Nonlinear Functional Analysis and Applications Vol. 27, No. 1 (2022), pp. 141-148 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2022.27.01.09 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2022 Kyungnam University Press

SOME INEQUALITIES ON POLAR DERIVATIVE OF A POLYNOMIAL

Khangembam Babina Devi¹, Kshetrimayum Krishnadas² and Barchand Chanam³

¹Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India e-mail: khangembabbabina@gmail.com

¹Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India e-mail: kshetrimayum.krishnadas@sbs.du.ac.in

¹Department of Mathematics, National Institute of Technology Manipur Langol, Imphal 795004, Manipur, India e-mail: barchand_2004@yahoo.co.in

Abstract. Let p(z) be a polynomial of degree *n* having no zero in $|z| < k, k \le 1$, then Govil proved

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k^n} \max_{|z|=1} |p(z)|,$$

provided |p'(z)| and |q'(z)| attain their maximal at the same point on the circle |z| = 1, where

$$q(z) = z^n p\left(\frac{1}{\overline{z}}\right).$$

In this paper, we extend the above inequality to polar derivative of a polynomial. Further, we also prove an improved version of above inequality into polar derivative.

1. INTRODUCTION

If p(z) is a polynomial of degree n, then

$$\max_{|z|=1} |p'(z)| \le n \max_{|z|=1} |p(z)|.$$
(1.1)

⁰Received May 20, 2021. Revised December 5, 2021. Accepted December 8, 2021.

 $^{^02020}$ Mathematics Subject Classification: 30C10, 30C15.

⁰Keywords: Inequalities, polynomial, zeros, maximum modulus, polar derivative.

⁰Corresponding author: B. Chanam(barchand_2004@yahoo.co.in).

The above inequality is the well-known Bernstein inequality [5]. Inequality (1.1) is best possible and equality holds for the polynomial $p(z) = \lambda z^n$, $\lambda \neq 0$ being a complex number.

If we restrict to the class of polynomials having no zero in |z| < 1, then inequality (1.1) can be sharpened. In fact, Erdös conjectured and later Lax [12] proved that if p(z) is a polynomial of degree *n* having no zero in |z| < 1, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{2} \max_{|z|=1} |p(z)|.$$
(1.2)

Inequality (1.2) is sharp for polynomials having their zeros on |z| = 1.

The polar derivative of a polynomial p(z) of degree *n* with respect to a real or complex number α , denoted by $D_{\alpha}p(z)$ is defined as

$$D_{\alpha}p(z) = np(z) + (\alpha - z)p'(z).$$

The polynomial $D_{\alpha}p(z)$ is of degree at most n-1 and it generalizes the ordinary derivative in the sense that

$$\lim_{\alpha \to \infty} \frac{D_{\alpha} p(z)}{\alpha} = p'(z).$$

Aziz and Shah [4] extended (1.1) to polar derivative by proving that if p(z) is a polynomial of degree n, then for every real or complex number α with $|\alpha| \geq 1$,

$$\max_{|z|=1} |D_{\alpha}p(z)| \le n|\alpha| \max_{|z|=1} |p(z)|.$$
(1.3)

Further, Aziz [1] extended inequality (1.2) to polar derivative and proved that if p(z) is a polynomial of degree *n* having no zero in |z| < 1, then for every real or complex number α with $|\alpha| \ge 1$,

$$\max_{|z|=1} |D_{\alpha}p(z)| \le \frac{n}{2} (|\alpha|+1) \max_{|z|=1} |p(z)|.$$
(1.4)

It was asked by Boas that if p(z) is a polynomial of degree n not vanishing in |z| < k, k > 0, then how large can

$$\left\{ \max_{|z|=1} |p'(z)| \middle/ \max_{|z|=1} |p(z)| \right\}$$
be ?

A partial answer to this problem was given by Malik [13], who proved for the case $k \ge 1$ that

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k} \max_{|z|=1} |p(z)|.$$
(1.5)

Equality in (1.5) holds for $p(z) = (z+k)^n$.

For the class of polynomials not vanishing in $|z| < k, k \leq 1$, the precise estimate for maximum of |p'(z)| on |z| = 1, in general, does not seem to be easily obtainable.

For quite some time, it was believed that if p(z) is a polynomial of degree n having no zero in $|z| < k, k \leq 1$, then the inequality analogous to (1.5) should be

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k^n} \max_{|z|=1} |p(z)|, \tag{1.6}$$

until E.B. Saff gave the example $p(z) = \left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)$ to counter this belief.

