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Abstract. In this paper we present fixed point theory for condensing mulitimaps on ab-

stract convex uniform spaces. Also we obtain a nonlinear alternative of Leray-Schauder type

for Mönch type maps. Our main results unify and improve some well-know results in the

literature.

1. Introduction

Throughout the paper, 〈X〉 denotes the family of all nonempty finite subsets
of nonempty set X. Let X and Y be topological spaces with A ⊆ X and
B ⊆ Y . Let F : X ( Y be a multimap with nonempty values. The image of
A under F is the set F (A) =

⋃
x∈A F (x); and the inverse image of B under F

is F−(B) = {x ∈ X : F (x) ∩B 6= ∅}. F is said to be:
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(i) closed if its graph, Gr(F ) = {(x, y) ∈ X × Y : y ∈ F (x)} is a closed
set in the product space X × Y ,

(ii) upper semicontinuous, if for each closed set B ⊆ Y , F−(B) = {x ∈
X : F (x) ∩B 6= ∅} is closed in X,

(iii) compact if F (X) is compact subset of Y .
It is well-known that if Y is compact Hausdorff and F (x) is closed for each
x ∈ X, then F is upper semicontinuous if and only if F is closed. For the
remainder of this paper we assume all topological spaces are Hausdorff.

Definition 1.1. An abstract convex space (E, D; Γ) consists of a nonempty
set E, a nonempty set D, and a multimap Γ : 〈D〉 ( E with nonempty values.
When D ⊆ E, the space is denoted by (E ⊇ D; Γ). In such a case, a subset
X of E is said to be Γ-convex if, for any A ∈ 〈X ∩ D〉, we have Γ(A) ⊆ X.
For a nonempty subset Q of E, the Γ-convex hull of Q, denoted by coΓ(Q), is
defined by

coΓ(Q) =
⋂
{C : Q ⊆ C ⊆ E, C is Γ-convex},

and the closed Γ-convex hull of Q, denoted by coΓ(Q), is defined by coΓ(Q) =
coΓ(Q). In the case E = D, let (E; Γ) := (E, E; Γ).
An abstract convex space with any topology is called an abstract convex topo-
logical space.

Examples 1.2. A convexity space (E, C) in the classical sense [3], G-convex
spaces, C-spaces, convex spaces and almost convex spaces [4] are the main
examples of abstract convex spaces.

Definition 1.3. Let (E, D; Γ) be an abstract convex space and Z a set. For
a multimap F : E ( Z with nonempty values, if a multimap G : D ( Z
satisfies

F (Γ(A)) ⊆ G(A), for all A ∈ 〈X〉,
then G is called a KKM map with respect to F . A KKM map G : D ( Z is
a KKM map with respect to the identity map 1E . A multimap F : E ( Z is
said to have the KKM property if, for a KKM map G : D ( Z with respect
to F , the family {G(x)}x∈X has the finite intersection property. We denote

KKM (E,Z) := {F : E ( Z : F has the KKM property}.
Definition 1.4. For an abstract convex space (E ⊇ D; Γ), let X be a Γ-convex
subset of E, and D′ a nonempty subset of X ∩ D. Let Γ′ : 〈D′〉 ( X be a
map defined by

Γ′(A) = Γ(A) ⊆ X for A ∈ D′.
Then (X ⊇ D′; Γ′) itself is an abstract convex space called a subspace.

Lemma 1.5. (Park [6]) Let (E ⊇ D; Γ) be an abstract convex space, (X ⊇
D′; Γ′) a subspace, Z a set. If F ∈ KKM(E,Z), then F |X ∈ KKM(X, Z).
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Definition 1.6. For a given abstract convex space (E, D; Γ) and a topological
space X, a map H : X ( E is called a Φ-map if there exists a map G : X ( D
such that

(i) for each x ∈ X, A ∈ 〈G(x)〉 implies Γ(A) ⊆ H(x); and
(ii) X =

⋃{Int G−(y) : y ∈ D}.
If (E,U) is a uniform space, then its topology is induced by the uniformity

U is the family of all subsets G of E such that for each in x ∈ G, there is
U ∈ U such that U [x] ⊆ G, where U [x] = {y ∈ X : (x, y) ∈ U}. If K ⊆ E
and U ∈ U , then U [K] =

⋃
x∈K U [x]. A subset S of a uniform space E is said

to be precompact if, for any entourage V , there is a finite subset N of E such
that S ⊆ V [N ].

