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Abstract. In this paper, we study the strong convergence of new methods for solving clas-

sical variational inequalities problems involving semistrictly quasimonotone and Lipschitz-

continuous operators in a real Hilbert space. Three proposed methods are based on Tseng’s

extragradient method and use a simple self-adaptive step size rule that is independent of the

Lipschitz constant. The step size rule is built around two techniques: the monotone and the

non-monotone step size rule. We establish strong convergence theorems for the proposed

methods that do not require any additional projections or knowledge of an involved opera-

tor’s Lipschitz constant. Finally, we present some numerical experiments that demonstrate

the efficiency and advantages of the proposed methods.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and the induced norm
‖ · ‖. The strong converge of the sequence {xn} to an element x is denoted by
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xn → x. For a given closed and convex subset C ⊂ H, the variational inequality
problem denoted by V I(C,G) is to find x∗ ∈ C such that〈

G(x∗), y − x∗
〉
≥ 0, ∀ y ∈ C, (VIP)

where G : H → H is an operator. It is well known (see for details [7]) that the
original problem is closely related to find a point x∗ ∈ C such that〈

G(y), y − x∗
〉
≥ 0, ∀ y ∈ C. (DVIP)

We will refer to problem (DVIP) as the dual variational inequality problem
DV I(C,G) of (VIP) based on the paper [7]. For a closed and convex C ⊂ H,
the metric projection PC : H → C is described for all x ∈ H such that

PC(x) = arg min{‖x− y‖ : y ∈ C}.

Moreover, R, N are the set of real numbers and natural numbers, respectively.
It is useful to note that the problem (VIP) is equivalent to solve the following
problem:

Find x∗ ∈ C such that x∗ = PC [x
∗ − λG(x∗)],

where λ is any positive real number.

The theory of variational inequalities has been used extensively in the in-
vestigation of a collection of topics, consisting of physics, engineering, eco-
nomics, and optimization theory. This problem was first introduced by Stam-
pacchia [33] in 1964, and it is also well established that the problem (VIP)
is a pivotal problem in nonlinear analysis. It is a significant mathematical
problem that incorporates several important topics of applied mathematics,
such as network equilibrium problems, the necessary optimality conditions,
complementarity problems, and systems of nonlinear equations (for more de-
tails [8, 13, 14, 15, 16, 17, 28, 29, 30, 32]). On the other hand, the projection
methods are effective iterative methods to solve variational inequalities. Many
iterative methods for solving variational inequalities have been designed and
investigated previously (see for more details [1, 4, 5, 6, 11, 12, 18, 20, 21, 22,
23, 24, 25, 26, 27, 31, 34, 35, 37]).

Then, Korpelevich [18] and Antipin [2] were the first to propose the extra-
gradient method. The method is of the following design: x0 ∈ C,

yn = PC [xn − λG(xn)],
xn+1 = PC [xn − λG(yn)],

(1.1)

where 0 < λ < 1
L is the Lipschitz constant of an operator G and L is the

Lipschitz constant of an operator G. In view of the above method, we use two
projections on the underlying set C over each iteration. This, of course, can
affect the computational effectiveness of the used method if the feasible set
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C has a complicated structure. Here, we restrict in our interest to presenting
some methods which can address this drawback. The first is the following
subgradient extragradient method due to Censor et al. [4]. This method takes
the form of  x0 ∈ C,

yn = PC [xn − λG(xn)],
xn+1 = PHn [xn − λG(yn)],

(1.2)

where 0 < λ < 1
L and

Hn = {z ∈ H : 〈xn − λG(xn)− yn, z − yn〉 ≤ 0}.

In this article, we focus on the Tseng’s extragradient method [34] that need
to calculate only one projection for each iteration: x0 ∈ C,

yn = PC [xn − λG(xn)],
xn+1 = yn + λ

[
G(xn)− G(yn)

]
,

(1.3)

where 0 < λ < 1
L . The above-mentioned methods have two significant disad-

vantages. The first is the constant step size, which necessarily involves the
knowledge or estimation of the Lipschitz constant of the involved operator
and only converges weakly in Hilbert spaces. In certain cases, the Lipschitz
constants are unknown since they are difficult to compute for an operator.
Estimating the Lipschitz constant a priori may be difficult from a compu-
tational point of view, which may affect the method’s convergence rate and
applicability.

The primary objective of this paper is to investigate semistrictly quasimono-
tone variational inequalities in infinite-dimensional Hilbert spaces. To prove
that the iterative sequence generated by Tseng’s extragradient method for
the solution of semistrictly quasimonotone variational inequalities converges
strongly to some solutions. The proposed methods are inspired by the projec-
tion method [34] and the Halpern method [10]. The proposed methods only
require solving one projection onto the feasible set per iteration. If suitable
conditions are imposed on control parameters, the iterative sequences gener-
ated by our methods strongly converge to some solution to the problem. We
also provide examples to demonstrate the computational performance of the
new methods.