There are many extensions of inequality (1.5) (see Dewan and Bidkham [7], Dewan and Mir [8] and Chan and Malik [6]).

However, for the class of polynomials not vanishing in $|z| < k, k \leq 1$, Govil [9] proved inequality (1.6) with extra condition.

Theorem 1.1. If p(z) is a polynomial of degree n having no zero in |z| < k, $k \le 1$, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k^n} \max_{|z|=1} |p(z)|, \tag{1.7}$$

provided |p'(z)| and |q'(z)| attain their maxima at the same point on the circle |z| = 1, where

$$q(z) = z^n p\left(\frac{1}{\overline{z}}\right). \tag{1.8}$$

2. Lemmas

For the proofs of the theorems, we will use the following lemmas. The first lemma is a special case of a result due to Govil and Rahman [11].

Lemma 2.1. If p(z) is a polynomial of degree n, then on |z| = 1,

$$p'(z)| + |q'(z)| \le n \max_{|z|=1} |p(z)|,$$
(2.1)

where

$$q(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

The next lemma was proved by Aziz [1, Lemma 2] in more general form. However, we present a simple proof of this lemma which we think is new, simply by using the definition of polar derivative of a polynomial and Lemma 2.1 due to Govil and Rahman [11].

Lemma 2.2. If p(z) is a polynomial of degree n and α is any real or complex number, then on |z| = 1,

$$|D_{\alpha}p(z)| + |D_{\alpha}q(z)| \le n(|\alpha|+1) \max_{|z|=1} |p(z)|,$$
(2.2)

where

$$q(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

Proof. Let $q(z) = z^n \overline{p(\frac{1}{\overline{z}})}$. Then it is easy to verify that on |z| = 1, |q'(z)| = |np(z) - zp'(z)|.

Now, for every real or complex number
$$\alpha$$
, the polar derivative of $p(z)$ with respect to α is

$$D_{\alpha}p(z) = np(z) + (\alpha - z)p'(z).$$
 (2.4)

This implies on |z| = 1,

$$|D_{\alpha}p(z)| \le |np(z) - zp'(z)| + |\alpha||p'(z)|.$$
(2.5)

Using (2.3) in (2.5), on |z| = 1, we have

$$|D_{\alpha}p(z)| \le |q'(z)| + |\alpha||p'(z)|.$$
(2.6)

Similarly on |z| = 1,

$$|D_{\alpha}q(z)| \le |p'(z)| + |\alpha||q'(z)|.$$
(2.7)

Adding (2.6) and (2.7), we have

$$|D_{\alpha}p(z)| + |D_{\alpha}q(z)| \le (|\alpha| + 1) \left\{ |p'(z)| + |q'(z)| \right\}.$$
(2.8)

Using Lemma 2.1 in (2.8), we get

$$|D_{\alpha}p(z)| + |D_{\alpha}q(z)| \le n(|\alpha|+1) \max_{|z|=1} |p(z)|,$$
(2.9)

which completes the proof of Lemma 2.2.

(2.3)

The next lemma is due to Aziz and Rather [3].

Lemma 2.3. If p(z) is a polynomial of degree n having all its zeros in $|z| \le k$, $k \ge 1$, then for every real or complex number α with $|\alpha| \ge k$,

$$\max_{|z|=1} |D_{\alpha}p(z)| \ge n \left(\frac{|\alpha| - k}{1 + k^n}\right) \max_{|z|=1} |p(z)|.$$
(2.10)

The following lemma was obtained by Govil and McTume [10].

Lemma 2.4. If p(z) is a polynomial of degree n having all its zeros in $|z| \le k$, $k \ge 1$, then for every real or complex number α with $|\alpha| \ge 1 + k + k^n$,

$$\max_{|z|=1} |D_{\alpha}p(z)| \ge \frac{n(|\alpha|-k)}{1+k^n} \max_{|z|=1} |p(z)| + n\left\{\frac{|\alpha|-(1+k+k^n)}{1+k^n}\right\} \min_{|z|=k} |p(z)|.$$
(2.11)

3. Main results

In this paper, we first prove the following result which extends Theorem 1.1 to polar derivative of p(z).