Definition 1.7. An abstract convex uniform space (E, D; Γ;U) is an abstract
convex space so that its topology is induced by the uniformity U . In section
2, we shall assume that the convex structure Γ and the base B of U satisfy the
following conditions:

V [K] is Γ−convex whenever K is a Γ−convex subset of E and V ∈ B; (1.1)

coΓ(A) is precompact whenever A is precompact. (1.2)

In (E, D; Γ;U), a subset Z of E is called a Φ-set if, for any entourage U ∈ U ,
there exists a Φ-map H : Z ( E such that Gr(T ) ⊆ U . If E itself is a Φ-set,
then it is called a Φ-space.

Note part (i) of the following lemma was proved in [5], in the setting of
locally G-convex spaces.

Lemma 1.8. Let (E, Γ;U) be an abstract convex space. Then the following
statements hold:

(i) if K is a Γ-convex subset E, then its closure K is also Γ-convex,
(ii) coΓ(Q) =

⋂{C : Q ⊆ C ⊆ E, C is closed and Γ-convex},
(iii) if X ⊆ E be a Φ-set and Y ⊆ X then Y is also a Φ-set.

Proof. (i) Let B be a base of U as described above, V ∈ B, and A = {a1, ...an} ⊆
〈K〉. Choose {x1, ...xn} ⊆ 〈K〉 with xi ∈ V [ai] ∩K for any i = 1, ..., n. Since
V [K] is Γ-convex and ai ∈ V [xi] ⊆ V [K] for any i = 1, ..., n, we infer that
Γ(A) ⊆ V [K] for all V ∈ B, and hence Γ(A) ⊆ ⋂

V ∈B V [K] = K. This shows
that K is Γ-convex.
(ii) By (i), coΓ(Q) is a closed, Γ-convex set which contains Q, so

⋂
{C : Q ⊆ C ⊆ E,C is closed and Γ-convex} ⊆ coΓ(Q).
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On the other hand, we have
⋂
{C : Q ⊆ C ⊆ E, C is closed and Γ-convex}

=
⋂
{C : Q ⊆ C ⊆ E,C is closed and Γ-convex}

⊇
⋂
{C : Q ⊆ C ⊆ E,C is Γ-convex}

= coΓ(Q) = coΓ(Q).

(iii) Since X is a Φ-set, for any entourage U ∈ U , there exists a Φ-map
H : X ( E such that Gr(H) ⊆ U . Since H : X ( E is a Φ-map there
exists a map G : X ( E such that for each x ∈ X, A ∈ 〈G(x)〉 implies
Γ(A) ⊆ H(x), and X =

⋃{Int G−(y) : y ∈ E}. As a result, for each
x ∈ Y ⊆ X, A ∈ 〈G|Y (x)〉 implies Γ(A) ⊆ H(x) = H|Y (x) and

Y = Y ∩X = Y ∩
⋃
{Int G−(y) : y ∈ E}

=
⋃
{Y ∩ Int G−(y) : y ∈ E} =

⋃
{Int G−

|Y (y) : y ∈ E}.
Thus, H|Y : Y ( E is a Φ-map and Gr(H|Y ) ⊆ Gr(H) ⊆ U . ¤

Theorem 1.9. ([6,8]) Let (E, D; Γ;U) be an abstract convex uniform space,
and F ∈ KKM(E,E) be a closed compact map. If F (E) is a Φ-set, then F
has a fixed point.

Examples 1.10. (i) Any locally convex subset of a topological vector space
E is a Φ-set in E.

(ii) Any subset of the Zima type in a G-convex uniform space (E ⊇ D; Γ;U)
such that every singleton is Γ-convex is a Φ-set.

(iii) For a locally G-convex space (E ⊇ D; Γ;U), any nonempty subset X
of E is a Φ-set. A locally G-convex space (E ⊇ D; Γ;U) is a Φ-set.

(iv) A metric G-convex space (E ⊇ D; Γ) is a Φ-space whenever D is dense
in X and every open ball is Γ-convex.

2. Fixed point theory

A slight modifications of the proof of Lemma 3.4 in [5], yields the following
lemma.

Lemma 2.1. Let X be a nonempty closed, Γ-convex subset of an abstract
convex uniform space (E, Γ;U) and F : X ( X. If ∅ 6= Q ⊆ X, then
there exists a closed, Γ-convex set K = K(F, Q) with Q ⊆ K ⊆ X and
K = coΓ(F (K) ∪Q).
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Proof. Let

F = {A ⊆ E : A is closed, Γ-convex and coΓ(F (X ∩A) ∪Q) ⊆ A}.
Since E ∈ F , F 6= ∅. Define a partial order by inverse inclusion, that is, for
A, B ∈ F , A ≤ B ⇔ B ⊆ A. Let C be any chain in F . Put M =

⋂
A∈C A.

