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Abstract. In this paper we present fixed point theory for condensing mulitimaps on ab-
stract convex uniform spaces. Also we obtain a nonlinear alternative of Leray-Schauder type
for Monch type maps. Our main results unify and improve some well-know results in the

literature.

1. INTRODUCTION

Throughout the paper, (X)) denotes the family of all nonempty finite subsets
of nonempty set X. Let X and Y be topological spaces with A C X and
BCY. Let F: X — Y be a multimap with nonempty values. The image of
A under F'is the set F'(A) = |J,c4 F(7); and the inverse image of B under F
is F7(By={x € X : F(z) N B # 0}. F is said to be:
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(i) closed if its graph, Gr(F) = {(z,y) € X xY :y € F(x)} is a closed
set in the product space X x Y,
(ii) upper semicontinuous, if for each closed set B C Y, F~(B) = {z €
X :F(z)N B # 0} is closed in X,
(iii) compact if F(X) is compact subset of Y.
It is well-known that if Y is compact Hausdorff and F'(z) is closed for each
x € X, then F' is upper semicontinuous if and only if F' is closed. For the
remainder of this paper we assume all topological spaces are Hausdorff.

Definition 1.1. An abstract convezr space (E, D;T") consists of a nonempty
set F/, a nonempty set D, and a multimap I" : (D) — F with nonempty values.
When D C E, the space is denoted by (E O D;T'). In such a case, a subset
X of E is said to be I'-convex if, for any A € (X N D), we have I'(4) C X.
For a nonempty subset @ of E, the I'-convex hull of @), denoted by cor(Q), is
defined by

cor(Q) = ﬂ{C :Q CC C E,C is I'-convex},

and the closed T'-convex hull of @, denoted by ¢or(Q), is defined by cor(Q) =
cor(Q). In the case E = D, let (E;T") := (E, E;T).

An abstract convex space with any topology is called an abstract convez topo-
logical space.

Examples 1.2. A convexity space (F,C) in the classical sense [3], G-convex
spaces, C-spaces, convex spaces and almost convex spaces [4] are the main
examples of abstract convex spaces.

Definition 1.3. Let (E, D;T") be an abstract convex space and Z a set. For
a multimap F' : F — Z with nonempty values, if a multimap G : D — Z
satisfies

F(I'(A)) CG(A), for all A € (X),
then G is called a K K M map with respect to F'. A KKM map G : D — Z is
a K KM map with respect to the identity map 1. A multimap F : F — Z is
said to have the KKM property if, for a KKM map G : D — Z with respect

to F, the family {G(x)}zcx has the finite intersection property. We denote
KKM (E,Z) := {F : E — Z : F' has the KKM property}.

Definition 1.4. For an abstract convex space (E D D;TI'), let X be a I'-convex
subset of F, and D’ a nonempty subset of X N D. Let IV : (D') — X be a
map defined by

I"(A)=T(A) C X for Ae D"

Then (X D D’;TV) itself is an abstract convex space called a subspace.

Lemma 1.5. (Park [6]) Let (E D D;I') be an abstract convex space, (X D
D';T") a subspace, Z a set. If F € KKM(E,Z), then F|x € KKM(X,Z).
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Definition 1.6. For a given abstract convex space (E, D;IT") and a topological
space X, amap H : X —o F is called a ®-map if there existsamap G : X — D
such that

(i) for each z € X, A € (G(x)) implies I'(4) C H(z); and
(i) X =U{Int G~ (y) :y € D}.

If (E,U) is a uniform space, then its topology is induced by the uniformity
U is the family of all subsets G of E such that for each in x € G, there is
U € U such that Ulz] C G, where Ulz]| = {y € X : (z,y) e U}. f K CE
and U € U, then U[K]| = |J,cx Ulz]. A subset S of a uniform space £ is said
to be precompact if, for any entourage V', there is a finite subset N of E such
that S C V[N].

Definition 1.7. An abstract convezr uniform space (E, D;T;U) is an abstract
convex space so that its topology is induced by the uniformity . In section
2, we shall assume that the convex structure I' and the base B of U satisfy the
following conditions:

V[K] is I' — convex whenever K is a I'— convex subset of F and V € B; (1.1)

cor(A) is precompact whenever A is precompact. (1.2)

In (E,D;T;U), a subset Z of E is called a ®-set if, for any entourage U € U,
there exists a ®-map H : Z —o E such that Gr(T) C U. If E itself is a ®-set,
then it is called a ®-space.

Note part (i) of the following lemma was proved in [5], in the setting of
locally G-convex spaces.

