Nonlinear Functional Analysis and Applications Vol. 14, No. 1 (2009), pp. 109–120

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2009 Kyungnam University Press

FIXED POINT THEOREMS FOR CONDENSING MULTIMAPS ON ABSTRACT CONVEX UNIFORM SPACES

A. Amini-Harandi¹, A. P. Farajzadeh², D. O'Regan³ and R. P. Agarwal⁴

> ¹Department of Mathematics, University of Shahrekord Shahrekord, 88186-34141, Iran e-mail: aminih_a@yahoo.com

²Department of Mathematics, Razi University Kermanshah, 67149, Iran e-mail: ali-ff@sci.razi.ac.ir

³Department of Mathematics, National University of Ireland Galway, Ireland e-mail: donal.oregan@nuigalway.ie

⁴Department of Mathematical Sciences, Florida Institute of Technology Melbourne, FL 32901, USA. e-mail: agarwal@fit.edu

Abstract. In this paper we present fixed point theory for condensing mulitimaps on abstract convex uniform spaces. Also we obtain a nonlinear alternative of Leray-Schauder type for Mönch type maps. Our main results unify and improve some well-know results in the literature.

1. INTRODUCTION

Throughout the paper, $\langle X \rangle$ denotes the family of all nonempty finite subsets of nonempty set X. Let X and Y be topological spaces with $A \subseteq X$ and $B \subseteq Y$. Let $F: X \multimap Y$ be a multimap with nonempty values. The image of A under F is the set $F(A) = \bigcup_{x \in A} F(x)$; and the inverse image of B under F is $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. F is said to be:

⁰Received November 15, 2007. Revised September 12, 2008.

 $^{^02000}$ Mathematics Subject Classification: 47H10, 54H25.

 $^{^0\}mathrm{Keywords}:$ Fixed point, condensing multimaps, KKM map, abstract convex uniform space.

- (i) closed if its graph, $Gr(F) = \{(x, y) \in X \times Y : y \in F(x)\}$ is a closed set in the product space $X \times Y$,
- (ii) upper semicontinuous, if for each closed set $B \subseteq Y$, $F^{-}(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$ is closed in X,
- (iii) compact if F(X) is compact subset of Y.

It is well-known that if Y is compact Hausdorff and F(x) is closed for each $x \in X$, then F is upper semicontinuous if and only if F is closed. For the remainder of this paper we assume all topological spaces are Hausdorff.

Definition 1.1. An abstract convex space $(E, D; \Gamma)$ consists of a nonempty set E, a nonempty set D, and a multimap $\Gamma : \langle D \rangle \multimap E$ with nonempty values. When $D \subseteq E$, the space is denoted by $(E \supseteq D; \Gamma)$. In such a case, a subset X of E is said to be Γ -convex if, for any $A \in \langle X \cap D \rangle$, we have $\Gamma(A) \subseteq X$. For a nonempty subset Q of E, the Γ -convex hull of Q, denoted by $co_{\Gamma}(Q)$, is defined by

$$co_{\Gamma}(Q) = \bigcap \{ C : Q \subseteq C \subseteq E, C \text{ is } \Gamma\text{-convex} \},\$$

and the closed Γ -convex hull of Q, denoted by $\overline{co}_{\Gamma}(Q)$, is defined by $\overline{co}_{\Gamma}(Q) = \overline{co}_{\Gamma}(Q)$. In the case E = D, let $(E; \Gamma) := (E, E; \Gamma)$.

An abstract convex space with any topology is called an *abstract convex topological space*.

Examples 1.2. A convexity space (E, C) in the classical sense [3], *G*-convex spaces, *C*-spaces, convex spaces and almost convex spaces [4] are the main examples of abstract convex spaces.

Definition 1.3. Let $(E, D; \Gamma)$ be an abstract convex space and Z a set. For a multimap $F : E \multimap Z$ with nonempty values, if a multimap $G : D \multimap Z$ satisfies

$$F(\Gamma(A)) \subseteq G(A)$$
, for all $A \in \langle X \rangle$,

then G is called a KKM map with respect to F. A KKM map $G: D \multimap Z$ is a KKM map with respect to the identity map 1_E . A multimap $F: E \multimap Z$ is said to have the KKM property if, for a KKM map $G: D \multimap Z$ with respect to F, the family $\{\overline{G(x)}\}_{x \in X}$ has the finite intersection property. We denote

KKM (E,Z) := { $F : E \multimap Z : F$ has the KKM property}.

