_n^{(1)}, y_n^{(2)}) + \cdots + d(y_n^{(i-2)}, y_n^{(i-1)}) + d(y_n^{(i-1)}, z_n^{(i-1)})
$$

\n
$$
\leq d(y_n^{(0)}, z_n^{(0)}) + d(y_n^{(1)}, z_n^{(1)}) + \cdots + d(y_n^{(i-2)}, y_n^{(i-1)}) + d(y_n^{(i-1)}, z_n^{(i-1)})
$$

\n
$$
\vdots
$$

\n
$$
\leq d(y_n^{(0)}, z_n^{(0)}) + d(y_n^{(1)}, z_n^{(1)}) + \cdots + d(y_n^{(i-2)}, z_n^{(i-2)}) + d(y_n^{(i-1)}, z_n^{(i-1)})
$$

\n
$$
\leq \sum_{k=1}^i d(y_n^{(k-1)}, z_n^{(k-1)}).
$$

This and [\(3.2\)](#page-6-0) imply that

$$
\lim_{n} d(x_n, z_n^{(i-1)}) = 0 \text{ for each } i = 1, \cdots, m. \tag{3.3}
$$

Using $d(x_n, w_n^i) \leq d(x_n, z_n^{(i-1)}) + d(z_n^{(i-1)}, w_n^i)$, we obtain

dist
$$
(x_n, T_i x_n) \le d(x_n, z_n^{(i-1)}) + d(z_n^{(i-1)}, w_n^i), \quad \forall w_n^i \in T_i x_n.
$$

Thus, using the fact that T_i is L_i -Lipschitzian for each $i \in 1, \dots, m$, we have the following:

$$
dist(x_n, T_i x_n) \leq d(x_n, z_n^{(i-1)}) + dist(z_n^{(i-1)}, T_i x_n)
$$

\n
$$
\leq d(x_n, z_n^{(i-1)}) + d_H(T_i y_n^{(i-1)}, T_i x_n)
$$

\n
$$
\leq d(x_n, z_n^{(i-1)}) + L_i d(y_n^{(i-1)}, x_n)
$$

\n
$$
\leq d(x_n, z_n^{(i-1)}) + L_i [d(y_n^{(i-1)}, z_n^{i-1}) + d(z_n^{i-1}, x_n)].
$$

Therefore, by [\(3.2\)](#page-6-0) and [\(3.3\)](#page-7-0) we have $\lim_{n} dist(x_n, T_i x_n) = 0$ for all $i =$ $1, \cdots, m.$

Corollary 3.3. Let X, D, $\{T_i\}$ and $\{x_n\}$ be as in Theorem [3.2](#page-6-1). Suppose T_i is Δ -demiclosed at 0 for each $i \in \{1, \dots, m\}$. Then $\{x_n\}$ is Δ -convergent to a common fixed point.

Proof. By Lemma [3.1,](#page-4-2) we have $\lim_{n} d(x_n, p)$ exists for all $p \in \mathcal{F}$. Hence $\{x_n\}$ is bounded. Now, let $u \in \bigcup A(\{w_n\})$, where the union is taken over subsequences $\{w_n\}$ of $\{x_n\}$. Then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A({u_n}) = {u}$. By Lemma [2.5](#page-4-3) there exists ${v_n}$, a subsequence of ${u_n}$ such that $\Delta - \lim_{n} v_n = v$ and by Lemma [2.3](#page-4-4) we have that $v \in D$.

Using Theorem [3.2](#page-6-1) and the fact that T_i is Δ -demiclosed at zero for each i, we have $v \in \mathcal{F}$ and hence $\{d(u_n, v)\}\$ converges by Lemma [3.1.](#page-4-2) Moreover, Lemma [2.4](#page-4-5) implies that $u = v \in \mathcal{F}$. Thus

$$
\bigcup A(\{w_n\}) \subseteq \mathcal{F}.
$$

To conclude, it suffices to show that the set $\bigcup A(\{w_n\})$ is a singleton set. To see this, let $A(\lbrace x_n \rbrace) = \lbrace x \rbrace$ and let $\lbrace u_n \rbrace$ be an arbitrary subsequence of ${x_n}$ with $A({u_n}) = {u}$. We have $u \in \mathcal{F}$ and by Lemma [3.1,](#page-4-2) ${d(x_n, u)}$ converges. Lemma [2.4](#page-4-5) implies that $u = x$.