Lemma 1.8. Let (E,T;U) be an abstract convex space. Then the following
statements hold:

(i) if K is a T'-convez subset E, then its closure K is also I'-convex,
(ii) cor(Q) =(HC: Q CC C E,C is closed and I'-conver},
(iii) of X C FE be a ®-set and Y C X then Y is also a ®-set.

Proof. (i) Let B be a base of U as described above, V' € B, and A = {ay, ...an} C
(K). Choose {z1,...z,} C (K) with z; € V]a;] N K for any i = 1,...,n. Since
V[K] is I'-convex and a; € V(z;] C V[K] for any i = 1,...,n, we infer that
I'(A) C V[K] for all V € B, and hence I'(A) C (¢ V[K] = K. This shows
that K is I'-convex.

(74) By (i), cor(Q) is a closed, I'-convex set which contains @, so

m{C :Q CC C E,C is closed and I'-convex} C ¢or(Q).
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On the other hand, we have

ﬂ{C :Q CC C E,C is closed and I'-convex}

= ﬂ{C :Q CC C E,C is closed and I'-convex}

D ﬂ{C :Q CC CE,C is I'-convex}
= cop(Q) = cor(Q).

(7i7) Since X is a ®P-set, for any entourage U € U, there exists a ®-map
H : X — E such that Gr(H) C U. Since H : X — FE is a ®-map there
exists a map G : X —o E such that for each x € X, A € (G(x)) implies
I'(A) € H(z), and X = J{Int G (y) : y € E}. As a result, for each
reY C X, Ae (Gyy(z)) implies I'(4) C H(x) = Hy(r) and

Y=YnX=Yn|J{Int G (y):y € E}
= U{Yﬂlnt G (y):ye E}= U{Int GB,(y) ty € B}
Thus, Hy : Y —o E is a ®-map and Gr(Hy) C Gr(H) C U. O

Theorem 1.9. ([6,8]) Let (E, D;I';U) be an abstract conver uniform space,
and F € KKM(E,E) be a closed compact map. If F(E) is a ®-set, then F
has a fized point.

Examples 1.10. (i) Any locally convex subset of a topological vector space
F is a ®-set in F.

(ii) Any subset of the Zima type in a G-convex uniform space (E 2 D;T';U)
such that every singleton is I'-convex is a ®-set.

(iii) For a locally G-convex space (E O D;I';U), any nonempty subset X
of F is a ®-set. A locally G-convex space (E D D;T';U) is a $-set.

(iv) A metric G-convex space (E D D;T') is a ®-space whenever D is dense
in X and every open ball is I'-convex.

2. FIXED POINT THEORY

A slight modifications of the proof of Lemma 3.4 in [5], yields the following
lemma.

Lemma 2.1. Let X be a nonempty closed, I'-convexr subset of an abstract
convezr uniform space (E,T;U) and F : X — X. If () # Q C X, then
there exists a closed, T'-convexr set K = K(F,Q) with @ C K C X and
K = cor(F(K) U Q).
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Proof. Let
F={ACE: Aisclosed, I'-convex and cor(F(X NA)UQ) C A}.

Since E € F, F # (. Define a partial order by inverse inclusion, that is, for
A, BeF, A< B B C A. Let C be any chain in 7. Put M = [, A.
Since each A € C is closed, I'-convex and contain @), we infer that M is closed,
I'-convex and contain @), for all A € C, it follows from

FIMNX)UQCFANX)uQ
that cop(F(M NX)uQ) Ccor(F(ANX)UQ) C A and so

cor(FIMNX)uQ)C (| A=M.
AeC

Thus M € F and M is an upper bound of C. By Zorn’s lemma, F has a
maximal element, say K. We claim that cop(F(K N X)U Q) = K. In fact,
put Ko = cor(F(K NX)UQ). It is obvious that Ky is closed, I'-convex and
contain (). Furthermore, since ¢or (F(KoNX)UQ) C cor(F(KNX)UQ) = Ko,
we have Ky € F and Ky > K. By the maximality of K, we conclude that
K = K, that is

cor(FIKNX)uQR) =K.

Finally, since F(X) C X, it follows since X is closed that K C X and
cor(F(IK)UQ) =K. O

Theorem 2.2. Let X be a nonempty closed, I'-convexr subset of an abstract
convex uniform ®-space (E,T;U). Let F € KKM(X,X) be a closed map,
then F has a fized point provided the following condition hold:

for anyzg € X, and A C X with A = cor({zo} U F(A))

we have that A is compact.