Definition 1.4. For an abstract convex space $(E \supseteq D; \Gamma)$, let X be a Γ -convex subset of E, and D' a nonempty subset of $X \cap D$. Let $\Gamma' : \langle D' \rangle \multimap X$ be a map defined by

$$\Gamma'(A) = \Gamma(A) \subseteq X \text{ for } A \in D'$$

Then $(X \supseteq D'; \Gamma')$ itself is an abstract convex space called a subspace.

Lemma 1.5. (Park [6]) Let $(E \supseteq D; \Gamma)$ be an abstract convex space, $(X \supseteq D'; \Gamma')$ a subspace, Z a set. If $F \in KKM(E, Z)$, then $F|_X \in KKM(X, Z)$.

110

Definition 1.6. For a given abstract convex space $(E, D; \Gamma)$ and a topological space X, a map $H: X \multimap E$ is called a Φ -map if there exists a map $G: X \multimap D$ such that

- (i) for each $x \in X$, $A \in \langle G(x) \rangle$ implies $\Gamma(A) \subseteq H(x)$; and (ii) $X = \bigcup_{x \in C} I_{x} \cap C^{-}(x)$: $x \in D$
- (ii) $X = \bigcup \{ Int \ G^-(y) : y \in D \}.$

If (E, \mathcal{U}) is a uniform space, then its topology is induced by the uniformity \mathcal{U} is the family of all subsets G of E such that for each in $x \in G$, there is $U \in \mathcal{U}$ such that $U[x] \subseteq G$, where $U[x] = \{y \in X : (x, y) \in U\}$. If $K \subseteq E$ and $U \in \mathcal{U}$, then $U[K] = \bigcup_{x \in K} U[x]$. A subset S of a uniform space E is said to be precompact if, for any entourage V, there is a finite subset N of E such that $S \subseteq V[N]$.

Definition 1.7. An abstract convex uniform space $(E, D; \Gamma; \mathcal{U})$ is an abstract convex space so that its topology is induced by the uniformity \mathcal{U} . In section 2, we shall assume that the convex structure Γ and the base \mathcal{B} of \mathcal{U} satisfy the following conditions:

V[K] is Γ - convex whenever K is a Γ - convex subset of E and $V \in \mathcal{B}$; (1.1)

 $co_{\Gamma}(A)$ is precompact whenever A is precompact. (1.2)

In $(E, D; \Gamma; \mathcal{U})$, a subset Z of E is called a Φ -set if, for any entourage $U \in \mathcal{U}$, there exists a Φ -map $H : Z \multimap E$ such that $Gr(T) \subseteq U$. If E itself is a Φ -set, then it is called a Φ -space.

Note part (i) of the following lemma was proved in [5], in the setting of locally *G*-convex spaces.

Lemma 1.8. Let $(E, \Gamma; \mathcal{U})$ be an abstract convex space. Then the following statements hold:

- (i) if K is a Γ -convex subset E, then its closure \overline{K} is also Γ -convex,
- (ii) $\overline{co}_{\Gamma}(Q) = \bigcap \{ C : Q \subseteq C \subseteq E, C \text{ is closed and } \Gamma \text{-convex} \},$
- (iii) if $X \subseteq E$ be a Φ -set and $Y \subseteq X$ then Y is also a Φ -set.

Proof. (i) Let \mathcal{B} be a base of \mathcal{U} as described above, $V \in \mathcal{B}$, and $A = \{a_1, ..., a_n\} \subseteq \langle \overline{K} \rangle$. Choose $\{x_1, ..., x_n\} \subseteq \langle K \rangle$ with $x_i \in V[a_i] \cap K$ for any i = 1, ..., n. Since V[K] is Γ -convex and $a_i \in V[x_i] \subseteq V[K]$ for any i = 1, ..., n, we infer that $\Gamma(A) \subseteq V[K]$ for all $V \in \mathcal{B}$, and hence $\Gamma(A) \subseteq \bigcap_{V \in \mathcal{B}} V[K] = \overline{K}$. This shows that \overline{K} is Γ -convex.