Corollary 3.4. Let X, D, $\{T_i, i = 1, \dots, m\}$, F and $\{x_n\}$ be as in Theorem [3.2](#page-6-1). Suppose D is compact. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_i, i = 1, \cdots, m\}.$

Proof. It follows from Theorem [3.2](#page-6-1) that $\lim_{n} dist(x_n, T_i x_n) = 0$ for all $i =$ $1, \dots, m$. Since D is compact, there exists a subsequence $\{v_n\}$ of $\{x_n\}$ such that $\lim_{n} d(v_n, w) = 0$ for some $w \in D$. Therefore, for $i \in \{1, \dots, m\}$,

$$
d(w, y_i) \le d(w, v_n) + d(v_n, u_n^i) + d(u_n^i, y_i), \ \ \forall \ u_n^i \in T_i v_n.
$$

This implies that

$$
dist(w, T_i w) \le d(w, v_n) + d(v_n, u_n^i) + dist d(u_n^i, T_i w) \ \ \forall \ y_i \in T_i w, \ \ \forall \ u_n^i \in T_i v_n.
$$
 Using the fact that T_i is Lipschitzian, we obtain

$$
dist(w, T_i w) \le d(w, v_n) + d(v_n, u_n^i) + dist(u_n^i, T_i w)
$$

\n
$$
\le d(w, v_n) + d(v_n, u_n^i) + d_H(T_i v_n, T_i w)
$$

\n
$$
\le d(w, v_n) + d(v_n, u_n^i) + L_i d(v_n, w)
$$

\n
$$
\le (1 + L_i) d(w, v_n) + d(v_n, u_n^i),
$$

for all $u_n^i \in T_i v_n$ and *i*. This implies that

$$
dist(w, T_i w) \le (1 + L_i)d(w, v_n) + dist(v_n, T_i v_n).
$$

Thus, dist $(w, T_i w) = 0$. Hence, $w \in \mathcal{F}$. By Lemma [3.1](#page-4-2) we have that $\lim_{n} d(x_n, w)$ exists. Thus $\lim_{n} d(x_n, w) = \lim_{n} d(v_n, w) = 0.$

Theorem 3.5. Let X, D, $\{T_i\}$, F and $\{x_n\}$ be as in Lemma [3.1](#page-4-2). Suppose X is complete. Then $\{x_n\}$ converges strongly to a point $p \in \mathcal{F}$ if and only if $\liminf_{n} dist(x_n, \mathcal{F}) = 0.$

Proof. The forward direction is immediate. Suppose that $\liminf_{n} dist(x_n, \mathcal{F}) =$ 0. It is seen in the proof of Lemma [3.1](#page-4-2) that $d(x_{n+1}, p) \leq d(x_n, p)$ for all $p \in \mathcal{F}$. This implies that $dist(x_{n+1}, \mathcal{F}) \leq dist(x_n, \mathcal{F})$. So the $\lim_{n} dist(x_n, \mathcal{F})$ exists, and sing the hypothesis, $\lim_{n} dist(x_{n+1}, \mathcal{F}) = 0$. Therefore we can choose a subsequence $\{x_{n_k}\}\$ of $\{x_n\}$ and a sequence $\{p_k\}$ in $\mathcal F$ such that for all $k \in \mathbb N$, $d(x_{n_k}, p_k) < \frac{1}{2^k}$ $\frac{1}{2^k}$. By Lemma [3.1](#page-4-2) we have $d(x_{n_{k+1}}, p_k) \leq d(x_{n_k}, p_k) < \frac{1}{2^k}$ $\frac{1}{2^k}$. Hence

$$
d(p_{k+1}, p_k) \le d(x_{n_{k+1}}, p_{k+1}) + d(x_{n_{k+1}}, p_k) < \frac{1}{2^{k+1}} + \frac{1}{2^k} < \frac{1}{2^{k-1}}.
$$