The paper is organized in the following manner. In Sect. 2, some pre-
liminary results were presented. Sect. 3 provides new algorithms and their
convergence study. Finally, Sect. 4 presents some numerical results to point
out the practical efficiency of the proposed methods.
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2. Preliminaries

Let H be a real Hilbert space. Given x, y ∈ H, we interpret the closed line
segment

[x, y] = {tx+ (1− t)y : 0 ≤ t ≤ 1}.
The segments (x, y], [x, y), and (x, y) are defined similarly. A metric pro-

jection PC(x) of x ∈ H is defined by

PC(x) = arg min{‖x− y‖ : y ∈ C}.

For all x, y ∈ H, we have

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2.

Lemma 2.1. Assume C be a nonempty, closed and convex subset of a real
Hilbert space H and PC : H → C be a metric projection from H onto C.

(i) Let x ∈ C and y ∈ H, we have

‖x− PC(y)‖2 + ‖PC(y)− y‖2 ≤ ‖x− y‖2.
(ii) z = PC(x) if and only if

〈x− z, y − z〉 ≤ 0, ∀ y ∈ C.
(iii) For y ∈ C and x ∈ H

‖x− PC(x)‖ ≤ ‖x− y‖.

Definition 2.2. Suppose that C is a nonempty, closed and convex subset of
a real Hilbert space H, and let G : C → H be a mapping. The mapping G is
said to be:

(a) strongly monotone on C with constant γ > 0 if for each pair of points
x, y ∈ C, we have〈

G(x)− G(y), x− y
〉
≥ γ‖x− y‖2;

(b) strictly monotone on C if for all distinct x, y ∈ C, we have〈
G(x)− G(y), x− y

〉
> 0;

(c) monotone on C if for all distinct x, y ∈ C, we have〈
G(x)− G(y), x− y

〉
≥ 0;

(d) pseudomonotone on C if for all distinct x, y ∈ C,
〈
G(y), x−y

〉
≥ 0, then〈

G(x), x− y
〉
≥ 0;

(e) quasimonotone on C if for all distinct x, y ∈ C,
〈
G(y), x− y

〉
> 0, then〈

G(x), x− y
〉
≥ 0;
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(f) semistrictly quasimonotone [9] on C if G is quasimonotone on C and
for all distinct of points x, y ∈ C,

〈
G(y), x− y

〉
> 0, thent〈

G(z), x− y
〉
≥ 0, for some z ∈

(x+ y

2
, x
)
.

Remark 2.3. The implications are as follows:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) and (f) =⇒ (e).

However, in general, the inverse assertions are false.

Lemma 2.4. ([3]) For any x, y ∈ H and ` ∈ R, we have

(i) ‖`x+ (1− `)y‖2 = `‖x‖2 + (1− `)‖y‖2 − `(1− `)‖x− y‖2.
(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Definition 2.5. A mapping G : H → H is said to be

(i) weakly hemicontinuous if G is upper semicontinuous from line segments
in H to the weak topology of H;

(ii) weakly sequentially continuous if {G(xn)} converges weakly to G(x) for
every sequence {xn} converges weakly to x.

Remark 2.6. It is easy to prove that if G : H → H is weakly sequentially
continuous, then G must be weakly hemicontinuous.

It is known that the following conclusion is true.

Lemma 2.7. ([7]) A solution of problem (DVIP) is always a solution of prob-
lem (VIP) provided that the operator G is, say, weakly hemicontinuous.

Lemma 2.8. ([36]) Let {pn} ⊂ [0,+∞) be a sequence such that

pn+1 ≤ (1− qn)pn + qnrn, ∀ n ∈ N.

Moreover, two sequence {qn} ⊂ (0, 1) and {rn} ⊂ R such that

lim
n→+∞

qn = 0,

+∞∑
n=1

qn = +∞ and lim sup
n→+∞

rn ≤ 0.

Then, limn→+∞ pn = 0.

Lemma 2.9. ([19]) Let a real number sequence {pn} and there exists a sub-
sequence {ni} of {n} such that

pni < pni+1 , ∀ i ∈ N.
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Then, there exist a nondecreasing sequence {mk} ⊂ N such that mk → +∞ as
k → +∞, and satisfying the following inequality for k ∈ N:

pmk
≤ pmk+1

and pk ≤ pmk+1
.

Indeed, mk = max{j ≤ k : pj ≤ pj+1}.