(*ii*) By (*i*), $\overline{co}_{\Gamma}(Q)$ is a closed, Γ -convex set which contains Q, so

 $\bigcap \{ C : Q \subseteq C \subseteq E, C \text{ is closed and } \Gamma\text{-convex} \} \subseteq \overline{co}_{\Gamma}(Q).$

On the other hand, we have

$$\bigcap \{C : Q \subseteq C \subseteq E, C \text{ is closed and } \Gamma\text{-convex} \}$$
$$= \overline{\bigcap \{C : Q \subseteq C \subseteq E, C \text{ is closed and } \Gamma\text{-convex} \}}$$
$$\supseteq \overline{\bigcap \{C : Q \subseteq C \subseteq E, C \text{ is } \Gamma\text{-convex} \}}$$
$$= \overline{co_{\Gamma}(Q)} = \overline{co}_{\Gamma}(Q).$$

(*iii*) Since X is a Φ -set, for any entourage $U \in \mathcal{U}$, there exists a Φ -map $H : X \multimap E$ such that $Gr(H) \subseteq U$. Since $H : X \multimap E$ is a Φ -map there exists a map $G : X \multimap E$ such that for each $x \in X$, $A \in \langle G(x) \rangle$ implies $\Gamma(A) \subseteq H(x)$, and $X = \bigcup \{Int \ G^-(y) : y \in E\}$. As a result, for each $x \in Y \subseteq X$, $A \in \langle G_{|Y}(x) \rangle$ implies $\Gamma(A) \subseteq H(x) = H_{|Y}(x)$ and

$$Y = Y \cap X = Y \cap \bigcup \{ Int \ G^{-}(y) : y \in E \}$$

$$= \bigcup \{ Y \cap Int \ G^{-}(y) : y \in E \} = \bigcup \{ Int \ G^{-}_{|Y}(y) : y \in E \}.$$

Thus, $H_{|Y} : Y \multimap E$ is a Φ -map and $Gr(H_{|Y}) \subseteq Gr(H) \subseteq U.$

Theorem 1.9. ([6,8]) Let $(E, D; \Gamma; U)$ be an abstract convex uniform space, and $F \in KKM(E, E)$ be a closed compact map. If $\overline{F(E)}$ is a Φ -set, then Fhas a fixed point.

Examples 1.10. (i) Any locally convex subset of a topological vector space E is a Φ -set in E.

(ii) Any subset of the Zima type in a G-convex uniform space $(E \supseteq D; \Gamma; \mathcal{U})$ such that every singleton is Γ -convex is a Φ -set.

(iii) For a locally G-convex space $(E \supseteq D; \Gamma; \mathcal{U})$, any nonempty subset X of E is a Φ -set. A locally G-convex space $(E \supseteq D; \Gamma; \mathcal{U})$ is a Φ -set.

(iv) A metric G-convex space $(E \supseteq D; \Gamma)$ is a Φ -space whenever D is dense in X and every open ball is Γ -convex.

2. Fixed point theory

A slight modifications of the proof of Lemma 3.4 in [5], yields the following lemma.

Lemma 2.1. Let X be a nonempty closed, Γ -convex subset of an abstract convex uniform space $(E, \Gamma; \mathcal{U})$ and $F : X \multimap X$. If $\emptyset \neq Q \subseteq X$, then there exists a closed, Γ -convex set K = K(F, Q) with $Q \subseteq K \subseteq X$ and $K = \overline{co}_{\Gamma}(F(K) \cup Q)$.

112

Proof. Let

 $\mathcal{F} = \{ A \subseteq E : A \text{ is closed}, \Gamma \text{-convex and } \overline{co}_{\Gamma}(F(X \cap A) \cup Q) \subseteq A \}.$

Since $E \in \mathcal{F}, \ \mathcal{F} \neq \emptyset$. Define a partial order by inverse inclusion, that is, for $A, B \in \mathcal{F}, A \leq B \Leftrightarrow B \subseteq A$. Let \mathcal{C} be any chain in \mathcal{F} . Put $M = \bigcap_{A \in \mathcal{C}} A$. Since each $A \in \mathcal{C}$ is closed, Γ -convex and contain Q, we infer that M is closed, Γ -convex and contain Q, for all $A \in \mathcal{C}$, it follows from

$$F(M \cap X) \cup Q \subseteq F(A \cap X) \cup Q$$

that $\overline{co}_{\Gamma}(F(M \cap X) \cup Q) \subseteq \overline{co}_{\Gamma}(F(A \cap X) \cup Q) \subseteq A$ and so

$$\overline{co}_{\Gamma}(F(M \cap X) \cup Q) \subseteq \bigcap_{A \in \mathcal{C}} A = M.$$

Thus $M \in \mathcal{F}$ and M is an upper bound of \mathcal{C} . By Zorn's lemma, \mathcal{F} has a maximal element, say K. We claim that $\overline{co}_{\Gamma}(F(K \cap X) \cup Q) = K$. In fact, put $K_0 = \overline{co}_{\Gamma}(F(K \cap X) \cup Q)$. It is obvious that K_0 is closed, Γ -convex and contain Q. Furthermore, since $\overline{co}_{\Gamma}(F(K_0 \cap X) \cup Q) \subseteq \overline{co}_{\Gamma}(F(K \cap X) \cup Q) = K_0$, we have $K_0 \in \mathcal{F}$ and $K_0 \geq K$. By the maximality of K, we conclude that $K = K_0$, that is

$$\overline{co}_{\Gamma}(F(K \cap X) \cup Q) = K.$$

Finally, since $F(X) \subseteq X$, it follows since X is closed that $K \subseteq X$ and $\overline{co}_{\Gamma}(F(K) \cup Q) = K$.