Thus $\{p_k\}$ is a Cauchy sequence in D and therefore converges (strongly) to some point $q \in D$. It follows that $\lim_{k} d(x_{n_k}, q) = 0$. Therefore, for $i \in$ $\{1, \cdots, m\},\$

 $dist(p_k, T_iq) \leq d_H(T_i p_k, T_iq) \leq L_i d(p_k, q) \to 0.$

54 M. S. Minjibir and S. Salisu

As $Tq \in \mathcal{CB}(D)$, $q \in \mathcal{F}$. Since $\lim_{n} d(x_n, q)$ exists, we conclude that

$$
\lim_{n} d(x_n, q) = 0.
$$

Next we present our convergence theorems for a countable family.

Let (X, d) be a Hadamard space and let D be a nonempty, closed and convex subset of X. Let $T_i: D \to \mathcal{CB}(D)$ be multi-valued demicontractive mappings with constants $\{k_i\} \subset (0,1), i \in N$. A sequence $\{x_n\}$ is defined iteratively as follows:

$$
\begin{cases}\nx_1 \in D; \\
y_n^{(0)} = x_n; \\
y_n^{(i)} = a_{ni}y_n^{(i-1)} \oplus (1 - a_{ni})z_n^{(i-1)}, \\
x_{n+1} = a_{nn}y_n^{(n-1)} \oplus (1 - a_{nn})z_n^{(n-1)}, \\
n = 1, 2, 3, \cdots,\n\end{cases} (3.4)
$$

where $z_n^{(i-1)} \in T_i y_n^{(i-1)}$, $a_{ni} \in [k_i, 1]$, $n \in \mathbb{N}$, $i = 1, \dots, n$.

Lemma 3.6. Let (X, d) be a $CAT(0)$ space and let D be a nonempty, closed and convex subset of X. Let $T_i: D \to \mathcal{CB}(D)$ be multi-valued demicontractive mappings with constants $\{k_i\} \subset (0,1)$, $i \in \mathbb{N}$ and let $\{x_n\}$ be defined by the iterative process in [\(3.4\)](#page-9-0). Suppose $\mathcal{F} := \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$ and $T_i p = \{p\}$ for all $p \in \mathcal{F}$. Then, $\lim_{n} d(x_n, p)$ exists for all $p \in \mathcal{F}$.

Proof. Let $p \in \mathcal{F}$. By lemma [2.2](#page-4-1) (ii), the scheme [\(3.4\)](#page-9-0) and the assumptions on T_i 's we have

$$
d(x_{n+1}, p)^2 \le a_{nn} d(y_n^{(n-1)}, p)^2 + (1 - a_{nn}) d(z_n^{(n-1)}, p)^2
$$

\n
$$
- a_{nn} (1 - a_{nn}) d(y_n^{n-1}, z_n^{(n-1)})^2
$$

\n
$$
\le a_{nn} d(y_n^{(n-1)}, p)^2 + (1 - a_{nn}) dist(z_n^{(n-1)}, T_n p)^2
$$

\n
$$
- a_{nn} (1 - a_{nn}) d(y_n^{(n-1)}, z_n^{(n-1)})^2
$$

\n
$$
\le a_{nn} d(y_n^{(n-1)}, p)^2 + (1 - a_{nn}) d_H (T_n y_n^{(n-1)}, T_n p)^2
$$

\n
$$
- a_{nn} (1 - a_{nn}) d(y_n^{(n-1)}, z_n^{(n-1)})^2
$$

\n
$$
\le a_{nn} d(y_n^{(n-1)}, p)^2 + (1 - a_{nn}) [d(y_n^{(n-1)}, p)^2 + k_n d(y_n^{(n-1)}, z_n^{(n-1)})^2]
$$

