Nonlinear Functional Analysis and Applications
Vol. 27, No. 1 (2022), pp. 141-148
ISSN: 1229-1595(print), 2466-0973(online)
https://doi.org/10.22771/nfaa.2022.27.01.09
http://nfaa.kyungnam.ac.kr/journal-nfaa
KUpress
Copyright © 2022 Kyungnam University Press

SOME INEQUALITIES ON POLAR DERIVATIVE OF A POLYNOMIAL

Khangembam Babina Devi ${ }^{1}$, Kshetrimayum Krishnadas ${ }^{2}$ and Barchand Chanam ${ }^{3}$
${ }^{1}$ Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India
e-mail: khangembambabina@gmail.com
${ }^{1}$ Department of Mathematics, National Institute of Technology Manipur
Langol, Imphal 795004, Manipur, India
e-mail: kshetrimayum.krishnadas@sbs.du.ac.in
${ }^{1}$ Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India e-mail: barchand_2004@yahoo.co.in

Abstract. Let $p(z)$ be a polynomial of degree n having no zero in $|z|<k, k \leq 1$, then Govil proved

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}} \max _{|z|=1}|p(z)|
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maximal at the same point on the circle $|z|=1$, where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} .
$$

In this paper, we extend the above inequality to polar derivative of a polynomial. Further, we also prove an improved version of above inequality into polar derivative.

1. Introduction

If $p(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{1.1}
\end{equation*}
$$

[^0]The above inequality is the well-known Bernstein inequality (5). Inequality (1.1) is best possible and equality holds for the polynomial $p(z)=\lambda z^{n}, \lambda \neq 0$ being a complex number.

If we restrict to the class of polynomials having no zero in $|z|<1$, then inequality (1.1) can be sharpened. In fact, Erdös conjectured and later Lax [12] proved that if $p(z)$ is a polynomial of degree n having no zero in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

Inequality (1.2) is sharp for polynomials having their zeros on $|z|=1$.

The polar derivative of a polynomial $p(z)$ of degree n with respect to a real or complex number α, denoted by $D_{\alpha} p(z)$ is defined as

$$
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z) .
$$

The polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} p(z)}{\alpha}=p^{\prime}(z) .
$$

Aziz and Shah [4] extended (1.1) to polar derivative by proving that if $p(z)$ is a polynomial of degree n, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq n|\alpha| \max _{|z|=1}|p(z)| . \tag{1.3}
\end{equation*}
$$

Further, Aziz [1] extended inequality (1.2) to polar derivative and proved that if $p(z)$ is a polynomial of degree n having no zero in $|z|<1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n}{2}(|\alpha|+1) \max _{|z|=1}|p(z)| . \tag{1.4}
\end{equation*}
$$

It was asked by Boas that if $p(z)$ is a polynomial of degree n not vanishing in $|z|<k, k>0$, then how large can

$$
\left\{\max _{|z|=1}\left|p^{\prime}(z)\right| / \max _{|z|=1}|p(z)|\right\} \text { be ? }
$$

A partial answer to this problem was given by Malik [13], who proved for the case $k \geq 1$ that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|p(z)| . \tag{1.5}
\end{equation*}
$$

Equality in (1.5) holds for $p(z)=(z+k)^{n}$.
For the class of polynomials not vanishing in $|z|<k, k \leq 1$, the precise estimate for maximum of $\left|p^{\prime}(z)\right|$ on $|z|=1$, in general, does not seem to be easily obtainable.

For quite some time, it was believed that if $p(z)$ is a polynomial of degree n having no zero in $|z|<k, k \leq 1$, then the inequality analogous to (1.5) should be

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}} \max _{|z|=1}|p(z)| \tag{1.6}
\end{equation*}
$$

until E.B. Saff gave the example $p(z)=\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)$ to counter this belief.
There are many extensions of inequality (1.5) (see Dewan and Bidkham [7, Dewan and Mir [8 and Chan and Malik [6]).

However, for the class of polynomials not vanishing in $|z|<k, k \leq 1$, Govil [9] proved inequality (1.6) with extra condition.

Theorem 1.1. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}} \max _{|z|=1}|p(z)| \tag{1.7}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maxima at the same point on the circle $|z|=1$, where

$$
\begin{equation*}
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} \tag{1.8}
\end{equation*}
$$

2. Lemmas

For the proofs of the theorems, we will use the following lemmas. The first lemma is a special case of a result due to Govil and Rahman [11].