Since each A ∈ C is closed, Γ-convex and contain Q, we infer that M is closed,
Γ-convex and contain Q, for all A ∈ C, it follows from

F (M ∩X) ∪Q ⊆ F (A ∩X) ∪Q

that coΓ(F (M ∩X) ∪Q) ⊆ coΓ(F (A ∩X) ∪Q) ⊆ A and so

coΓ(F (M ∩X) ∪Q) ⊆
⋂

A∈C
A = M.

Thus M ∈ F and M is an upper bound of C. By Zorn’s lemma, F has a
maximal element, say K. We claim that coΓ(F (K ∩ X) ∪ Q) = K. In fact,
put K0 = coΓ(F (K ∩X) ∪Q). It is obvious that K0 is closed, Γ-convex and
contain Q. Furthermore, since coΓ(F (K0∩X)∪Q) ⊆ coΓ(F (K∩X)∪Q) = K0,
we have K0 ∈ F and K0 ≥ K. By the maximality of K, we conclude that
K = K0, that is

coΓ(F (K ∩X) ∪Q) = K.

Finally, since F (X) ⊆ X, it follows since X is closed that K ⊆ X and
coΓ(F (K) ∪Q) = K. ¤

Theorem 2.2. Let X be a nonempty closed, Γ-convex subset of an abstract
convex uniform Φ-space (E, Γ;U). Let F ∈ KKM(X, X) be a closed map,
then F has a fixed point provided the following condition hold:

for any x0 ∈ X, and A ⊆ X with A = coΓ({x0} ∪ F (A))
we have that A is compact.

(2.1)

Proof. Putting Q = {x0} in Lemma 2.1, we obtain that there exists a closed,
Γ-convex set K ⊆ X with K = coΓ(F (K) ∪ {x0}). Since (2.1) holds, then K
is compact. Now F : K ( K is closed and compact and F|K ∈ KKM(K, K)
by Lemma 1.5. Since E is a Φ-space, then F (K) is a Φ-set and so by Theorem
1.9, F has a fixed point. ¤

Theorem 2.3. Let X be a nonempty complete, Γ-convex subset of an abstract
convex uniform Φ-space (E,Γ;U). Let F ∈ KKM(X,X) be a closed map, then
F has a fixed point provided that the following condition hold:

whenever x0 ∈ X, A ⊆ X, F (A) ⊆ A and A \ coΓ(F (A)) ⊆ {x0}
we have that A is a precompact subset of X.

(2.2)
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Proof. Choose x0 ∈ X and let A =
⋃

i≥0 F i(x0) where F 0(x0) = {x0}. Then
F (A) ⊆ A and A \ coΓ(F (A)) ⊆ {x0}, so A is precompact, and hence A is
compact since it is a precompact and closed subset of the complete set X.
Define G : A ( A by G(x) = F (x) ∩ A. Since F is closed and A is compact,
it is easy to see that G(x) 6= ∅, ∀ x ∈ A. Put

A = {Y : Y is a nonempty closed subset of A and G(Y ) ⊆ Y }.
Since A ∈ A, A 6= ∅. Define a partial order ≤ on A by A ≤ B ⇔ B ⊆ A.
Let C be any chain in A and put M =

⋂
L∈C . Now M is an upper bound

of C and so, by Zorn’s Lemma, A has a maximal element, say Q. Since F
is closed, so is G, and this with the compactness of A guarantees that G is
upper semicontinuous. Therfore, G(Q) is compact. Putting Y = G(Q) and
noting that G(Y ) = G(G(Q)) ⊆ G(Q) = Y , the maximality of Q gives us that
Q = Y . Thus

Q = G(Q) = F (Q) ∩A ⊆ F (Q).
Let K = K(F,Q) be the subset of X described in Lemma 2.1, so K =
coΓ(F (K) ∪ Q). Since Q ⊆ F (Q) ⊆ K, we have K = coΓ(F (K)) and so
we have shown that there exists a closed, Γ-convex subset K ⊆ X such that
K = coΓ(F (K). Now (2.2) implies that K is precompact subset of X and
note in fact that it is compact. Thus by Theorem 1.9, F : K ( K has a fixed
point. ¤

Now, we present a Mönch type result for KKM multimaps.