\n
$$
- a_{nn} (1 - a_{nn}) d(y_n^{(n-1)}, z_n^{(n-1)})^2
$$

\n
$$
\le d(y_n^{(n-1)}, p)^2 - (1 - a_{nn}) (a_{nn} - k_n) d(y_n^{(n-1)}, z_n^{(n-1)})^2
$$

$$
\leq d(y_n^{(n-3)}, p)^2 - \sum_{i=n-2}^n (1 - a_{ni})(a_{ni} - k_i) d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$
\n
$$
\leq d(y_n^{(0)}, p)^2 - \sum_{i=1}^n (1 - a_{ni})(a_{ni} - k_i) d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$
\n
$$
= d(x_n, p)^2 - \sum_{i=1}^n (1 - a_{ni})(a_{ni} - k_i) d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$
\n
$$
\leq d(x_n, p)^2.
$$

This implies that $\lim_{n} d(x_n, p)$ exists, as a monotonic nonincreasing sequence of real numbers that is bounded below by 0. \Box

Theorem 3.7. Let X, D, $\{T_i\}$, F and $\{x_n\}$ be as in Lemma [3.6](#page-9-1). Suppose $\liminf_n a_{ni} > k_i$ for each $i \in \mathbb{N}$ and let T_i be Lipschitzian maps for all $i \in \mathbb{N}$. Then $\lim_{n} dist(x_n, T_i x_n) = 0$ for all $i \in \mathbb{N}$.

Proof. As in the proof of Lemma [3.6,](#page-9-1)

$$
\sum_{i=1}^{n} (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2 \le d(x_n, p)^2 - d(x_{n+1}, p)^2
$$

for all $n \in \mathbb{N}$. This implies that

$$
\sum_{i=1}^{n} (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2 \le d(x_1, p)
$$

for all $n\in\mathbb{N}.$ And so

$$
\lim_n \sum_{i=1}^n (1 - a_{ni})(a_{ni} - k_i) d(y_n^{(i-1)}, z_n^{(i-1)})^2
$$

exists in R. Thus

$$
\lim_{n} (1 - a_{ni})(a_{ni} - k_i)d(y_n^{(i-1)}, z_n^{(i-1)})^2 = 0
$$

for all $i \in \mathbb{N}$. Since $\liminf_{n} a_{ni} > k_i$ for each $i \in \mathbb{N}$, it follows that

$$
\lim_{n} d(y_n^{(i-1)}, z_n^{(i-1)}) = 0 \quad \text{for each} \quad i \in \mathbb{N}.
$$
 (3.5)

Now, let $i \in \mathbb{N}$. Then

$$
\begin{aligned} & d(x_n, z_n^{(i-1)}) \\ & = d(y_n^{(0)}, z_n^{(i-1)}) \\ & \leq d(y_n^{(0)}, y_n^{(1)}) + d(y_n^{(1)}, y_n^{(2)}) + \cdots + d(y_n^{(i-2)}, y_n^{(i-1)}) + d(y_n^{(i-1)}, z_n^{(i-1)}) \\ & \leq d(y_n^{(0)}, z_n^{(0)}) + d(y_n^{(1)}, y_n^{(2)}) + \cdots + d(y_n^{(i-2)}, y_n^{(i-1)}) + d(y_n^{(i-1)}, z_n^{(i-1)}) \\ & \leq d(y_n^{(0)}, z_n^{(0)}) + d(y_n^{(1)}, z_n^{(1)}) + \cdots + d(y_n^{(i-2)}, y_n^{(i-1)}) + d(y_n^{(i-1)}, z_n^{(i-1)}) \\ & \vdots \\ & \leq d(y_n^{(0)}, z_n^{(0)}) + d(y_n^{(1)}, z_n^{(1)}) + \cdots + d(y_n^{(i-2)}, z_n^{(i-2)}) + d(y_n^{(i-1)}, z_n^{(i-1)}) \\ & \leq \sum_{k=1}^i d(y_n^{(k-1)}, z_n^{(k-1)}). \end{aligned}
$$