Theorem 2.2. Let X be a nonempty closed, Γ -convex subset of an abstract convex uniform Φ -space $(E, \Gamma; \mathcal{U})$. Let $F \in KKM(X, X)$ be a closed map, then F has a fixed point provided the following condition hold:

for any
$$x_0 \in X$$
, and $A \subseteq X$ with $A = \overline{co}_{\Gamma}(\{x_0\} \cup F(A))$
we have that A is compact. (2.1)

Proof. Putting $Q = \{x_0\}$ in Lemma 2.1, we obtain that there exists a closed, Γ -convex set $K \subseteq X$ with $K = \overline{co}_{\Gamma}(F(K) \cup \{x_0\})$. Since (2.1) holds, then Kis compact. Now $F: K \multimap K$ is closed and compact and $F|_K \in KKM(K, K)$ by Lemma 1.5. Since E is a Φ -space, then F(K) is a Φ -set and so by Theorem 1.9, F has a fixed point.

Theorem 2.3. Let X be a nonempty complete, Γ -convex subset of an abstract convex uniform Φ -space $(E, \Gamma; \mathcal{U})$. Let $F \in KKM(X, X)$ be a closed map, then F has a fixed point provided that the following condition hold:

whenever $x_0 \in X$, $A \subseteq X$, $F(A) \subseteq A$ and $A \setminus \overline{co}_{\Gamma}(F(A)) \subseteq \{x_0\}$ we have that A is a precompact subset of X. (2.2) Proof. Choose $x_0 \in X$ and let $A = \bigcup_{i \geq 0} F^i(x_0)$ where $F^0(x_0) = \{x_0\}$. Then $F(A) \subseteq A$ and $A \setminus \overline{co}_{\Gamma}(F(A)) \subseteq \{x_0\}$, so A is precompact, and hence \overline{A} is compact since it is a precompact and closed subset of the complete set X. Define $G : \overline{A} \multimap \overline{A}$ by $G(x) = F(x) \cap \overline{A}$. Since F is closed and \overline{A} is compact, it is easy to see that $G(x) \neq \emptyset, \forall x \in \overline{A}$. Put

 $\mathcal{A} = \{Y: Y \text{ is a nonempty closed subset of } \overline{A} \text{ and } G(Y) \subseteq Y\}.$

Since $\overline{A} \in \mathcal{A}$, $\mathcal{A} \neq \emptyset$. Define a partial order \leq on \mathcal{A} by $A \leq B \Leftrightarrow B \subseteq A$. Let \mathcal{C} be any chain in \mathcal{A} and put $M = \bigcap_{L \in \mathcal{C}}$. Now M is an upper bound of \mathcal{C} and so, by Zorn's Lemma, \mathcal{A} has a maximal element, say Q. Since Fis closed, so is G, and this with the compactness of \overline{A} guarantees that G is upper semicontinuous. Therfore, G(Q) is compact. Putting Y = G(Q) and noting that $G(Y) = G(G(Q)) \subseteq G(Q) = Y$, the maximality of Q gives us that Q = Y. Thus

$$Q = G(Q) = F(Q) \cap \overline{A} \subseteq F(Q).$$

Let K = K(F,Q) be the subset of X described in Lemma 2.1, so $K = \overline{co}_{\Gamma}(F(K) \cup Q)$. Since $Q \subseteq F(Q) \subseteq K$, we have $K = \overline{co}_{\Gamma}(F(K))$ and so we have shown that there exists a closed, Γ -convex subset $K \subseteq X$ such that $K = \overline{co}_{\Gamma}(F(K))$. Now (2.2) implies that K is precompact subset of X and note in fact that it is compact. Thus by Theorem 1.9, $F: K \multimap K$ has a fixed point.

Now, we present a Mönch type result for KKM multimaps.