Theorem 2.4. Let X be a nonempty complete, Γ-convex subset of an abstract
convex uniform Φ-space (E, Γ;U). Suppose F ∈ KKM(X,X) is closed, and
satisfies the following properties:

F maps compact sets into relatively compact sets; (2.3)

A = coΓ({x0} ∪ F (A)) with A = C and C ⊆ A countable,

implies A is compact;
(2.4)

for any relatively compact subset A of X

there exists a countable subset B ⊆ A with B = A;
(2.5)

F (A) ⊆ F (A) for any realatively compact subset A of X. (2.6)
Then F has a fixed point.

Proof. We follow the proof of Theorem 2.5 in [2]. Let D0 = coΓ({x0}), Dn+1 =
coΓ({x0} ∪ F (Dn)), n = 0, 1, 2, ... and

D∞ =
∞⋃

n=0

Dn.
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Now for n = 0, 1, 2, ... notice Dn is Γ-convex. Also by induction, we see that

D0 ⊆ D1 ⊆ ... ⊆ Dn−1 ⊆ Dn ⊆ ...

Consequently, D∞ is Γ-convex. Since for each n,

coΓ({x0} ∪ F (Dn)) ⊆ coΓ({x0} ∪ F (D∞)),

so

D∞ =
∞⋃

n=0

coΓ({x0} ∪ F (Dn)) ⊆ coΓ({x0} ∪ F (D∞)).

On the other hand, D∞ is a Γ-convex set which contains
⋃∞

n=0 F (Dn) =
F (D∞), consequently coΓ({x0} ∪ F (D∞)) ⊆ D∞. Thus

D∞ = coΓ({x0} ∪ F (D∞)). (2.7)

It is easy to see (use induction with (1.2), note X is complete, and (2.3)) that
Dn is relatively compact for n = 0, 1, 2, ... Now (2.5) implies that for each
n = 0, 1, 2, ... there exists Cn with Cn countable, Cn ⊆ Dn, and Cn = Dn. Let
C∞ =

⋃∞
n=0 Cn. Now since

∞⋃

n=0

Dn ⊆
∞⋃

n=0

Dn ⊆
∞⋃

n=0

Dn,

we have

∞⋃

n=0

Dn =
∞⋃

n=0

Dn = D∞ and
∞⋃

n=0

Dn =
∞⋃

n=0

Cn =
∞⋃

n=0

Cn = C∞.

Thus D∞ = C∞. This together with (2.4) and (2.7) implies that D∞ is
compact. From (2.7) we have F (D∞) ⊆ D∞, and this together with (2.6)
yields

F (D∞) ⊆ F (D∞) ⊆ D∞.

Also notice F|D∞ ∈ KKM(D∞, D∞) is closed. Now apply Theorem 1.9. ¤

Corollary 2.5. Let X a nonempty complete, Γ-convex subset of a metrizable
abstract convex uniform space (E, Γ) such that every open ball is convex and
1X ∈ KKM(X, X). Suppose that F : X → X is a continuous map with the
property (2.4). Then F has a fixed point.

Proof. Since every open ball is convex, then (E, Γ) is an abstract convex uni-
form space from part (iv) of Examples 1.10. Since 1X ∈ KKM(X, X) and
F : X → X is continuous, then F ∈ KKM(X, X) and (2.3) holds. Also (2.5)
follows, since compact metric spaces are separable. Apply Theorem 2.4. ¤
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Now we extend the concept of measure of noncompactness and condensing
multimaps on locally G-convex in Huang et al. [5] to abstract convex uniform
spaces.

Definition 2.6. For a subset A of abstract convex uniform spaces (E,Γ;U),
define

Ψ(A) = {V ∈ B : A ⊆ V [S], for some precompact subset S of E}.
We call the set Ψ(A) a measure of noncompactness of A.

Essentially the same reasoning as in [5, Proposition 3.2] guarantees the
following result.

Theorem 2.7. Let A and B be subsets of (E,Γ;U). Then,
(i) A is precompact if and only if Ψ(A) = B;
(ii) Ψ(A) ⊇ Ψ(B) if A ⊆ B;
(iii) Ψ(coΓ(A)) = Ψ(A);
(iv) Ψ(A ∪B) = Ψ(A) ∩Ψ(B).