3. Main Results

In this section, we introduce different iterative methods for variational in-
equalities involving semistrictly quasimonotone based on Tseng’s extragradi-
ent method and the Halpern method that does not involve knowledge of the
operator’s Lipschitz constant or additional projection.

Algorithm 1.

Step 0: Choose x1 ∈ C, 0 < λ < 1
L , µ ∈ (0, 1) and {αn} ⊂ (0, 1) satisfies the

following conditions:

lim
n→+∞

αn = 0 and
+∞∑
n=1

αn = +∞.

Step 1: Compute

yn = PC(xn − λG(xn)).

If xn = yn, then STOP and yn is a solution. Otherwise, go to Step 2.

Step 2: Compute

zn = yn + λ
[
G(xn)− G(yn)

]
.

Step 3: Compute

xn+1 = αnx0 + (1− αn)zn.

Set n = n+ 1 and go back to Step 1.

To prove the convergence analysis, it is assumed that the following condi-
tions have been met:

(G1) The solution set of problem (VIP) is denoted by Ω is nonempty;
(G2) An operator G : H → H is semistrictly quasimonotone, that is, if G is

quasimonotone on C and
〈
G(y), x− y

〉
> 0, then〈

G(z), x− y
〉
≥ 0, for some z ∈

(x+ y

2
, x
)

; (SQM)

(G3) An operator G : H → H is Lipschitz continuous with constant L > 0,
that is,

‖G(x)− G(y)‖ ≤ L‖x− y‖, ∀x, y ∈ C; (LC)
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(G4) An operator G : H → H is sequentially weakly continuous, that is, if
{G(xn)} converges weakly to G(x) for every sequence {xn} converges
weakly to x.

Lemma 3.1. Suppose that G : H → H satisfies the conditions (G1)-(G4) and
sequence {xn} generated by Algorithm 1. Then, we have

‖zn − x∗‖2 ≤
∥∥xn − x∗∥∥2 −

(
1− λ2L2

)∥∥xn − yn∥∥2
.

Proof. Since x∗ ∈ Ω, we have∥∥zn − x∗∥∥2

=
∥∥yn + λ[G(xn)− G(yn)]− x∗

∥∥2

=
∥∥yn − x∗∥∥2

+ λ2
∥∥G(xn)− G(yn)

∥∥2
+ 2λ〈yn − x∗,G(xn)− G(yn)〉

=
∥∥yn + xn − xn − x∗

∥∥2
+ λ2

∥∥G(xn)− G(yn)
∥∥2

+ 2λ〈yn − x∗,G(xn)− G(yn)〉

=
∥∥yn − xn∥∥2

+
∥∥xn − x∗∥∥2

+ 2〈yn − xn, xn − x∗〉

+ λ2
∥∥G(xn)− G(yn)

∥∥2
+ 2λ〈yn − x∗,G(xn)− G(yn)〉

=
∥∥xn − x∗∥∥2

+
∥∥yn − xn∥∥2

+ 2〈yn − xn, yn − x∗〉+ 2〈yn − xn, xn − yn〉

+ λ2
∥∥G(xn)− G(yn)

∥∥2
+ 2λ〈yn − x∗,G(xn)− G(yn)〉. (3.1)

It is given that
yn = PC [xn − λG(xn)]

and it gives that

〈xn − λG(xn)− yn, y − yn〉 ≤ 0, ∀ y ∈ C. (3.2)

Thus, we have
〈xn − yn, x∗ − yn〉 ≤ λ〈G(xn), x∗ − yn〉. (3.3)

Combining expressions (3.1) and (3.3), we have∥∥zn − x∗∥∥2

≤
∥∥xn − x∗∥∥2

+
∥∥yn − xn∥∥2

+ 2λ〈G(xn), x∗ − yn〉 − 2〈xn − yn, xn − yn〉

+ λ2
∥∥G(xn)− G(yn)

∥∥2 − 2λ〈G(xn)− G(yn), x∗ − yn〉

=
∥∥xn − x∗∥∥2 −

∥∥xn − yn∥∥2
+ λ2

∥∥G(xn)− G(yn)
∥∥2 − 2λ〈G(yn), yn − x∗〉.

(3.4)

It is given that x∗ is the solution of the problem (VIP) implies that

〈G(x∗), y − x∗〉 ≥ 0, ∀ y ∈ C.
It implies that

〈G(y), y − x∗〉 ≥ 0, ∀ y ∈ C.
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Substituting y = yn ∈ C, we have

〈G(yn), yn − x∗〉 ≥ 0. (3.5)

From expressions (3.4) and (3.5), we obtain∥∥zn − x∗∥∥2 ≤
∥∥xn − x∗∥∥2 −

∥∥xn − yn∥∥2
+ λ2L2

∥∥xn − yn∥∥2

=
∥∥xn − x∗∥∥2 −

(
1− λ2L2

)∥∥xn − yn∥∥2
. (3.6)

�

Lemma 3.2. Let G : H → H satisfying (G1)–(G4). If there exists a weakly
convergent subsequence {xnk

} of {xn} to x̂ and limk→+∞ ‖xnk
− ynk

‖ = 0.
Then, x̂ is the solution of (VIP).