Theorem 2.4. Let X be a nonempty complete, Γ -convex subset of an abstract convex uniform Φ -space $(E, \Gamma; \mathcal{U})$. Suppose $F \in KKM(X, X)$ is closed, and satisfies the following properties:

$$F$$
 maps compact sets into relatively compact sets; (2.3)

$$A = co_{\Gamma}(\{x_0\} \cup F(A)) \text{ with } \overline{A} = \overline{C} \text{ and } C \subseteq A \text{ countable},$$

$$(2.4)$$

implies \overline{A} is compact;

for any relatively compact subset A of X

there exists a countable subset
$$B \subset A$$
 with $\overline{B} = \overline{A}$; (2.5)

 $F(\overline{A}) \subseteq \overline{F(A)} \text{ for any realatively compact subset } A \text{ of } X.$ (2.6) Then F has a fixed point.

Proof. We follow the proof of Theorem 2.5 in [2]. Let $D_0 = co_{\Gamma}(\{x_0\}), D_{n+1} = co_{\Gamma}(\{x_0\} \cup F(D_n)), n = 0, 1, 2, ...$ and

$$D_{\infty} = \bigcup_{n=0}^{\infty} D_n.$$

Now for n = 0, 1, 2, ... notice D_n is Γ -convex. Also by induction, we see that

$$D_0 \subseteq D_1 \subseteq \ldots \subseteq D_{n-1} \subseteq D_n \subseteq \ldots$$

Consequently, D_{∞} is Γ -convex. Since for each n,

$$co_{\Gamma}(\{x_0\} \cup F(D_n)) \subseteq co_{\Gamma}(\{x_0\} \cup F(D_{\infty})),$$

 \mathbf{SO}

$$D_{\infty} = \bigcup_{n=0}^{\infty} co_{\Gamma}(\{x_0\} \cup F(D_n)) \subseteq co_{\Gamma}(\{x_0\} \cup F(D_{\infty})).$$

On the other hand, D_{∞} is a Γ -convex set which contains $\bigcup_{n=0}^{\infty} F(D_n) = F(D_{\infty})$, consequently $co_{\Gamma}(\{x_0\} \cup F(D_{\infty})) \subseteq D_{\infty}$. Thus

$$D_{\infty} = co_{\Gamma}(\{x_0\} \cup F(D_{\infty})). \tag{2.7}$$

It is easy to see (use induction with (1.2), note X is complete, and (2.3)) that D_n is relatively compact for n = 0, 1, 2, ... Now (2.5) implies that for each n = 0, 1, 2, ... there exists C_n with C_n countable, $C_n \subseteq D_n$, and $\overline{C_n} = \overline{D_n}$. Let $C_{\infty} = \bigcup_{n=0}^{\infty} C_n$. Now since

$$\bigcup_{n=0}^{\infty} D_n \subseteq \bigcup_{n=0}^{\infty} \overline{D_n} \subseteq \overline{\bigcup_{n=0}^{\infty} D_n},$$

we have

$$\overline{\bigcup_{n=0}^{\infty} \overline{D_n}} = \overline{\bigcup_{n=0}^{\infty} D_n} = \overline{D_{\infty}} \text{ and } \overline{\bigcup_{n=0}^{\infty} \overline{D_n}} = \overline{\bigcup_{n=0}^{\infty} \overline{C_n}} = \bigcup_{n=0}^{\infty} \overline{C_n} = \overline{C_{\infty}}.$$

Thus $\overline{D_{\infty}} = \overline{C_{\infty}}$. This together with (2.4) and (2.7) implies that $\overline{D_{\infty}}$ is compact. From (2.7) we have $F(D_{\infty}) \subseteq D_{\infty}$, and this together with (2.6) yields

$$F(\overline{D_{\infty}}) \subseteq \overline{F(D_{\infty})} \subseteq \overline{D_{\infty}}.$$

Also notice $F_{|\overline{D_{\infty}}} \in KKM(\overline{D_{\infty}}, \overline{D_{\infty}})$ is closed. Now apply Theorem 1.9. \Box

Corollary 2.5. Let X a nonempty complete, Γ -convex subset of a metrizable abstract convex uniform space (E, Γ) such that every open ball is convex and $1_X \in KKM(X, X)$. Suppose that $F : X \to X$ is a continuous map with the property (2.4). Then F has a fixed point.

Proof. Since every open ball is convex, then (E, Γ) is an abstract convex uniform space from part (iv) of Examples 1.10. Since $1_X \in KKM(X, X)$ and $F: X \to X$ is continuous, then $F \in KKM(X, X)$ and (2.3) holds. Also (2.5) follows, since compact metric spaces are separable. Apply Theorem 2.4. \Box

116 A. Amini-Harandi, A. P. Farajzadeh, D. O'Regan and R. P. Agarwal

Now we extend the concept of measure of noncompactness and condensing multimaps on locally G-convex in Huang et al. [5] to abstract convex uniform spaces.