Theorem 3.1. If p(z) is a polynomial of degree n having no zero in |z| < k, $k \le 1$, then for every real or complex number α with $|\alpha| \ge \frac{1}{k}$,

$$\max_{|z|=1} |D_{\alpha}p(z)| \le \frac{n(|\alpha| + k^n + k^{n-1} + 1)}{1 + k^n} \max_{|z|=1} |p(z)|,$$
(3.1)

provided $|D_{\alpha}p(z)|$ and $|D_{\alpha}q(z)|$ attain their maximal at the same point on the circle |z| = 1, where

$$q(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

Proof. The proof of this theorem follows on the same lines as that of next theorem but instead of applying Lemma 2.4, we apply Lemma 2.3 and we omit it. \Box

Remark 3.2. From the hypotheses of Theorem 3.1, $|D_{\alpha}p(z)|$ and $|D_{\alpha}q(z)|$ attain their maximal at the same point on |z| = 1. Further, if they are divided by $|\alpha|$ and considering limit as $\alpha \to \infty$, then they become |p'(z)| and |q'(z)| respectively which attain their maximal at the same point on |z| = 1. Hence, dividing both sides of inequality (3.1) as well as the quantities $|D_{\alpha}p(z)|$ and $|D_{\alpha}q(z)|$ by $|\alpha|$ and taking respective limit as $|\alpha| \to \infty$, we readily get inequality (1.7) of Theorem 1.1 along with the agreement that |p'(z)| and |q'(z)| attain their maximal at the same point on the circle |z| = 1.

Next, under the same hypotheses, we further prove the following improved result which sharpens Theorem 3.1. **Theorem 3.3.** If p(z) is a polynomial of degree n having no zero in |z| < k, $k \leq 1$, then for every real or complex number α with $|\alpha| \geq 1 + \frac{1}{k} + \frac{1}{k^n}$,

$$\max_{|z|=1} |D_{\alpha}p(z)| \leq \frac{n(|\alpha| + k^n + k^{n-1} + 1)}{1 + k^n} \max_{|z|=1} |p(z)| - n\left\{\frac{k^n |\alpha| - (k^n + k^{n-1} + 1)}{k^n (1 + k^n)}\right\} \min_{|z|=k} |p(z)|, \quad (3.2)$$

provided $|D_{\alpha}p(z)|$ and $|D_{\alpha}q(z)|$ attain their maximal at the same point on the circle |z| = 1, where

$$q(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

Proof. Let p(z) be a polynomial of degree n having no zero in $|z| < k, k \le 1$. In other words, p(z) has all its zeros in $|z| \ge k, k \le 1$ and hence all the zeros of $q(z) = z^n \overline{p(\frac{1}{z})}$ lie in $|z| \le 1/k, 1/k \ge 1$. Applying Lemma 2.4 on q(z), for $|\alpha| \ge 1 + \frac{1}{k} + \frac{1}{k^n}$, we have

$$\max_{|z|=1} |D_{\alpha}q(z)| \ge \frac{n(|\alpha| - \frac{1}{k})}{1 + \frac{1}{k^n}} \max_{|z|=1} |q(z)| + n \left\{ \frac{|\alpha| - (1 + \frac{1}{k} + \frac{1}{k^n})}{1 + \frac{1}{k^n}} \right\} m',$$

where $m' = \min_{|z|=\frac{1}{k}} |q(z)|$, which is equivalent to

$$\max_{|z|=1} |D_{\alpha}q(z)| \geq \frac{nk^{n-1}(k|\alpha|-1)}{1+k^n} \max_{|z|=1} |q(z)| + n\left\{\frac{k^n|\alpha|-(k^n+k^{n-1}+1)}{1+k^n}\right\} m'.$$
(3.3)

Now

$$m' = \min_{|z| = \frac{1}{k}} |q(z)| = \frac{1}{k^n} \min_{|z| = k} |p(z)|,$$

= $\frac{m}{k^n},$ (3.4)

where $m = \min_{|z|=k} |p(z)|$. Using (3.4) in (3.3), we have

$$\max_{|z|=1} |D_{\alpha}q(z)| \ge \frac{nk^{n-1}(k|\alpha|-1)}{1+k^n} \max_{|z|=1} |q(z)| + n\left\{\frac{k^n|\alpha| - (k^n + k^{n-1} + 1)}{k^n(1+k^n)}\right\} m.$$
(3.5)