Proof. Indeed, we have

ynk
= PC [xnk

− λnk
G(xnk

)],

that is equivalent to

〈xnk
− λnk

G(xnk
)− ynk

, y − ynk
〉 ≤ 0, ∀ y ∈ C. (3.7)

The inequality mentioned above implies that

〈xnk
− ynk

, y − ynk
〉 ≤ λnk

〈G(xnk
), y − ynk

〉, ∀ y ∈ C. (3.8)

Thus, we obtain

1

λnk

〈xnk
−ynk

, y−ynk
〉+〈G(xnk

), ynk
−xnk

〉 ≤ 〈G(xnk
), y−xnk

〉, ∀ y ∈ C. (3.9)

Since min
{ µ
L , λ1

}
≤ λ ≤ λ1 and {xnk

} is a bounded sequence, from the
condition limk→+∞ ‖xnk

− ynk
‖ = 0 and k → +∞ in (3.9), we obtain

lim inf
k→+∞

〈G(xnk
), y − xnk

〉 ≥ 0, ∀ y ∈ C. (3.10)

Moreover, we have

〈G(ynk
), y − ynk

〉
= 〈G(ynk

)− G(xnk
), y − xnk

〉+ 〈G(xnk
), y − xnk

〉+ 〈G(ynk
), xnk

− ynk
〉.

(3.11)

Since limk→+∞ ‖xnk
− ynk

‖ = 0 and G is L-Lipschitz continuity on H implies
that

lim
k→+∞

‖G(xnk
)− G(ynk

)‖ = 0, (3.12)

which together with (3.11) and (3.12), we obtain

lim inf
k→+∞

〈G(ynk
), y − ynk

〉 ≥ 0, ∀ y ∈ C. (3.13)
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To prove further, let us take a positive sequence {εk} that is convergent to
zero and decreasing. For each {εk}, we denote by mk the smallest positive
integer such that

〈G(xni), y − xni〉+ εk > 0, ∀ i ≥ mk, (3.14)

where the existence of mk follows from (3.13). Since {εk} is decreasing, it is
easy to see that the sequence {mk} is increasing.

Case I: If there is a subsequence {xnmkj
} of {xnmk

} such that G(xnmkj
) = 0,

for all j. Let j → +∞, we obtain

〈G(x̂), y − x̂〉 = lim
j→+∞

〈G(xnmkj
), y − x̂〉 = 0. (3.15)

Thus, x̂ ∈ C and imply that x̂ ∈ V I(C,G).

Case II: If there exits N0 ∈ N such that for all nmk
≥ N0, G(xnmk

) 6= 0.
Consider that

znmk
=
G(xnmk

)

‖G(xnmk
)‖2

, ∀nmk
≥ N0. (3.16)

Due to the above definition, we obtain

〈G(xnmk
),znmk

〉 = 1, ∀nmk
≥ N0. (3.17)

Moreover, expressions (3.14) and (3.17), for all nmk
≥ N0, we have

〈G(xnmk
), y + εkznmk

− xnmk
〉 > 0. (3.18)

Since G is quasimonotone, then

〈G(y + εkznmk
), y + εkznmk

− xnmk
〉 > 0. (3.19)

For all nmk
≥ N0, we have

〈G(y), y−xnmk
〉 ≥ 〈G(y)−G(y+εkznmk

), y+εkznmk
−xnmk

〉−εk〈G(y),znmk
〉.

(3.20)
Due to {xnk

} weakly converges to x̂ ∈ C through G is weakly sequentially
continuous on the set C, we get {G(xnk

)} weakly converges to G(x̂). Suppose
that G(x̂) 6= 0, we have

‖G(x̂)‖ ≤ lim inf
k→+∞

‖G(xnk
)‖. (3.21)

Since {xnmk
} ⊂ {xnk

} and limk→+∞ εk = 0, we have

0 ≤ lim
k→+∞

‖εkznmk
‖ = lim

k→+∞

εk
‖G(xnmk

)‖
≤ 0

‖G(x̂)‖
= 0. (3.22)

Next, consider k → +∞ in (3.20), we obtain

〈G(y), y − x̂〉 ≥ 0, ∀ y ∈ C. (3.23)

Thus, we infer that x̂ ∈ V I(C,G). �
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Theorem 3.3. Assume that a mapping G : H → H satisfies the conditions
(G1)–(G4). Then, the sequence {xn} generated by the Algorithm 1 converges
strongly to x∗ = PΩ(x0).