This and [\(3.5\)](#page-10-0) imply that

$$
\lim_{n} d(x_n, z_n^{(i-1)}) = 0 \quad \text{for each} \quad i \in \mathbb{N}.
$$
 (3.6)

Thus, $d(x_n, w_n^i) \leq d(x_n, z_n^{(i-1)}) + d(z_n^{(i-1)}, w_n^i)$ for all $w_n^i \in T_i x_n$. Therefore, dist $(x_n, T_i x_n) \leq d(x_n, z_n^{(i-1)}) + \text{dist}(z_n^{(i-1)}, T_i x_n).$

Using the fact that T_i is L_i -Lipschitzian for each $i \in \mathbb{N}$, we have the following

$$
dist(x_n, T_i x_n) \leq d(x_n, z_n^{(i-1)}) + dist(z_n^{(i-1)}, T_i x_n)
$$

\n
$$
\leq d(x_n, z_n^{(i-1)}) + d_H(T_i y_n^{(i-1)}, T_i x_n)
$$

\n
$$
\leq d(x_n, z_n^{(i-1)}) + L_i d(y_n^{(i-1)}, x_n)
$$

\n
$$
\leq d(x_n, z_n^{(i-1)}) + L_i [d(y_n^{(i-1)}, z_n^{i-1}) + d(z_n^{i-1}, x_n)]
$$

\n
$$
\leq (1 + L_i) d(x_n, z_n^{(i-1)}) + L_i d(y_n^{(i-1)}, z_n^{i-1}).
$$

Therefore, by [\(3.6\)](#page-11-0) and [\(3.5\)](#page-10-0) we have $\lim_{n} \text{dist}(x_n, T_i x_n) = 0$ for all $i \in \mathbb{N}$. \Box

Corollary 3.8. Let X, D, $\{T_i\}$ and $\{x_n\}$ be as in Theorem [3.7](#page-10-1). Suppose T_i is Δ -demiclosed at zero for each $i \in \mathbb{N}$. Then $\{x_n\}$ is Δ -convergent to a common fixed point of $\{T_i\}$.

Proof. Using Lemma [3.6](#page-9-1) in place of Lemma [3.1](#page-4-2) and Theorem [3.7](#page-10-1) in place of Theorem [3.2,](#page-6-1) the proof follows similar arguments as in the proof of Corollary $3.3.$

Corollary 3.9. Let X, D, $\{T_i\}$ and $\{x_n\}$ be as in Theorem [3.7](#page-10-1). Suppose D is compact. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_i\}$.

Proof. Using Lemma [3.6](#page-9-1) in place of Lemma [3.1](#page-4-2) and Theorem [3.7](#page-10-1) in place of Theorem [3.2,](#page-6-1) the proof follows similar arguments as in the proof of Corollary $3.4.$

Theorem 3.10. Let X, D, $\{T_i\}$, F and $\{x_n\}$ be as in Lemma [3.6](#page-9-1). Then $\{x_n\}$ converges strongly to a point $p \in \mathcal{F}$ if and only if $\liminf_n dist(x_n, \mathcal{F}) = 0$.

Proof. Using Lemma [3.6](#page-9-1) in place of Lemma [3.1,](#page-4-2) the proof follows similar arguments as in the proof of Theorem [3.5.](#page-8-0)

4. CONCLUSION

In this work we have been able to develop algorithms for fixed points of finite and countable families of demicontractive multi-valued maps. Our theorems concern more general maps than quasi-nonexpansive maps whose finite families were considered by Akbar and Eslamian $[1]$ in the setting of $CAT(0)$ spaces. In addition, our work complements the work of Chidume et al. in [\[6\]](#page-12-7).