(2.1)

Proof. Putting @ = {z¢} in Lemma 2.1, we obtain that there exists a closed,
I'-convex set K C X with K = cor(F(K)U {zo}). Since (2.1) holds, then K
is compact. Now F': K —o K is closed and compact and Fix € KKM (K, K)
by Lemma 1.5. Since E is a ®-space, then F(K) is a ®-set and so by Theorem
1.9, F has a fixed point. O

Theorem 2.3. Let X be a nonempty complete, I'-convex subset of an abstract
convex uniform ®-space (E,T;U). Let F € KKM(X, X) be a closed map, then
F has a fized point provided that the following condition hold:

whenever zg € X, AC X, F(A) C A and A\ cor(F(A)) C {xo}

2.2
we have that A is a precompact subset of X. (2:2)
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Proof. Choose z¢ € X and let A = J;5q F'(z0) where FO(zo) = {z¢}. Then
F(A) C A and A\ cor(F(A)) C {z0}, so A is precompact, and hence A is
compact since it is a precompact and closed subset of the complete set X.
Define G : A — A by G(z) = F(z) N A. Since F is closed and A is compact,
it is easy to see that G(z) # 0,V = € A. Put

A={Y : Y is a nonempty closed subset of A and G(Y) CY}.

Since A € A, A # (). Define a partial order < on A by A < B & B C A.
Let C be any chain in A and put M = (... Now M is an upper bound
of C and so, by Zorn’s Lemma, A has a maximal element, say Q). Since F
is closed, so is G, and this with the compactness of A guarantees that G is
upper semicontinuous. Therfore, G(Q) is compact. Putting ¥ = G(Q) and
noting that G(Y') = G(G(Q)) € G(Q) =Y, the maximality of Q) gives us that
@ =Y. Thus
Q=G(Q) = FQNACFQ).

Let K = K(F,Q) be the subset of X described in Lemma 2.1, so K =
cor(F(K)U Q). Since Q@ C F(Q) C K, we have K = cop(F(K)) and so
we have shown that there exists a closed, I'-convex subset K C X such that
K = cor(F(K). Now (2.2) implies that K is precompact subset of X and
note in fact that it is compact. Thus by Theorem 1.9, ' : K —o K has a fixed
point. Il

Now, we present a Monch type result for KKM multimaps.

Theorem 2.4. Let X be a nonempty complete, I'-convex subset of an abstract
convex uniform ®-space (E,T;U). Suppose F € KKM (X, X) is closed, and
satisfies the following properties:

F maps compact sets into relatively compact sets; (2.3)
A= COF£{$O} U F(A)) with A= C and C C A countable, (2.4)
implies A is compact,

for any relatively compact subset A of X 25)

there exists a countable subset B C A with B = A;

F(A) C F(A) for any realatively compact subset A of X. (2.6)
Then F has a fixed point.

Proof. We follow the proof of Theorem 2.5 in [2]. Let Dy = cor({zo}), Dp+1 =
cor({zo} UF(Dy)), n=0,1,2,... and

o0
Dy, = U D,,.
n=0
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Now for n =0,1,2, ... notice D,, is I'-convex. Also by induction, we see that
DyCDi1C...C Dy 1S D, C ..
Consequently, D, is I'-convex. Since for each n,

cor({zo} U F(Dy)) C cor({zo} U F (D)),

SO
00

Dy = | J cor({zo} U F(Dy)) € cor({zo} U F(Dy)).
n=0
On the other hand, Ds is a I'-convex set which contains J;2, F(D,) =
F(Ds), consequently cor({zo} U F(Ds)) C Ds. Thus

Do, = cor({zo} U F(Dwy)). (2.7)

It is easy to see (use induction with (1.2), note X is complete, and (2.3)) that
D,, is relatively compact for n = 0,1,2,... Now (2.5) implies that for each
n=0,1,2,... there exists C,, with C,, countable, C,, C D,,, and C,, = D,,. Let
Co = U,~( Cn. Now since

[ee] 00 )
UDwcUDac U D,
we have
o0 00 = — .
Uﬁn: UDn:mand UDH: Ucinz Uin:f.o
" =0 n=0 n=0 n=0

Thus Ds = Cs. This together with (2.4) and (2.7) implies that D is
compact. From (2.7) we have F(Dy) C Do, and this together with (2.6)
yields

F(Ds) € F(Doo) € Do
Also notice FIK € KKM(Ds, Do) is closed. Now apply Theorem 1.9. O

Corollary 2.5. Let X a nonempty complete, I'-convexr subset of a metrizable
abstract convex uniform space (E,I') such that every open ball is convex and
1x € KKM(X,X). Suppose that F : X — X is a continuous map with the
property (2.4). Then F has a fixed point.