Definition 2.8. Suppose that X be a nonempty subset of an abstract convex
uniform space (E, Γ;U) and Ψ is the measure of noncompactness in Definition
2.6. A multimap F : X ( E is called condensing provided that if A ⊆ X and
Ψ(F (A)) ⊆ Ψ(A), then A is precompact. F is called generalized condensing
if, whenever A ⊆ X, F (A) ⊆ A and A \ coΓ(F (A)) is precompact, Then A is
precompact.
It is obvious that every compact map or every map defined on a compact set
is condensing. Also, every condensing map is generalized condensing.

Remark 2.9. Every condensing (respectively generalized condensing) map
F : X ( X satisfies condition (2.1) (respectively (2.2)). Thus, by Theorems
2.2 and 2.3, we get the following.

Corollary 2.10. Let X be a nonempty complete, Γ-convex subset of an ab-
stract convex uniform Φ-space (E,Γ;U). If F ∈ KKM(X, X) is either con-
densing or generalized condensing and closed, then F has a fixed point.

3. Essentialty for Mönch type mappings

Let (E,Γ;U) be an abstract convex uniform space, U an open subset of E
and x0 ∈ U .

Definition 3.1. We let M(U,E) denotes the set of all continuous maps F :
U → E which satisfy Mönch’s condition (i.e., if C ⊆ coΓ({x0} ∪ F (C)) and
C ⊆ U is countable, then C is compact).
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Definition 3.2. We let F ∈ M∂U (U,E) if F ∈ M(U, E) with x 6= F (x) for
x ∈ ∂U ; here ∂U denotes the boundary of U in E.

Definition 3.3. A map F ∈ M∂U (U, E) is essential in M∂U (U, E) if for every
G ∈ M∂U (U,E) with G|∂U = F|∂U there exists x ∈ U with x = G(x)

Definition 3.4. Let (E,Γ;U) be an abstract convex uniform space. Through-
out this section, we will assume that the convex structure Γ satisfies the fol-
lowing conditions:

for each a ∈ E, the multimap x ( coΓ{a, x} is closed. (3.1)

for each a ∈ E, there exists a continuous map

ω(t, x) : [0, 1]×E → coΓ{a, x} such that ω(0, x) = a and ω(1, x) = x.
(3.2)

Let E be a topological vector space, A ⊆ E, a ∈ E, and Γ(A) = conv(A).
Let ω(t, x) = (1 − t)a + tx, and it is easy to show that (E, Γ) satisfies (3.1)
and (3.2).

Definition 3.5. A metric space (M,d) is said be a hyperconvex metric space
if for any collection of points xα of M and any collection rα of non-negative
real numbers with d(xα, xβ) ≤ rα + rβ, we have

⋂
α

B(xα, rα) 6= ∅.

For each A ⊆ M , Set

Γ(A) = co(A) =
⋂
{B ⊆ M : B is a closed ball in M such that A ⊂ B}.

It is well known that for any hyperconvex metric space M there exist an
index set I and a natural isometric embedding from M into l∞(I), and a
nonexpansive retraction r : l∞(I) → M . For each a, b ∈ M we have

r(conv(a, b))

⊆ r(
⋂
{B ⊆ l∞ : B is a closed ball in l∞ such that conv(a, b) ⊂ B})

=
⋂
{B ⊆ M : B is a closed ball in M such that {a, b} ⊂ B} = co(a, b).

Thus,
r(conv(a, b)) ⊆ co(a, b).

Let ω(t, x) = r((1 − t)a + tx). Then ω is continuous and ω(0, x) = a and
ω(1, x) = x. Also, it is easy to see that the map x → co(a, x) is closed. Thus,
(M, Γ) satisfies (3.1) and (3.2).
The proof of the following theorem follows the lines of Theorem 2.1 in [1].
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Theorem 3.6. Let (E,Γ;U) be an abstract convex uniform space which satis-
fies (3.1) and (3.2), U an open subset of E and x0 ∈ U . Suppose F ∈ M(U,E)
with

the constant map x0 is essential in M∂U (U, E) (3.3)

and
x 6∈ coΓ({x0} ∪ F (x)) for any x ∈ ∂U (3.4)

holding. Also assume that

E is such that any closed subset is compact
iff it is sequentially compact.

(3.5)

Then F is essential in M∂U (U, E).