Proof. By using Lemma 3.1, we have∥∥zn − x∗∥∥2 ≤
∥∥xn − x∗∥∥2 −

(
1− λ2L2

)∥∥xn − yn∥∥2
. (3.24)

Since 0 < λ < 1
L , we obtain

‖zn − x∗‖2 ≤ ‖xn − x∗‖2. (3.25)

By the use of definition of {xn+1}, we obtain∥∥xn+1 − x∗
∥∥ =

∥∥αnx0 + (1− αn)zn − x∗
∥∥

=
∥∥αn[x0 − x∗] + (1− αn)[zn − x∗]

∥∥
≤ αn

∥∥x0 − x∗
∥∥+ (1− αn)

∥∥zn − x∗∥∥. (3.26)

Combining expressions (3.25) and (3.26), we obtain∥∥xn+1 − x∗
∥∥ ≤ αn∥∥x0 − x∗

∥∥+ (1− αn)
∥∥xn − x∗∥∥

≤ max
{∥∥x0 − x∗

∥∥, ∥∥xn − x∗∥∥}. (3.27)

By induction, we have ∥∥xn − x∗∥∥ ≤ ∥∥x0 − x∗
∥∥. (3.28)

Thus, we conclude that {xn} is bounded sequence. By using Lemma 2.4 (i),
we obtain∥∥xn+1 − x∗

∥∥2

=
∥∥αnx0 + (1− αn)zn − x∗

∥∥2

=
∥∥αn[x0 − x∗] + (1− αn)[zn − x∗]

∥∥2

= αn‖x0 − x∗‖2 + (1− αn)‖zn − x∗‖2 − αn(1− αn)‖x0 − zn‖2

≤ αn‖x0 − x∗‖2 + (1− αn)
[∥∥xn − x∗∥∥2 −

(
1− λ2L2

)∥∥xn − yn∥∥2
]

− αn(1− αn)‖x0 − zn‖2

≤ αn‖x0 − x∗‖2 + ‖xn − x∗‖2 − (1− αn)
(
1− λ2L2

)
‖xn − yn‖2. (3.29)

The above relationship implies that

(1− αn)
(
1− λ2L2

)
‖xn − yn‖2 ≤ αn‖x0 − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

(3.30)
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From Lemma 2.4, we have∥∥xn+1 − x∗
∥∥2

=
∥∥αnx0 + (1− αn)zn − x∗

∥∥2

=
∥∥αn[x0 − x∗] + (1− αn)[zn − x∗]

∥∥2

≤ (1− αn)2
∥∥zn − x∗∥∥2

+ 2αn〈x0 − x∗, (1− αn)[zn − x∗] + αn[x0 − x∗]〉

= (1− αn)2
∥∥zn − x∗∥∥2

+ 2αn〈x0 − x∗, xn+1 − x∗〉

≤ (1− αn)
∥∥xn − x∗∥∥2

+ 2αn〈x0 − x∗, xn+1 − x∗〉. (3.31)

Case 1: Assume that there exists a fixed number n1 ∈ N such that

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖, ∀n ≥ n1. (3.32)

Thus, above implies that limn→+∞ ‖xn − x∗‖ exists and let limn→+∞ ‖xn −
x∗‖ = l. From (3.30), we obtain

(1− αn)
(
1− λ2L2

)
‖xn − yn‖2

≤ αn‖x0 − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.33)

The existence of limn→+∞ ‖xn − x∗‖ = l and αn → 0, we can deduce that

lim
n→+∞

‖xn − yn‖ = 0. (3.34)

Thus, we have

lim
n→+∞

‖yn − x∗‖ = l. (3.35)

It follows that

‖zn − yn‖ = ‖yn + λ[G(xn)− G(yn)]− yn‖ ≤ λL‖xn − yn‖.
The above expression implies that

lim
n→+∞

‖zn − yn‖ = 0. (3.36)

It follows that

lim
n→+∞

‖xn − zn‖ ≤ lim
n→+∞

‖xn − yn‖+ lim
n→+∞

‖yn − zn‖ = 0. (3.37)

Furthermore, we obtain∥∥xn+1 − xn
∥∥ =

∥∥αnx0 + (1− αn)zn − xn
∥∥

=
∥∥αn[x0 − xn] + (1− αn)[zn − xn]

∥∥
≤ αn

∥∥x0 − xn
∥∥+ (1− αn)

∥∥zn − xn∥∥. (3.38)

It follows that

lim
n→+∞

‖xn+1 − xn‖ = 0. (3.39)
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It is given that x∗ = PΩ(x0), we have