Proof. Since every open ball is convex, then (E,T") is an abstract convex uni-
form space from part (iv) of Examples 1.10. Since 1x € KKM (X, X) and
F: X — X is continuous, then F' € KKM (X, X) and (2.3) holds. Also (2.5)
follows, since compact metric spaces are separable. Apply Theorem 2.4. [
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Now we extend the concept of measure of noncompactness and condensing
multimaps on locally G-convex in Huang et al. [5] to abstract convex uniform
spaces.

Definition 2.6. For a subset A of abstract convex uniform spaces (F,T';U),
define

VU(A)={V e B: ACV]S], for some precompact subset S of E}.
We call the set W(A) a measure of noncompactness of A.

Essentially the same reasoning as in [5, Proposition 3.2] guarantees the
following result.

Theorem 2.7. Let A and B be subsets of (E,T';U). Then,
(i) A is precompact if and only if V(A) = B;

(il) W(A) D ¥(B) if AC B;

(iii) ¥(cop(A)) = V(A);

(iv) ¥(AUB) =¥(A)NY(B).

Definition 2.8. Suppose that X be a nonempty subset of an abstract convex
uniform space (E,T';U) and ¥ is the measure of noncompactness in Definition
2.6. A multimap F : X — F is called condensing provided that if A C X and
U(F(A)) C ¥(A), then A is precompact. F' is called generalized condensing
if, whenever A C X, F(A) C A and A\ cor(F(A)) is precompact, Then A is
precompact.

It is obvious that every compact map or every map defined on a compact set
is condensing. Also, every condensing map is generalized condensing.

Remark 2.9. Every condensing (respectively generalized condensing) map
F : X — X satisfies condition (2.1) (respectively (2.2)). Thus, by Theorems
2.2 and 2.3, we get the following.

Corollary 2.10. Let X be a nonempty complete, I'-convex subset of an ab-
stract convex uniform ®-space (E,T;U). If F € KKM(X,X) is either con-
densing or generalized condensing and closed, then F' has a fized point.

3. ESSENTIALTY FOR MONCH TYPE MAPPINGS

Let (E,T;U) be an abstract convex uniform space, U an open subset of E
and xg € U.

Definition 3.1. We let M (U, E) denotes the set of all continuous maps F :
U — FE which satisfy Monch’s condition (i.e., if C' C cor({zo} U F(C)) and
C C U is countable, then C' is compact).



Fixed point theorems for condensing multimaps on abstract convex uniform spaces 117

Definition 3.2. We let F' € Myy (U, E) if F € M(U, E) with  # F(z) for
x € OU; here U denotes the boundary of U in E.

Definition 3.3. A map I' € My (U, E) is essential in My (U, E) if for every
G € Moy (U, E) with G5y = Flay there exists z € U with z = G(x)

Definition 3.4. Let (E,T';U) be an abstract convex uniform space. Through-
out this section, we will assume that the convex structure I' satisfies the fol-
lowing conditions:

for each a € E, the multimap = —o cor{a, x} is closed. (3.1)

for each a € F, there exists a continuous map

2
w(t,x):[0,1] x B — cor{a,x} such that w(0,z) = a and w(1,z) = z. (32)

Let E be a topological vector space, A C E, a € E, and I'(A) = conv(A).
Let w(t,x) = (1 — t)a + tx, and it is easy to show that (E,I") satisfies (3.1)
and (3.2).

Definition 3.5. A metric space (M, d) is said be a hyperconvex metric space
if for any collection of points x, of M and any collection r, of non-negative
real numbers with d(z4,23) < ro + 3, we have

ﬂB(fEaa o) 7 0.

For each A C M, Set
I'(A) = co(A) = ﬂ{B C M : B is a closed ball in M such that A C B}.

It is well known that for any hyperconvex metric space M there exist an
index set I and a natural isometric embedding from M into (), and a
nonexpansive retraction r : loo(I) — M. For each a,b € M we have

r(conv(a,b))
- r(ﬂ{B Clw : Bis a closed ball in Il such that conv(a,b) C B})

= ﬂ{B C M : B is a closed ball in M such that {a,b} C B} = co(a,b).

Thus,

r(conv(a,b)) C co(a,b).
Let w(t,z) = r((1 — t)a + tx). Then w is continuous and w(0,z) = a and
w(1l,z) = z. Also, it is easy to see that the map = — co(a,z) is closed. Thus,
(M,T) satisfies (3.1) and (3.2).
The proof of the following theorem follows the lines of Theorem 2.1 in [1].