146

Also, since on |z| = 1, |p(z)| = |q(z)|, inequality (3.5) can be written as

$$\max_{|z|=1} |D_{\alpha}q(z)| \ge \frac{nk^{n-1}(k|\alpha|-1)}{1+k^n} \max_{|z|=1} |p(z)| + n\left\{\frac{k^n|\alpha| - (k^n + k^{n-1} + 1)}{k^n(1+k^n)}\right\} m.$$
(3.6)

By Lemma 2.2, on |z| = 1,

$$|D_{\alpha}p(z)| + |D_{\alpha}q(z)| \le n(|\alpha|+1) \max_{|z|=1} |p(z)|.$$
(3.7)

Let z_0 be a point on |z| = 1 such that $\max_{\substack{|z|=1}} |D_{\alpha}q(z)| = |D_{\alpha}q(z_0)|$. Since $|D_{\alpha}p(z)|$ and $|D_{\alpha}q(z)|$ attain their maximal at the same point on |z| = 1 with $|\alpha| \ge 1 + \frac{1}{k} + \frac{1}{k^n}$, we have

$$\max_{|z|=1} |D_{\alpha}p(z)| = |D_{\alpha}p(z_0)|.$$

Thus, in particular (3.7) gives

$$\max_{|z|=1} |D_{\alpha}q(z)| \le n(|\alpha|+1) \max_{|z|=1} |p(z)| - \max_{|z|=1} |D_{\alpha}p(z)|.$$
(3.8)

Combining (3.6) and (3.8), we have

$$n(|\alpha|+1)\max_{|z|=1}|p(z)| - \max_{|z|=1}|D_{\alpha}p(z)| \ge \frac{nk^{n-1}(k|\alpha|-1)}{1+k^n}\max_{|z|=1}|p(z)| + n\left\{\frac{k^n|\alpha|-(k^n+k^{n-1}+1)}{k^n(1+k^n)}\right\}m,$$
(3.9)

which on simplification gives

$$\max_{|z|=1} |D_{\alpha}p(z)| \leq \frac{n(k^{n} + |\alpha| + k^{n-1} + 1)}{1 + k^{n}} \max_{|z|=1} |p(z)| - n \left\{ \frac{k^{n} |\alpha| - (k^{n} + k^{n-1} + 1)}{k^{n} (1 + k^{n})} \right\} m.$$
(3.10)
we sthe proof.

This completes the proof.

Remark 3.4. If we adopt the similar arguments of Remark 3.2 in Theorem 3.3, we have the following result proved by Aziz and Ahmad [2, Theorem 3].

Corollary 3.5. If p(z) is a polynomial of degree n having no zero in |z| < k, $k \le 1$, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k^n} \left\{ \max_{|z|=1} |p(z)| - \min_{|z|=k} |p(z)| \right\},\tag{3.11}$$

provided |p'(z)| and |q'(z)| attain their maximal at the same point on the circle |z| = 1, where

$$q(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

References

- A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55 (1988), 183-193.
- [2] A. Aziz and N. Ahmad, Inequalities for the derivative of a polynomial, Proc. Indian Acad. Sci. Math. Sci., 107(2) (1997), 189-196.
- [3] A. Aziz and N.A. Rather, A refinement of a theorem of Paul Turán concerning polynomials, Math. Inequal. Appl., 1 (1998), 231-238.
- [4] A. Aziz and W.M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math., 29(2) (1998), 163-173.
- [5] S. Bernstein, Lecons Sur Les Propriétés extrémales et la meilleure approximation des functions analytiques d'une fonctions reele, Paris, 1926.
- [6] T.N. Chan and M.A. Malik, On Erdös-Lax theorem, Proc. Indian Acad. Sci., 92(3) (1983), 191-193.
- [7] K.K. Dewan and M. Bidkham, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324.
- [8] K.K. Dewan and A. Mir, On the maximum modulus of a polynomial and its derivatives, Int. J. Math. Math. Sci., 16 (2005), 2641-2645.
- [9] N.K. Govil, On the Theorem of S. Bernstein, Proc. Nat. Acad. Sci., 50 (1980), 50-52.
- [10] N.K. Govil and G.N. McTume, Some generalizations involving the polar derivative for an inequality of Paul Turán, Acta. Math. Hungar., 104(1-2) (2004), 115-126.
- [11] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a halfplane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517.
- [12] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
- [13] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., s2-1 (1969), 57-60.