〈x0 − x∗, y − x∗〉 ≤ 0, ∀ y ∈ Ω. (3.40)

Indeed, since {xn} is bounded, we assume that there exists a subsequence
{xnk

} of {xn} such that xnk
⇀ x̂ ∈ H. By Lemma 3.2, we have

lim sup
n→+∞

〈x0 − x∗, xn − x∗〉 = lim sup
k→+∞

〈x0 − x∗, xnk
− x∗〉

= 〈x0 − x∗, x̂− x∗〉
≤ 0. (3.41)

By the use of limn→+∞
∥∥xn+1 − xn

∥∥ = 0. We can deduce that

lim sup
n→+∞

〈x0 − x∗, xn+1 − x∗〉 ≤ lim sup
n→+∞

〈x0 − x∗, xn+1 − xn〉

+ lim sup
n→+∞

〈x0 − x∗, xn − x∗〉

≤ 0. (3.42)

By the use of expressions (3.31), (3.42) and Lemma 2.8, we can derive that∥∥xn − x∗∥∥→ 0 as n→ +∞.

Case 2: Assume there exists a subsequence {ni} of {n} such that

‖xni − x∗‖ ≤ ‖xni+1 − x∗‖, ∀ i ∈ N.

Thus, by Lemma 2.9, there exists a sequence {mk} ⊂ N as {mk} → +∞, such
that

‖xmk
− x∗‖ ≤ ‖xmk+1

− x∗‖ and ‖xk − x∗‖ ≤ ‖xmk+1
− x∗‖, for all k ∈ N.

(3.43)
As similar to Case 1, expression (3.30) provides that

(1− αmk
)
(
1− λ2L2

)
‖xmk

− ymk
‖2

≤ αmk
‖x0 − x∗‖2 + ‖xmk

− x∗‖2 − ‖xmk+1 − x∗‖2. (3.44)

Due to αmk
→ 0, we deduce the following:

lim
k→+∞

‖xmk
− ymk

‖ = 0. (3.45)

It follows that

‖zmk
− ymk

‖ = ‖ymk
+ λ[G(xmk

)− G(ymk
)]− ymk

‖ ≤ λL‖xmk
− ymk

‖.

The above expression implies that

lim
k→+∞

‖zmk
− ymk

‖ = 0. (3.46)
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It follows that

lim
k→+∞

‖xmk
− zmk

‖ ≤ lim
k→+∞

‖xmk
− ymk

‖+ lim
k→+∞

‖ymk
− zmk

‖ = 0. (3.47)

Furthermore, we obtain∥∥xmk+1 − xmk

∥∥ =
∥∥αmk

x0 + (1− αmk
)zmk

− xmk

∥∥
=
∥∥αmk

[x0 − xmk
] + (1− αmk

)[zmk
− xmk

]
∥∥

≤ αmk

∥∥x0 − xmk

∥∥+ (1− αmk
)
∥∥zmk

− xmk

∥∥. (3.48)

It follows that
lim

k→+∞
‖xmk+1 − xmk

‖ = 0. (3.49)

We use the same argument as in Case 1, which is as follows:

lim sup
k→+∞

〈x0 − x∗, xmk+1 − x∗〉 ≤ 0. (3.50)

Now, using expressions (3.31), we have

∥∥xmk+1 − x∗
∥∥2 ≤ (1− αmk

)
∥∥xmk

− x∗
∥∥2

+ 2αmk
〈x0 − x∗, xmk+1 − x∗〉

≤ (1− αmk
)
∥∥xmk+1 − x∗

∥∥2
+ 2αmk

〈x0 − x∗, xmk+1 − x∗〉.
(3.51)

It continues from that∥∥xmk+1 − x∗
∥∥2 ≤ 2〈x0 − x∗, xmk+1 − x∗〉. (3.52)

Thus, (3.42) and (3.52) we obtain

‖xmk+1 − x∗‖2 → 0, as k → +∞. (3.53)

It implies that

lim
k→+∞

‖xk − x∗‖2 ≤ lim
k→+∞

‖xmk+1 − x∗‖2 ≤ 0. (3.54)

Consequently, xn → x∗. This completes the proof. �

Next, we introduce the first variant of Algorithm 1 in which the constant
step size λ is chosen adaptively and thus produced a sequence {λn} that does
not require the knowledge of the Lipschitz-type constant L.

Algorithm 2.

Step 0: Choose x1 ∈ C, λ1 > 0, µ ∈ (0, 1) and {αn} ⊂ (0, 1) satisfies the
following conditions:

lim
n→+∞

αn = 0 and
+∞∑
n=1

αn = +∞.
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Step 1: Compute
yn = PC(xn − λG(xn)).

If xn = yn, then STOP and yn is a solution. Otherwise, go to Step 2.