Lemma 2.1. If $p(z)$ is a polynomial of degree n, then on $|z|=1$,

$$
\begin{equation*}
\left|p^{\prime}(z)\right|+\left|q^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)|, \tag{2.1}
\end{equation*}
$$

where

$$
q(z)=z^{n} \overline{\left(\frac{1}{\bar{z}}\right)} .
$$

The next lemma was proved by Aziz [1, Lemma 2] in more general form. However, we present a simple proof of this lemma which we think is new,
simply by using the definition of polar derivative of a polynomial and Lemma 2.1 due to Govil and Rahman [11.

Lemma 2.2. If $p(z)$ is a polynomial of degree n and α is any real or complex number, then on $|z|=1$,

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right|+\left|D_{\alpha} q(z)\right| \leq n(|\alpha|+1) \max _{|z|=1}|p(z)|, \tag{2.2}
\end{equation*}
$$

where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}
$$

Proof. Let $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$. Then it is easy to verify that on $|z|=1$,

$$
\begin{equation*}
\left|q^{\prime}(z)\right|=\left|n p(z)-z p^{\prime}(z)\right| . \tag{2.3}
\end{equation*}
$$

Now, for every real or complex number α, the polar derivative of $p(z)$ with respect to α is

$$
\begin{equation*}
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z) . \tag{2.4}
\end{equation*}
$$

This implies on $|z|=1$,

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \leq\left|n p(z)-z p^{\prime}(z)\right|+|\alpha|\left|p^{\prime}(z)\right| . \tag{2.5}
\end{equation*}
$$

Using (2.3) in (2.5), on $|z|=1$, we have

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \leq\left|q^{\prime}(z)\right|+|\alpha|\left|p^{\prime}(z)\right| . \tag{2.6}
\end{equation*}
$$

Similarly on $|z|=1$,

$$
\begin{equation*}
\left|D_{\alpha} q(z)\right| \leq\left|p^{\prime}(z)\right|+|\alpha|\left|q^{\prime}(z)\right| . \tag{2.7}
\end{equation*}
$$

Adding (2.6) and (2.7), we have

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right|+\left|D_{\alpha} q(z)\right| \leq(|\alpha|+1)\left\{\left|p^{\prime}(z)\right|+\left|q^{\prime}(z)\right|\right\} . \tag{2.8}
\end{equation*}
$$

Using Lemma 2.1 in (2.8), we get

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right|+\left|D_{\alpha} q(z)\right| \leq n(|\alpha|+1) \max _{|z|=1}|p(z)|, \tag{2.9}
\end{equation*}
$$

which completes the proof of Lemma 2.2 .
The next lemma is due to Aziz and Rather [3].
Lemma 2.3. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, $k \geq 1$, then for every real or complex number α with $|\alpha| \geq k$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|p(z)| . \tag{2.10}
\end{equation*}
$$

The following lemma was obtained by Govil and McTume [10].
Lemma 2.4. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, $k \geq 1$, then for every real or complex number α with $|\alpha| \geq 1+k+k^{n}$,

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq & \frac{n(|\alpha|-k)}{1+k^{n}} \max _{|z|=1}|p(z)| \\
& +n\left\{\frac{|\alpha|-\left(1+k+k^{n}\right)}{1+k^{n}}\right\} \min _{|z|=k}|p(z)| . \tag{2.11}
\end{align*}
$$

3. Main results

In this paper, we first prove the following result which extends Theorem 1.1 to polar derivative of $p(z)$.

Theorem 3.1. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then for every real or complex number α with $|\alpha| \geq \frac{1}{k}$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n\left(|\alpha|+k^{n}+k^{n-1}+1\right)}{1+k^{n}} \max _{|z|=1}|p(z)|, \tag{3.1}
\end{equation*}
$$

provided $\left|D_{\alpha} p(z)\right|$ and $\left|D_{\alpha} q(z)\right|$ attain their maximal at the same point on the circle $|z|=1$, where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} .
$$

Proof. The proof of this theorem follows on the same lines as that of next theorem but instead of applying Lemma 2.4 , we apply Lemma 2.3 and we omit it.

