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Abstract. Let p(z) be a polynomial of degree n having no zero in |z| < k, k < 1, then Govil

proved
n

1+
provided [p’(z)| and |¢'(#)| attain their maximal at the same point on the circle |z| = 1,

where
(2)="p( 2
q =zp /)

In this paper, we extend the above inequality to polar derivative of a polynomial. Further,

max |p'(z)] <
=1

m Jor X [p(2)],

we also prove an improved version of above inequality into polar derivative.

1. INTRODUCTION

If p(z) is a polynomial of degree n, then

max [p(z)| < nmax |p(z)]. (1.1)
|z|=1 |z|=1
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The above inequality is the well-known Bernstein inequality [5]. Inequality
(1.1) is best possible and equality holds for the polynomial p(z) = Az, A # 0

being a complex number.

If we restrict to the class of polynomials having no zero in |z| < 1, then
inequality (1.1) can be sharpened. In fact, Erdds conjectured and later Lax
[12] proved that if p(z) is a polynomial of degree n having no zero in |z| < 1,
then

max [p/(2)] < ® mnax Ip(2)]. (1.2)
|z|=1 2 |z=1

Inequality (|1.2) is sharp for polynomials having their zeros on |z| = 1.

The polar derivative of a polynomial p(z) of degree n with respect to a real
or complex number «, denoted by D,p(z) is defined as

Dap(2) = np(z) + (a = 2)p'(2).

The polynomial D,p(z) is of degree at most n — 1 and it generalizes the
ordinary derivative in the sense that

lim Lap(z) =7 (2).

a—00 e}

Aziz and Shah [4] extended (|1.1) to polar derivative by proving that if p(z)
is a polynomial of degree n, then for every real or complex number o with
lal > 1,
‘maXIDap(Z)! < njal max Ip(2)]- (1.3)
z|l= zl=
Further, Aziz [I] extended inequality ((1.2)) to polar derivative and proved that
if p(2) is a polynomial of degree n having no zero in |z| < 1, then for every
real or complex number « with |a| > 1,
n
max |Dap(2)| < —(Ja| + 1) max |p(2)]. (1.4)
|z|=1 2 |z|=1
It was asked by Boas that if p(z) is a polynomial of degree n not vanishing
in |z| < k, k > 0, then how large can

{max |p/(z)/max |p(z)|} be ?
|2|=1 |2|=1
A partial answer to this problem was given by Malik [13], who proved for

the case k > 1 that

, n
max < — max . 1.5
E p'(2)] < 1T+ k2ot Ip(2)] (1.5)
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Equality in (1.5 holds for p(z) = (2 + k)™.

For the class of polynomials not vanishing in |z| < k, k < 1, the precise
estimate for maximum of |p’(z)| on |z| = 1, in general, does not seem to be
easily obtainable.

For quite some time, it was believed that if p(z) is a polynomial of degree n
having no zero in |z| < k, k < 1, then the inequality analogous to ([1.5)) should
be

max [p(z)] < p(2)], (1.6)

|z|=1 _1+k”ﬁg
until E.B. Saff gave the example p(z) = <z— %) <z+ é) to counter this belief.

There are many extensions of inequality (|1.5])( see Dewan and Bidkham [7],
Dewan and Mir [§] and Chan and Malik [6]).

However, for the class of polynomials not vanishing in |z| < k, k < 1, Govil
[9] proved inequality (1.6)) with extra condition.

Theorem 1.1. If p(z) is a polynomial of degree n having no zero in |z| < k,
k <1, then

max |p'(z)| <

n
1.7
max S T3 maxle(z), (1.7)

provided |p'(2)| and |¢'(2)| attain their mazima at the same point on the circle

2| = 1, where
q(z) = z”p(i). (1.8)

2. LEMMAS

For the proofs of the theorems, we will use the following lemmas. The first
lemma is a special case of a result due to Govil and Rahman [I1].

Lemma 2.1. If p(z) is a polynomial of degree n, then on |z| =1,

P'(2)| +1d'(2)] < i p(2)], (2.1)

q(z) = z”p(i).

The next lemma was proved by Aziz [I, Lemma 2] in more general form.
However, we present a simple proof of this lemma which we think is new,

where
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simply by using the definition of polar derivative of a polynomial and Lemma
due to Govil and Rahman [I1].

Lemma 2.2. If p(z) is a polynomial of degree n and « is any real or complex
number, then on |z| =1,

[Dap(2)| + [Dag(z)] < n(la] +1) ax p(2)], (2.2)

q(z) = z”p(i).

1
Proof. Let q(z) = z"p(). Then it is easy to verify that on |z| =1,
z

where

|4 (2)] = Inp(2) — 2p'(2)]- (2.3)
Now, for every real or complex number «, the polar derivative of p(z) with
respect to « is

Dap(z) = np(z) + (a = 2)p'(2). (2.4)
This implies on |z| =1,
| Dap(2)| < [np(2) — 2p'(2)] + [el|p'(2)]- (2.5)
Using (2.3) in (2.5), on |z| = 1, we have
[Dap(2)] < |¢'(2)] + o] [p'(2)]. (2.6)
Similarly on |z| = 1,
| Daq(2)] < 1P (2)] + el g’ (2)]- (2.7)
Adding (2.6)) and (2.7), we have
[Dap(2)] + [Daq(2)] < (lo] + 1) {Ip'(2)] + |¢'(2)]} - (2.8)
Using Lemma in , we get
[Dap(2)] + [Dagq(z)] < n(le| +1) max p(2)]; (2.9)
which completes the proof of Lemma [2.2] O

The next lemma is due to Aziz and Rather [3].