Step 2: Compute
zn = yn + λ

[
G(xn)− G(yn)

]
.

Step 3: Compute
xn+1 = αnx0 + (1− αn)zn.

Step 4: Compute

λn+1 =

{
min

{
λn,

µ‖xn−yn‖
‖G(xn)−G(yn)‖

}
if G(xn)− G(yn) 6= 0,

λn otherwise.
(3.55)

Set n = n+ 1 and go back to Step 1.

Lemma 3.4. The sequence {λn} generated by (3.55) is decreasing monotoni-
cally and converges to λ > 0.

Proof. It is given that G is Lipschitz-continuous with constant L > 0. Let
G(xn) 6= G(yn) such that

µ‖xn − yn‖
‖G(xn)− G(yn)‖

≥ µ‖xn − yn‖
L‖xn − yn‖

≥ µ

L
. (3.56)

The above expression implies that limn→+∞ λn = λ. �

Lemma 3.5. Suppose that G : H → H satisfies conditions (G1)-(G4) and
sequence {xn} generated by Algorithm 2. Then, we have

‖xn+1 − x∗‖2 ≤
∥∥xn − x∗∥∥2 −

(
1− µ2 λ2

n

λ2
n+1

)∥∥xn − yn∥∥2
.

Next, we introduce the second variant of Algorithm 1 in which the constant
step size λ is chosen adaptively and thus produced a sequence {λn} that does
not require the knowledge of the Lipschitz-like constants L. In this case, the
step size sequence {λn} is not monotone.

Algorithm 3.

Step 0: Choose x1 ∈ C, λ1 > 0, µ ∈ (0, 1) and select a nonnegative real
sequence {ϕn} such that

∑+∞
n=1 ϕn < +∞. Moreover, choose {αn} ⊂ (0, 1)

satisfies the following conditions:

lim
n→+∞

αn = 0 and

+∞∑
n=1

αn = +∞.
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Step 1: Compute
yn = PC(xn − λG(xn)).

If xn = yn, then STOP and yn is a solution. Otherwise, go to Step 2.

Step 2: Compute
zn = yn + λ

[
G(xn)− G(yn)

]
.

Step 3: Compute
xn+1 = αnx0 + (1− αn)zn.

Step 4: Compute

λn+1 =

{
min

{
λn + ϕn,

µ‖xn−yn‖
‖G(xn)−G(yn)‖

}
if G(xn)− G(yn) 6= 0,

λn + ϕn otherwise.
(3.57)

Set n = n+ 1 and go back to Step 1.

Lemma 3.6. The sequence {λn} generated by (3.57) is convergent to λ and
also satisfy the following inequality

min
{µ
L
, λ0

}
≤ λ ≤ λ0 + P, where P =

+∞∑
n=1

ϕn.

Proof. Due to the Lipschitz continuity of a mapping G there exists a fixed
number L > 0. Consider that G(xn)− G(yn) 6= 0 such that

µ‖xn − yn‖
‖G(xn)− G(yn)‖

≥ µ‖xn − yn‖
L‖xn − yn‖

≥ µ

L
. (3.58)

By using mathematical induction on the definition of λn+1, we have

min

{
µ

L
, λ0

}
≤ λn ≤ λ0 + P.

Let
[λn+1 − λn]+ = max

{
0, λn+1 − λn

}
and

[λn+1 − λn]− = max
{

0,−(λn+1 − λn)
}
.

From the definition of {λn}, we have

+∞∑
n=1

[λn+1 − λn]+ =

+∞∑
n=1

max
{

0, λn+1 − λn
}
≤ P < +∞. (3.59)

That is, the series
+∞∑
n=1

[λn+1 − λn]+ is convergent.
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Next we need to prove the convergence of
+∞∑
n=1

(λn+1 − λn)−.

Let

+∞∑
n=1

[λn+1 − λn]− = +∞. Due to the reason that

λn+1 − λn = (λn+1 − λn)+ − (λn+1 − λn)−,

we have

λk+1 − λ0 =

k∑
n=0

(λn+1 − λn) =

k∑
n=0

[λn+1 − λn]+ −
k∑

n=0

[λn+1 − λn]−. (3.60)

By allowing k → +∞ in (3.60), we have λk → −∞ as k → +∞. This is

a contradiction. Due to the convergence of the series

k∑
n=0

[λn+1 − λn]+ and

k∑
n=0

[λn+1 − λn]− taking k → +∞ in (3.60), we obtain limn→+∞ λn = λ. This

completes the proof. �

Remark 3.7. (i) Three extragradient-type methods are established to find an
approximate solution of variational inequalities involving semistrictly quasi-
monotone and Lipschitz-continuous operators in a real Hilbert space.