118 A. Amini-Harandi, A. P. Farajzadeh, D. O’Regan and R. P. Agarwal

Theorem 3.6. Let (E,I';U) be an abstract convex uniform space which satis-
fies (3.1) and (3.2), U an open subset of E and x¢ € U. Suppose F' € M(U, E)
with
the constant map x is essential in May (U, E) (3.3)
and
x & cor({xo} U F(z)) for any x € OU (3.4)
holding. Also assume that

FE is such that any closed subset is compact

iff it is sequentially compact. (3.5)

Then F is essential in May (U, E).

Proof. Let H € Myy (U, E) with Hgy = Flgy. We must show H has a fixed
point in U. Consider

B={ze€U : x€cor({zo} UH z))}

Now B # () since xg € U. Let x, € B be a convergent net with z, — z € U.
Since H is continuous, so the multimap  —o cor{a, H(z)} is closed from (3.1).
This together with =, € cor({zo}UH (24)) implies that x € cor({zo} UH(z)),
which shows that B is closed. In addition, BN oU = () since (3.4) holds and
H gy = Flgy. We now claim that there exists a continuous  : U — [0,1] with
u(OU) = 0 and pu(B) = 1. Since uniform topological spaces are completely
regular, the claim will be true if we show B is compact. To see this let
C = {z,}>2, be any sequence in B. We have C' C cor({zo} U H(C)). Since
H € Mpy (U, E), we have that C is compact and so is sequentially compact
by (3.5). Without loss of generality, we may assume z, — = € C. Now
since B is closed, we get + € B = B. Consequently B = B is sequentially
compact, so is compact from (3.5). By (3.2), there exists a continuous map
w(t,x) : [0,1] x E — cor{xg,x} such that w(0,z) = x9 and w(1,z) = x.
Define a map R, : U — E by

Ry (z) = w(p(z), H(x)).
We first show R, satisfies the Ménch condition. Let C' C U be countable and
C C cor({zo} URL(C)).

Now since R, (xz) = w(u(zx), H(x)) € cor({zo} U H(x))} we have R,(C) C
cor({xzo} UH(C)). Thus

C C cor({zo} U R,(C)) C cor({zo} U H(C)).

Since H € Myy (U, E) we have that C is compact. Thus R, € May(
with (Ry)jsv = 2o. Now since the constant map zg is essential in Myy (

)

U,E
U,E)
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there exists x € U with v = R, (x). Consequently, € B and so u(z) = 1 and
R,(z) =w(1,H(z)) = H(z). Thus x = H(x). O

We give now an example of a constant essential map in Myy (U, E).

Theorem 3.7. Let (E,T';U) be a complete metrizable, abstract convex uniform
space such that every open ball is T'-conver, 1p € KKM(E,FE), and as in
section 2 we assume (1.1), (1.2) hold. Let U be an open subset of E with
xo € U. Then the constant map x¢ is essential in Moy (U, E).

Proof. We follow the proof of Theorem 2.5 in [1]. Let § € Myy (U, E) with
0o = zo. We must show that there exists x € U with 6(x) = z. Let

Q =vcor(9(U)) and let F : Q — Q be given by
Fz) = { O(z) zeU,

zo otherwise.
Now zg € Q, F : Q — @ is continuous and satisfies the Monch condition. To
see this let C' C @ be countable with C' C cor({zo} U F(C)). Then

C C cor({zo} UOUNC)).
Notice C N U C Q is countable and C N U C cor({zo} U AU N C)). Now
since § € My (U, E) we have C NU is compact. Then since  is continuous,

9(C' NU) is compact, and now since (E,T';U) satisfies (1.2) and is complete,
cor({zo} UO(U N O)) is compact. Thus since

C € o ({ao} UOT N C))

we have that C is compact. Corollary 2.5 guarantees that there exists z € @Q
with F(z) = z. Now if z ¢ U we have xo = F'(z) = x, which is a contradiction
since zg € U. Thus x € U so x = F(x) = 0(x). O

Combining Theorem 3.6 and Theorem 3.7 gives the following nonlinear al-
ternative of Leray-Schauder type for Ménch type maps.

Theorem 3.8. Let (E,T';U) be a complete metrizable abstract convex uniform
space such that every open ball is T'-conver, 1p € KKM(E,FE), and as in
section 2 we assume (1.1), (1.2) hold. Let U be an open subset of E with
g € U. Suppose F € Moy (U, E) satisfies (3.4). Then F is essential in
My (U, E) (in particular F has a fived point in U).
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