Remark 3.2. From the hypotheses of Theorem 3.1, $\left|D_{\alpha} p(z)\right|$ and $\left|D_{\alpha} q(z)\right|$ attain their maximal at the same point on $|z|=1$. Further, if they are divided by $|\alpha|$ and considering limit as $\alpha \rightarrow \infty$, then they become $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ respectively which attain their maximal at the same point on $|z|=1$. Hence, dividing both sides of inequality (3.1) as well as the quantities $\left|D_{\alpha} p(z)\right|$ and $\left|D_{\alpha} q(z)\right|$ by $|\alpha|$ and taking respective limit as $|\alpha| \rightarrow \infty$, we readily get inequality (1.7) of Theorem 1.1 along with the agreement that $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maximal at the same point on the circle $|z|=1$.

Next, under the same hypotheses, we further prove the following improved result which sharpens Theorem 3.1.

Theorem 3.3. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then for every real or complex number α with $|\alpha| \geq 1+\frac{1}{k}+\frac{1}{k^{n}}$,

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq & \frac{n\left(|\alpha|+k^{n}+k^{n-1}+1\right)}{1+k^{n}} \max _{|z|=1}|p(z)| \\
& -n\left\{\frac{k^{n}|\alpha|-\left(k^{n}+k^{n-1}+1\right)}{k^{n}\left(1+k^{n}\right)}\right\} \min _{|z|=k}|p(z)| \tag{3.2}
\end{align*}
$$

provided $\left|D_{\alpha} p(z)\right|$ and $\left|D_{\alpha} q(z)\right|$ attain their maximal at the same point on the circle $|z|=1$, where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}
$$

Proof. Let $p(z)$ be a polynomial of degree n having no zero in $|z|<k, k \leq 1$. In other words, $p(z)$ has all its zeros in $|z| \geq k, k \leq 1$ and hence all the zeros of $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ lie in $|z| \leq 1 / k, 1 / k \geq 1$. Applying Lemma 2.4 on $q(z)$, for $|\alpha| \geq 1+\frac{1}{k}+\frac{1}{k^{n}}$, we have

$$
\max _{|z|=1}\left|D_{\alpha} q(z)\right| \geq \frac{n\left(|\alpha|-\frac{1}{k}\right)}{1+\frac{1}{k^{n}}} \max _{|z|=1}|q(z)|+n\left\{\frac{|\alpha|-\left(1+\frac{1}{k}+\frac{1}{k^{n}}\right)}{1+\frac{1}{k^{n}}}\right\} m^{\prime}
$$

where $m^{\prime}=\min _{|z|=\frac{1}{k}}|q(z)|$, which is equivalent to

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} q(z)\right| \geq & \frac{n k^{n-1}(k|\alpha|-1)}{1+k^{n}} \max _{|z|=1}|q(z)| \\
& +n\left\{\frac{k^{n}|\alpha|-\left(k^{n}+k^{n-1}+1\right)}{1+k^{n}}\right\} m^{\prime} \tag{3.3}
\end{align*}
$$

Now

$$
\begin{align*}
m^{\prime}=\min _{|z|=\frac{1}{k}}|q(z)| & =\frac{1}{k^{n}} \min _{|z|=k}|p(z)| \\
& =\frac{m}{k^{n}} \tag{3.4}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|$. Using (3.4) in 3.3 , we have

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} q(z)\right| \geq & \frac{n k^{n-1}(k|\alpha|-1)}{1+k^{n}} \max _{|z|=1}|q(z)| \\
& +n\left\{\frac{k^{n}|\alpha|-\left(k^{n}+k^{n-1}+1\right)}{k^{n}\left(1+k^{n}\right)}\right\} m \tag{3.5}
\end{align*}
$$

Also, since on $|z|=1,|p(z)|=|q(z)|$, inequality (3.5) can be written as

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} q(z)\right| \geq & \frac{n k^{n-1}(k|\alpha|-1)}{1+k^{n}} \max _{|z|=1}|p(z)| \\
& +n\left\{\frac{k^{n}|\alpha|-\left(k^{n}+k^{n-1}+1\right)}{k^{n}\left(1+k^{n}\right)}\right\} m \tag{3.6}
\end{align*}
$$

By Lemma 2.2 , on $|z|=1$,

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right|+\left|D_{\alpha} q(z)\right| \leq n(|\alpha|+1) \max _{|z|=1}|p(z)| . \tag{3.7}
\end{equation*}
$$