REFERENCES

- [1] A. Abkar and M. Eslamian, Convergence theorems for a finite family of generalized nonexpansive multivalued mappings in $CAT(0)$ spaces, Nonlinear Anal., **75** (2012), 1895-1903.
- [2] M. Asadi, Sh. Ghasemzadehdibagi, S. Haghayeghi and N. Ahmad, Fixed point theorems for (α, p) -nonexpansive mappings in $CAT(0)$ spaces, Nonlinear Funct. Anal. Appl., 26(5) (2021), 1045-1057.
- [3] M. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, 1999.
- [4] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., **20** (1967), 197-229.
- [5] P. Chaoha and A. Phon-on, A note on fixed point sets in $CAT(0)$ spaces, J. Math. Anal. Appl., 320 (2006), 983-987.
- [6] C.E. Chidume, A.U. Bello and P. Ndambomve, Strong and ∆-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in $CAT(0)$ spaces, Abstr. Appl. Anal., 2014, 2014:6.
- [7] C.E. Chidume, C.O. Chidume, N. Djitté and M.S. Minjibir, Convergence theorems for fixed points of multivalued strictly pseudocontractive mappings in Hilbert spaces, Abstr. Appl. Anal., 2013, Article ID 629468, 10 pages, 2013.
- [8] C.E. Chidume and J.N. Ezeora, Krasnoselskii-type algorithm for family of multi-valued strictly pseudo-conttractive mappings, Fixed Point Theory and Appl., 2014, article 111, 2014.
- [9] S. Dhompongsa, A. Kaewkhao and B. Panyanak, On Kirk's strong convergence theorem for multivalued nonexpansive mappings on $CAT (0)$ spaces, Nonlinear Anal., 75 (2012), 459-468.
- [10] S. Dhompongsa and B. Panyanak, On ∆−convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572-2579.

58 M. S. Minjibir and S. Salisu

- [11] S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal., 65 (2006), 762-772.
- [12] S. Dhompongsa, W. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 35-45.
- [13] G.Z. Eskandani and M. Raeisi, On the zero point problem of monotone operators in Hadamard spaces, Numer. Algor., 80 (2019), 1155-1179.
- [14] G.Z. Eskandani, S. Azarmi and M. Raeisi, Products of resolvents and multivalued hybrid mappings in $CAT(0)$ spaces, Acta Math. Sci., 38 (2018), 791-804.
- [15] T.L. Hicks and J.D. Kubicek, On the Mann Iteration Process in a Hilbert Space, J. Math. Anal. Appl., 59 (1977), 498-504.
- [16] S.H. Khan and M. Abbas, Strong and ∆-convergence of some iterative schemes in $CAT(0)$ spaces, Comput. Math. Appl., 61 (2011), 109-116.
- [17] J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R.L. Gupta, Demiclosedness principle and convergence theorems for Lipschitzian type nonself mappings in $CAT(0)$ spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
- [18] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689-3696.
- [19] W.A. Kirk, Geodesic geometry and fixed point theory II, in: International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, 2004, pp. 113-142.
- [20] W.A. Kirk, Krasnoselskii's iteration process in hyperbolic space, 4(4) (1981-1982), 371- 381.
- [21] U. Kohlenbach and L. Leustean, Mann iterates of directionally nonexpansive mappings in hyperbolic spaces, Abst. Appl. Anal., 2003:8 (2003), 449-477.
- [22] K. Lerkchaiyaphum and W. Phuengrattana, Iterative approaches to solving convex minimization problems and fixed point problems in complete $CAT(0)$ spaces, Numer. Algor., 77 (2018), 727-740.
- [23] T.-C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179-182.
- [24] G.A. Okeke, M. Abbas and M. de la Sen, Fixed point theorems for convex minimization problems in $CAT(0)$ spaces, Nonlinear Funct. Anal. Appl., 25(4) (2020), 671-696.
- [25] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic space, Nonlinear Anal., 15 (1990), 537-558.
- [26] S. Saejung, Halpern's Iteration in CAT(0) Spaces, Fixed Point Theory Appl., 2010, 471781 (2009).
- [27] J. Tang, J. Zhu, S.S. Chang, M. Liu and X. Li, A new modified proximal point algorithm for a finite family of minimization problem and fixed point for a finite family of demicontractive mappings in Hadamard spaces, Nonlinear Funct. Anal. Appl., 25(3) (2020), 563-577.