Definition 2.6. For a subset A of abstract convex uniform spaces $(E, \Gamma; \mathcal{U})$, define

 $\Psi(A) = \{ V \in \mathcal{B} : A \subseteq V[S], \text{ for some precompact subset } S \text{ of } E \}.$

We call the set $\Psi(A)$ a measure of noncompactness of A.

Essentially the same reasoning as in [5, Proposition 3.2] guarantees the following result.

Theorem 2.7. Let A and B be subsets of $(E, \Gamma; U)$. Then,

- (i) A is precompact if and only if $\Psi(A) = \mathcal{B}$;
- (ii) $\Psi(A) \supseteq \Psi(B)$ if $A \subseteq B$;
- (iii) $\Psi(co_{\Gamma}(A)) = \Psi(A);$

(iv) $\Psi(A \cup B) = \Psi(A) \cap \Psi(B)$.

Definition 2.8. Suppose that X be a nonempty subset of an abstract convex uniform space $(E, \Gamma; \mathcal{U})$ and Ψ is the measure of noncompactness in Definition 2.6. A multimap $F: X \multimap E$ is called *condensing* provided that if $A \subseteq X$ and $\Psi(F(A)) \subseteq \Psi(A)$, then A is precompact. F is called *generalized condensing* if, whenever $A \subseteq X$, $F(A) \subseteq A$ and $A \setminus \overline{co}_{\Gamma}(F(A))$ is precompact, Then A is precompact.

It is obvious that every compact map or every map defined on a compact set is condensing. Also, every condensing map is generalized condensing.

Remark 2.9. Every condensing (respectively generalized condensing) map $F: X \multimap X$ satisfies condition (2.1) (respectively (2.2)). Thus, by Theorems 2.2 and 2.3, we get the following.

Corollary 2.10. Let X be a nonempty complete, Γ -convex subset of an abstract convex uniform Φ -space $(E, \Gamma; \mathcal{U})$. If $F \in KKM(X, X)$ is either condensing or generalized condensing and closed, then F has a fixed point.

3. Essentialty for Mönch type mappings

Let $(E, \Gamma; \mathcal{U})$ be an abstract convex uniform space, U an open subset of E and $x_0 \in U$.

Definition 3.1. We let $M(\overline{U}, E)$ denotes the set of all continuous maps $F : \overline{U} \to E$ which satisfy Mönch's condition (i.e., if $C \subseteq co_{\Gamma}(\{x_0\} \cup F(C))$ and $C \subseteq \overline{U}$ is countable, then \overline{C} is compact).

Definition 3.2. We let $F \in M_{\partial U}(\overline{U}, E)$ if $F \in M(\overline{U}, E)$ with $x \neq F(x)$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Definition 3.3. A map $F \in M_{\partial U}(\overline{U}, E)$ is essential in $M_{\partial U}(\overline{U}, E)$ if for every $G \in M_{\partial U}(\overline{U}, E)$ with $G_{|\partial U} = F_{|\partial U}$ there exists $x \in U$ with x = G(x)

Definition 3.4. Let $(E, \Gamma; \mathcal{U})$ be an abstract convex uniform space. Throughout this section, we will assume that the convex structure Γ satisfies the following conditions:

for each
$$a \in E$$
, the multimap $x \multimap co_{\Gamma}\{a, x\}$ is closed. (3.1)

for each $a \in E$, there exists a continuous map

$$\omega(t,x): [0,1] \times E \to co_{\Gamma}\{a,x\} \text{ such that } \omega(0,x) = a \text{ and } \omega(1,x) = x.$$
(3.2)

Let E be a topological vector space, $A \subseteq E$, $a \in E$, and $\Gamma(A) = \operatorname{conv}(A)$. Let $\omega(t, x) = (1 - t)a + tx$, and it is easy to show that (E, Γ) satisfies (3.1) and (3.2).