(ii) A strongly convergent result, corresponding to the proposed algorithms
have been proved.

(iii) It is important to note that these methods have been used fixed, mono-
tonic and non-monotonic step size rules that use operator value rather than
the Lipschitz constant of an operator.

4. Numerical Illustrations

The computational results of the proposed schemes are described in this
section, in contrast to some related work in the literature and also in the anal-
ysis of how variations in control parameters affect the numerical effectiveness
of the proposed algorithms. All computations are done in MATLAB R2018b
and run on HP i- 5 Core(TM)i5-6200 8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Consider that H = l2 is a real Hilbert space with sequences of
real numbers satisfying the following condition

‖x1‖2 + ‖x2‖2 + · · ·+ ‖xn‖2 + · · · < +∞. (4.1)

Assume that G : C → C is defined by

G(x) = (5− ‖x‖)x, ∀x ∈ H,
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where C = {x ∈ H : ‖x‖ ≤ 3}. It is easy to see that G is weakly sequentially
continuous on H and V I(C,G) = {0}. For any x, y ∈ H, we have∥∥G(x)− G(y)

∥∥ =
∥∥(5− ‖x‖)x− (5− ‖y‖)y

∥∥
=
∥∥5(x− y)− ‖x‖(x− y)− (‖x‖ − ‖y‖)y

∥∥
≤ 5‖x− y‖+ ‖x‖‖x− y‖+

∣∣‖x‖ − ‖y‖∣∣‖y‖
≤ 5‖x− y‖+ 3‖x− y‖+ 3‖x− y‖
≤ 11‖x− y‖. (4.2)

Hence G is L-Lipschitz continuous with L = 11. For any x, y ∈ H, let
〈
G(x), y−

x
〉
> 0 such that

(5− ‖x‖)
〈
x, y − x

〉
> 0.

Since ‖x‖ ≤ 3 implies that 〈
x, y − x

〉
> 0.

Thus, we have〈
G(y), y − x

〉
= (5− ‖y‖)

〈
y, y − x

〉
≥ (5− ‖y‖)

〈
y, y − x

〉
− (5− ‖y‖)

〈
x, y − x

〉
≥ 2‖x− y‖2 ≥ 0. (4.3)

Thus, we shown that G is quasimonotone on C. Let x = (5
2 , 0, 0, · · · , 0, · · · )

and y = (3, 0, 0, · · · , 0, · · · ) such that〈
G(x)− G(y), x− y

〉
= (2.5− 3)2 < 0.

A projection on the set C is computed explicitly as follows:

PC(x) =


x, if ‖x‖ ≤ 3,

3x
‖x‖ , otherwise.

The control conditions have been taken as follows:

λ =
1

2L
, λ0 =

5

11
, µ = 0.44, ϕn =

100

(n+ 3)2
.

Table 1. Numerical results values for Example 4.1.

Number of Iterations
x0 Algorithm 3 Algorithm 3 Algorithm 3
(3, 3, · · · , 310000, 0, 0, · · · ) 102 91 89
(1, 2, · · · , 10000, 0, 0, · · · ) 112 94 99
(7, 7, · · · , 7100000, 0, 0, · · · ) 117 101 110
(20, 20, · · · , 20100000, 0, 0, · · · ) 129 109 115
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Table 2. Numerical results values for Example 4.1.

Elapsed time in seconds
x0 Algorithm 3 Algorithm 3 Algorithm 3
(3, 3, · · · , 310000, 0, 0, · · · ) 15.658362 13.575637 14.0057768
(1, 2, · · · , 10000, 0, 0, · · · ) 16.274758 14.019125 15.0084828
(7, 7, · · · , 7100000, 0, 0, · · · ) 18.564383 17.476847 17.5384939
(20, 20, · · · , 20100000, 0, 0, · · · ) 22.657362 19.475593 21.5701981

Remark 4.2. (i) We observe from numerical results of Example 4.1 that our
proposed Algorithm 3 is efficient and easy to implement for both finite and
infinite dimensional spaces, see Tables 1 and 2.

(ii) The performance is better both in CPU time and the number of itera-
tions for Example 4.1 (see Tables 1 and 2).

(iii) We also observe that different choice of initial points x0 has significant
effect of the CPU (time) and number of iterations.

Conclusion

In this study, we considered three strong convergence results for variational
inequalities problem involving semistrictly quasimonotone and Lipschitz conti-
nuous monotone operator, but the Lipschitz constant is unknown. We modify
the extragradient method with a natural step size rule. The strong convergence
result is demonstrated without any provision of additional projections.
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[13] G. Kassay, J. Kolumbán and Z. Páles, On Nash stationary points, Publ. Math. Debrecen,
54(3-4) (1999), 267–279.
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