Let z_{0} be a point on $|z|=1$ such that $\max _{|z|=1}\left|D_{\alpha} q(z)\right|=\left|D_{\alpha} q\left(z_{0}\right)\right|$. Since $\left|D_{\alpha} p(z)\right|$ and $\left|D_{\alpha} q(z)\right|$ attain their maximal at the same point on $|z|=1$ with $|\alpha| \geq 1+\frac{1}{k}+\frac{1}{k^{n}}$, we have

$$
\max _{|z|=1}\left|D_{\alpha} p(z)\right|=\left|D_{\alpha} p\left(z_{0}\right)\right| .
$$

Thus, in particular (3.7) gives

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} q(z)\right| \leq n(|\alpha|+1) \max _{|z|=1}|p(z)|-\max _{|z|=1}\left|D_{\alpha} p(z)\right| . \tag{3.8}
\end{equation*}
$$

Combining (3.6) and (3.8), we have

$$
\begin{align*}
n(|\alpha|+1) \max _{|z|=1}|p(z)|-\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq & \frac{n k^{n-1}(k|\alpha|-1)}{1+k^{n}} \max _{|z|=1}|p(z)| \\
& +n\left\{\frac{k^{n}|\alpha|-\left(k^{n}+k^{n-1}+1\right)}{k^{n}\left(1+k^{n}\right)}\right\} m \tag{3.9}
\end{align*}
$$

which on simplification gives

$$
\begin{align*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq & \frac{n\left(k^{n}+|\alpha|+k^{n-1}+1\right)}{1+k^{n}} \max _{|z|=1}|p(z)| \\
& -n\left\{\frac{k^{n}|\alpha|-\left(k^{n}+k^{n-1}+1\right)}{k^{n}\left(1+k^{n}\right)}\right\} m . \tag{3.10}
\end{align*}
$$

This completes the proof.
Remark 3.4. If we adopt the similar arguments of Remark 3.2 in Theorem 3.3. we have the following result proved by Aziz and Ahmad [2, Theorem 3].

Corollary 3.5. If $p(z)$ is a polynomial of degree n having no zero in $|z|<k$, $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{n}}\left\{\max _{|z|=1}|p(z)|-\min _{|z|=k}|p(z)|\right\}, \tag{3.11}
\end{equation*}
$$

provided $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain their maximal at the same point on the circle $|z|=1$, where

$$
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}
$$

References

[1] A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55 (1988), 183-193.
[2] A. Aziz and N. Ahmad, Inequalities for the derivative of a polynomial, Proc. Indian Acad. Sci. Math. Sci., 107(2) (1997), 189-196.
[3] A. Aziz and N.A. Rather, A refinement of a theorem of Paul Turán concerning polynomials, Math. Inequal. Appl., 1 (1998), 231-238.
[4] A. Aziz and W.M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math., 29(2) (1998), 163-173.
[5] S. Bernstein, Lecons Sur Les Propriétés extrémales et la meilleure approximation des functions analytiques d'une fonctions reele, Paris, 1926.
[6] T.N. Chan and M.A. Malik, On Erdös-Lax theorem, Proc. Indian Acad. Sci., 92(3) (1983), 191-193.
[7] K.K. Dewan and M. Bidkham, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324.
[8] K.K. Dewan and A. Mir, On the maximum modulus of a polynomial and its derivatives, Int. J. Math. Math. Sci., 16 (2005), 2641-2645.
[9] N.K. Govil, On the Theorem of S. Bernstein, Proc. Nat. Acad. Sci., 50 (1980), 50-52.
[10] N.K. Govil and G.N. McTume, Some generalizations involving the polar derivative for an inequality of Paul Turán, Acta. Math. Hungar., 104(1-2) (2004), 115-126.
[11] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a halfplane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517.
[12] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
[13] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., s2-1 (1969), 57-60.

[^0]: ${ }^{0}$ Received May 20, 2021. Revised December 5, 2021. Accepted December 8, 2021.
 ${ }^{0} 2020$ Mathematics Subject Classification: 30C10, 30C15.
 ${ }^{0}$ Keywords: Inequalities, polynomial, zeros, maximum modulus, polar derivative.
 ${ }^{0}$ Corresponding author: B. Chanam(barchand_2004@yahoo.co.in).