Lemma 2.3. If p(z) is a polynomial of degree n having all its zeros in |z| < k,
k > 1, then for every real or complex number o with || > k,

—k
max [Dap()] = (K0 ) maxlp(o). (2.10)
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The following lemma was obtained by Govil and McTume [10].

Lemma 2.4. If p(z) is a polynomial of degree n having all its zeros in |z| < k,
k > 1, then for every real or complex number o with || > 1+ k + k",

n(la| — k)
max [Dgp(z)] >N %)
|z|i)1(| p(2)] = 1+ Ekm |Z\i}1( [p(2)]
la| = (1 + Kk +E") .
m . 2.11
o { 1+ Ekm \z|£ilc Ip(2)] ( )

3. MAIN RESULTS

In this paper, we first prove the following result which extends Theorem [I.1]
to polar derivative of p(z).

Theorem 3.1. If p(2) is a polynomial of degree n having no zero in |z| < k,
k <1, then for every real or complex number o with |a| > 7
n(|a) + k™ + k1 1)

max |D,p(z)| < ma, z)|, 3.1
max | Dap(2)] < T max p(2)] (3.1)

provided |Dop(z)| and |Dyq(2)| attain their mazimal at the same point on the
circle |z| = 1, where

Proof. The proof of this theorem follows on the same lines as that of next
theorem but instead of applying Lemma [2.4] we apply Lemma [2.3] and we
omit it. O

Remark 3.2. From the hypotheses of Theorem |Dop(2)| and |Dag(2)]
attain their maximal at the same point on |z| = 1. Further, if they are
divided by || and considering limit as o — oo, then they become [p’(z)| and
|¢’(2)| respectively which attain their maximal at the same point on |z| = 1.
Hence, dividing both sides of inequality as well as the quantities | D,p(2)|
and |D,q(z)| by |a| and taking respective limit as |a| — oo, we readily get
inequality of Theorem along with the agreement that |p'(z)| and

|¢(2)| attain their maximal at the same point on the circle |z| = 1.

Next, under the same hypotheses, we further prove the following improved
result which sharpens Theorem
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Theorem 3.3. If p(z) is a polynomial of degree n having no zero in |z| < k,
k <1, then for every real or complex number o with |a| > 1+ % + k%n’

n(lal + k" + k"1 4+ 1)

D <
max | Dap(2)] < T max [p(2)
o] — (k" + kv 4 1))
— 3.2
bl 2)

provided | Dop(2)| and |Doq(2)| attain their mazimal at the same point on the

circle |z| = 1, where
1
T
q(z) =z p<z>.

Proof. Let p(z) be a polynomial of degree n having no zero in |z| < k, k < 1.
In other words, p(z) has all its zeros in |z| > k, k < 1 and hence all the zeros

of q(2) = 2"p(%) lie in |2| < 1/k, 1/k > 1. Applying Lemmaon q(z), for
la| > 14 1 + 2, we have

1 1 1
-7 -1+ ¢4+ =
max|Daq(z)| > Mmax‘q(z)’ +n { |a| ( ’f k )}m',

|2|=1 1+ & 2=t

where m’ = min lg(2)|, which is equivalent to
zl=

< nk"(kla] — 1)

D,
gl‘g)f\ q(2)| > T ﬁglq(@l
ko) — (K" + k"1 41
+n{ o] (1 ;;n * )}m’. (3.3)
Now
' = min lg(z)] = — min |p(2)
|2|=1 k™ |z|=k ’
m
where m = min |p(z)|. Using (3.4) in (3.3]), we have
min [p(2) g
nk" (kla| — 1)
D, >
max|Daq(2)] 2 =~ =5 —— max|q(z)|
kel — (k™ + k"1 41)
+”{ k(L + k) (3:5)
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Also, since on |z| =1, |p(2)| = |¢(z)]|, inequality (3.5)) can be written as
< nk"t(kla| — 1)

D,
lrggfl q(2)| > T max Ip(2)]
k' ol — (K™ + k"1 4 1)
n { (1 + k) (36)
By Lemma 2.2} on |z| = 1,
[Dap(2)] + [Daq(2)] < n(lal +1) max p(2)]. (3.7)

Let zp be a point on |z| = 1 such that lm‘a)f]Daq(zﬂ = |Dagq(z0)|. Since
z|l=
|Dop(2)| and |Dyq(z)| attain their maximal at the same point on |z| = 1 with
la| > 14 1 + 2, we have

max [Dap(2)] = [Dap(z0)|

Thus, in particular (3.7)) gives

max |Dqq(2)| < n(|a] + 1) max |p(z)| — max |Dap(2)]. (3.8)
|z|=1 |z]=1 |z]=1

Combining (3.6)) and (3.8)), we have
< nk"t(kla| — 1)

n(laf + 1) max |p(2)] = max|Dap(2)| 2 =" =5 —— max|p(z)|
kol — (K™ + k"1 4+1)
+n { (L4 k) m,
(3.9)
which on simplification gives
n(k"™ + |a| + k"1 4+ 1)
D, <
fﬁi’f' p(2)| < 11 o ) [p(2)]
E*a| — (k" + k"L +1)
— . 1
n{ T k) m (3.10)
This completes the proof. O

Remark 3.4. If we adopt the similar arguments of Remark in Theorem
m we have the following result proved by Aziz and Ahmad [2, Theorem 3].

Corollary 3.5. If p(z) is a polynomial of degree n having no zero in |z| < k,
k <1, then

o 2)] < - { e p(e)| = i oo} (3.11)
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provided |p'(2)| and |¢'(2)| attain their maximal at the same point on the circle
|z| =1, where

(1]
2]

q(z) = z"pC).
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