Definition 3.5. A metric space (M, d) is said be a hyperconvex metric space if for any collection of points x_{α} of M and any collection r_{α} of non-negative real numbers with $d(x_{\alpha}, x_{\beta}) \leq r_{\alpha} + r_{\beta}$, we have

$$\bigcap_{\alpha} B(x_{\alpha}, r_{\alpha}) \neq \emptyset.$$

For each $A \subseteq M$, Set

 $\Gamma(A) = co(A) = \bigcap \{ B \subseteq M : B \text{ is a closed ball in } M \text{ such that } A \subset B \}.$

It is well known that for any hyperconvex metric space M there exist an index set I and a natural isometric embedding from M into $l_{\infty}(I)$, and a nonexpansive retraction $r: l_{\infty}(I) \to M$. For each $a, b \in M$ we have

$$r(\operatorname{conv}(a, b))$$

 $\subseteq r(\bigcap \{B \subseteq l_{\infty} : B \text{ is a closed ball in } l_{\infty} \text{ such that } \operatorname{conv}(a, b) \subset B\})$

 $= \bigcap \{B \subseteq M : B \text{ is a closed ball in } M \text{ such that } \{a, b\} \subset B\} = co(a, b).$ Thus,

u,

$$r(\operatorname{conv}(a,b)) \subseteq co(a,b).$$

Let $\omega(t, x) = r((1 - t)a + tx)$. Then ω is continuous and $\omega(0, x) = a$ and $\omega(1, x) = x$. Also, it is easy to see that the map $x \to co(a, x)$ is closed. Thus, (M, Γ) satisfies (3.1) and (3.2).

The proof of the following theorem follows the lines of Theorem 2.1 in [1].

Theorem 3.6. Let $(E, \Gamma; \mathcal{U})$ be an abstract convex uniform space which satisfies (3.1) and (3.2), U an open subset of E and $x_0 \in U$. Suppose $F \in M(\overline{U}, E)$ with

the constant map x_0 is essential in $M_{\partial U}(\overline{U}, E)$ (3.3)

and

118

$$x \notin co_{\Gamma}(\{x_0\} \cup F(x)) \text{ for any } x \in \partial U$$
 (3.4)

holding. Also assume that

E is such that any closed subset is compact iff it is sequentially compact. (3.5)

Then F is essential in $M_{\partial U}(\overline{U}, E)$.

Proof. Let $H \in M_{\partial U}(\overline{U}, E)$ with $H_{|\partial U} = F_{|\partial U}$. We must show H has a fixed point in U. Consider

$$B = \{x \in \overline{U} : x \in co_{\Gamma}(\{x_0\} \cup H(x))\}$$

Now $B \neq \emptyset$ since $x_0 \in U$. Let $x_\alpha \in B$ be a convergent net with $x_\alpha \to x \in \overline{U}$. Since H is continuous, so the multimap $x \to co_{\Gamma}\{a, H(x)\}$ is closed from (3.1). This together with $x_\alpha \in co_{\Gamma}(\{x_0\} \cup H(x_\alpha))$ implies that $x \in co_{\Gamma}(\{x_0\} \cup H(x))$, which shows that B is closed. In addition, $B \cap \partial U = \emptyset$ since (3.4) holds and $H_{|\partial U} = F_{|\partial U}$. We now claim that there exists a continuous $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(B) = 1$. Since uniform topological spaces are completely regular, the claim will be true if we show B is compact. To see this let $C = \{x_n\}_{n=1}^{\infty}$ be any sequence in B. We have $C \subseteq co_{\Gamma}(\{x_0\} \cup H(C))$. Since $H \in M_{\partial U}(\overline{U}, E)$, we have that \overline{C} is compact and so is sequentially compact by (3.5). Without loss of generality, we may assume $x_n \to x \in \overline{C}$. Now since B is closed, we get $x \in B = \overline{B}$. Consequently $B = \overline{B}$ is sequentially compact, so is compact from (3.5). By (3.2), there exists a continuous map $\omega(t, x) : [0, 1] \times E \to co_{\Gamma}\{x_0, x\}$ such that $\omega(0, x) = x_0$ and $\omega(1, x) = x$.

$$R_{\mu}(x) = \omega(\mu(x), H(x)).$$

We first show R_{μ} satisfies the Mönch condition. Let $C \subseteq \overline{U}$ be countable and

$$C \subseteq co_{\Gamma}(\{x_0\} \cup R_{\mu}(C)).$$

Now since $R_{\mu}(x) = \omega(\mu(x), H(x)) \subseteq co_{\Gamma}(\{x_0\} \cup H(x))\}$ we have $R_{\mu}(C) \subseteq co_{\Gamma}(\{x_0\} \cup H(C))$. Thus

$$C \subseteq co_{\Gamma}(\{x_0\} \cup R_{\mu}(C)) \subseteq co_{\Gamma}(\{x_0\} \cup H(C)).$$

Since $H \in M_{\partial U}(\overline{U}, E)$ we have that \overline{C} is compact. Thus $R_{\mu} \in M_{\partial U}(\overline{U}, E)$ with $(R_{\mu})_{|\partial U} = x_0$. Now since the constant map x_0 is essential in $M_{\partial U}(\overline{U}, E)$

there exists $x \in U$ with $x = R_{\mu}(x)$. Consequently, $x \in B$ and so $\mu(x) = 1$ and $R_{\mu}(x) = \omega(1, H(x)) = H(x)$. Thus x = H(x).