Proof. Let H ∈ M∂U (U, E) with H|∂U = F|∂U . We must show H has a fixed
point in U . Consider

B = {x ∈ U : x ∈ coΓ({x0} ∪H(x))}.
Now B 6= ∅ since x0 ∈ U . Let xα ∈ B be a convergent net with xα → x ∈ U.
Since H is continuous, so the multimap x ( coΓ{a,H(x)} is closed from (3.1).
This together with xα ∈ coΓ({x0}∪H(xα)) implies that x ∈ coΓ({x0}∪H(x)),
which shows that B is closed. In addition, B ∩ ∂U = ∅ since (3.4) holds and
H|∂U = F|∂U . We now claim that there exists a continuous µ : U → [0, 1] with
µ(∂U) = 0 and µ(B) = 1. Since uniform topological spaces are completely
regular, the claim will be true if we show B is compact. To see this let
C = {xn}∞n=1 be any sequence in B. We have C ⊆ coΓ({x0} ∪H(C)). Since
H ∈ M∂U (U, E), we have that C is compact and so is sequentially compact
by (3.5). Without loss of generality, we may assume xn → x ∈ C. Now
since B is closed, we get x ∈ B = B. Consequently B = B is sequentially
compact, so is compact from (3.5). By (3.2), there exists a continuous map
ω(t, x) : [0, 1]×E → coΓ{x0, x} such that ω(0, x) = x0 and ω(1, x) = x.
Define a map Rµ : U → E by

Rµ(x) = ω(µ(x),H(x)).

We first show Rµ satisfies the Mönch condition. Let C ⊆ U be countable and

C ⊆ coΓ({x0} ∪Rµ(C)).

Now since Rµ(x) = ω(µ(x),H(x)) ⊆ coΓ({x0} ∪ H(x))} we have Rµ(C) ⊆
coΓ({x0} ∪H(C)). Thus

C ⊆ coΓ({x0} ∪Rµ(C)) ⊆ coΓ({x0} ∪H(C)).

Since H ∈ M∂U (U,E) we have that C is compact. Thus Rµ ∈ M∂U (U,E)
with (Rµ)|∂U = x0. Now since the constant map x0 is essential in M∂U (U,E)
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there exists x ∈ U with x = Rµ(x). Consequently, x ∈ B and so µ(x) = 1 and
Rµ(x) = ω(1, H(x)) = H(x). Thus x = H(x). ¤

We give now an example of a constant essential map in M∂U (U,E).

Theorem 3.7. Let (E, Γ;U) be a complete metrizable, abstract convex uniform
space such that every open ball is Γ-convex, 1E ∈ KKM(E, E), and as in
section 2 we assume (1.1), (1.2) hold. Let U be an open subset of E with
x0 ∈ U . Then the constant map x0 is essential in M∂U (U, E).

Proof. We follow the proof of Theorem 2.5 in [1]. Let θ ∈ M∂U (U, E) with
θ|∂U = x0. We must show that there exists x ∈ U with θ(x) = x. Let
Q = coΓ(θ(U)) and let F : Q → Q be given by

F (x) =
{

θ(x) x ∈ U,
x0 otherwise.

Now x0 ∈ Q, F : Q → Q is continuous and satisfies the Mönch condition. To
see this let C ⊆ Q be countable with C ⊆ coΓ({x0} ∪ F (C)). Then

C ⊆ coΓ({x0} ∪ θ(U ∩ C)).

Notice C ∩ U ⊆ Q is countable and C ∩ U ⊆ coΓ({x0} ∪ θ(U ∩ C)). Now
since θ ∈ M∂U (U, E) we have C ∩ U is compact. Then since θ is continuous,
θ(C ∩ U) is compact, and now since (E,Γ;U) satisfies (1.2) and is complete,
coΓ({x0} ∪ θ(U ∩ C)) is compact. Thus since

C ⊆ coΓ({x0} ∪ θ(U ∩ C))

we have that C is compact. Corollary 2.5 guarantees that there exists x ∈ Q
with F (x) = x. Now if x 6∈ U we have x0 = F (x) = x, which is a contradiction
since x0 ∈ U . Thus x ∈ U so x = F (x) = θ(x). ¤

Combining Theorem 3.6 and Theorem 3.7 gives the following nonlinear al-
ternative of Leray-Schauder type for Mönch type maps.

Theorem 3.8. Let (E, Γ;U) be a complete metrizable abstract convex uniform
space such that every open ball is Γ-convex, 1E ∈ KKM(E, E), and as in
section 2 we assume (1.1), (1.2) hold. Let U be an open subset of E with
x0 ∈ U . Suppose F ∈ M∂U (U, E) satisfies (3.4). Then F is essential in
M∂U (U, E) (in particular F has a fixed point in U).
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