We give now an example of a constant essential map in $M_{\partial U}(\overline{U}, E)$.

Theorem 3.7. Let $(E, \Gamma; \mathcal{U})$ be a complete metrizable, abstract convex uniform space such that every open ball is Γ -convex, $1_E \in KKM(E, E)$, and as in section 2 we assume (1.1), (1.2) hold. Let U be an open subset of E with $x_0 \in U$. Then the constant map x_0 is essential in $M_{\partial U}(\overline{U}, E)$.

Proof. We follow the proof of Theorem 2.5 in [1]. Let $\theta \in M_{\partial U}(\overline{U}, E)$ with $\theta_{|\partial U} = x_0$. We must show that there exists $x \in U$ with $\theta(x) = x$. Let $Q = \overline{co}_{\Gamma}(\theta(\overline{U}))$ and let $F: Q \to Q$ be given by

$$F(x) = \begin{cases} \theta(x) & x \in \overline{U}, \\ x_0 & \text{otherwise.} \end{cases}$$

Now $x_0 \in Q$, $F : Q \to Q$ is continuous and satisfies the Mönch condition. To see this let $C \subseteq Q$ be countable with $C \subseteq co_{\Gamma}(\{x_0\} \cup F(C))$. Then

 $C \subseteq co_{\Gamma}(\{x_0\} \cup \theta(\overline{U} \cap C)).$

Notice $C \cap \overline{U} \subseteq Q$ is countable and $C \cap \overline{U} \subseteq co_{\Gamma}(\{x_0\} \cup \theta(\overline{U} \cap C))$. Now since $\theta \in M_{\partial U}(\overline{U}, E)$ we have $\overline{C \cap \overline{U}}$ is compact. Then since θ is continuous, $\theta(\overline{C \cap \overline{U}})$ is compact, and now since $(E, \Gamma; \mathcal{U})$ satisfies (1.2) and is complete, $\overline{co_{\Gamma}}(\{x_0\} \cup \theta(\overline{U} \cap C))$ is compact. Thus since

$$C \subseteq \overline{co}_{\Gamma}(\{x_0\} \cup \theta(\overline{U} \cap C))$$

we have that \overline{C} is compact. Corollary 2.5 guarantees that there exists $x \in Q$ with F(x) = x. Now if $x \notin U$ we have $x_0 = F(x) = x$, which is a contradiction since $x_0 \in U$. Thus $x \in U$ so $x = F(x) = \theta(x)$.

Combining Theorem 3.6 and Theorem 3.7 gives the following nonlinear alternative of Leray-Schauder type for Mönch type maps.

Theorem 3.8. Let $(E, \Gamma; \mathcal{U})$ be a complete metrizable abstract convex uniform space such that every open ball is Γ -convex, $1_E \in KKM(E, E)$, and as in section 2 we assume (1.1), (1.2) hold. Let U be an open subset of E with $x_0 \in U$. Suppose $F \in M_{\partial U}(\overline{U}, E)$ satisfies (3.4). Then F is essential in $M_{\partial U}(\overline{U}, E)$ (in particular F has a fixed point in U).

References

- R. P. Agarwal and D. O'Regan, *Essentiality for Mönch type maps*, Proc. Amer. Math. Soc., **129(4)** (2000), 1015–1020.
- [2] R. P. Agarwal and D. O'Regan, Fixed-point theorems for S-KKM maps, Appl. Math. Lett., 67 (2003), 1257–1264.

120

- [3] A. Amini, M. Fakhar and J. Zafarani, Fixed point theorems for the class S-KKM mappings in abstract convex spaces, Nonlinear Analysis, 66(1) (2007), 14–21.
- [4] C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl., 38, (1972), 205–207.
- [5] Y. Y. Huang, T. Y. Kuo and J. C. Jeng, Fixed point theorems for condensing multimaps on locally G-convex spaces, Nonlinear Analysis, 67 (2007), 1522–1531.
- [6] S. Park, On generalization of the KKM principle on abstract convex spaces, Nonlinear Anal. Forum, 11 (2006), 67–77.
- [7] S. Park, Elements of the KKM property on abstract convex spaces, J. Korean Math. Soc., 45(2008), 1-27.
- [8] J. Zafarani, KKM property in topological spaces, Bulletin de la société royale des Liége, 73(2-3) (2004), 171–185.