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Abstract. Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≤ 1, then Govil
proved

max
|z|=1

|p′(z)| ≤ n

1 + kn
max
|z|=1

|p(z)|,

provided |p′(z)| and |q′(z)| attain their maximal at the same point on the circle |z| = 1,
where

q(z) = znp

(
1

z

)
.

In this paper, we extend the above inequality to polar derivative of a polynomial. Further,

we also prove an improved version of above inequality into polar derivative.

1. Introduction

If p(z) is a polynomial of degree n, then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)
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The above inequality is the well-known Bernstein inequality [5]. Inequality
(1.1) is best possible and equality holds for the polynomial p(z) = λzn, λ 6= 0
being a complex number.

If we restrict to the class of polynomials having no zero in |z| < 1, then
inequality (1.1) can be sharpened. In fact, Erdös conjectured and later Lax
[12] proved that if p(z) is a polynomial of degree n having no zero in |z| < 1,
then

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.2)

Inequality (1.2) is sharp for polynomials having their zeros on |z| = 1.

The polar derivative of a polynomial p(z) of degree n with respect to a real
or complex number α, denoted by Dαp(z) is defined as

Dαp(z) = np(z) + (α− z)p′(z).
The polynomial Dαp(z) is of degree at most n − 1 and it generalizes the
ordinary derivative in the sense that

lim
α→∞

Dαp(z)

α
= p′(z).

Aziz and Shah [4] extended (1.1) to polar derivative by proving that if p(z)
is a polynomial of degree n, then for every real or complex number α with
|α| ≥ 1,

max
|z|=1

|Dαp(z)| ≤ n|α|max
|z|=1

|p(z)|. (1.3)

Further, Aziz [1] extended inequality (1.2) to polar derivative and proved that
if p(z) is a polynomial of degree n having no zero in |z| < 1, then for every
real or complex number α with |α| ≥ 1,

max
|z|=1

|Dαp(z)| ≤
n

2
(|α|+ 1) max

|z|=1
|p(z)|. (1.4)

It was asked by Boas that if p(z) is a polynomial of degree n not vanishing
in |z| < k, k > 0, then how large can{

max
|z|=1

|p′(z)|
/

max
|z|=1

|p(z)|
}

be ?

A partial answer to this problem was given by Malik [13], who proved for
the case k ≥ 1 that

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|. (1.5)
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Equality in (1.5) holds for p(z) = (z + k)n.

For the class of polynomials not vanishing in |z| < k, k ≤ 1, the precise
estimate for maximum of |p′(z)| on |z| = 1, in general, does not seem to be
easily obtainable.

For quite some time, it was believed that if p(z) is a polynomial of degree n
having no zero in |z| < k, k ≤ 1, then the inequality analogous to (1.5) should
be

max
|z|=1

|p′(z)| ≤ n

1 + kn
max
|z|=1

|p(z)|, (1.6)

until E.B. Saff gave the example p(z) =

(
z− 1

2

)(
z+ 1

3

)
to counter this belief.

There are many extensions of inequality (1.5)( see Dewan and Bidkham [7],
Dewan and Mir [8] and Chan and Malik [6]).

However, for the class of polynomials not vanishing in |z| < k, k ≤ 1, Govil
[9] proved inequality (1.6) with extra condition.

Theorem 1.1. If p(z) is a polynomial of degree n having no zero in |z| < k,
k ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kn
max
|z|=1

|p(z)|, (1.7)

provided |p′(z)| and |q′(z)| attain their maxima at the same point on the circle
|z| = 1, where

q(z) = znp

(
1

z

)
. (1.8)

2. Lemmas

For the proofs of the theorems, we will use the following lemmas. The first
lemma is a special case of a result due to Govil and Rahman [11].

Lemma 2.1. If p(z) is a polynomial of degree n, then on |z| = 1,

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|, (2.1)

where

q(z) = znp

(
1

z

)
.

The next lemma was proved by Aziz [1, Lemma 2] in more general form.
However, we present a simple proof of this lemma which we think is new,
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simply by using the definition of polar derivative of a polynomial and Lemma
2.1 due to Govil and Rahman [11].

Lemma 2.2. If p(z) is a polynomial of degree n and α is any real or complex
number, then on |z| = 1,

|Dαp(z)|+ |Dαq(z)| ≤ n(|α|+ 1) max
|z|=1

|p(z)|, (2.2)

where

q(z) = znp

(
1

z

)
.

Proof. Let q(z) = znp

(
1

z

)
. Then it is easy to verify that on |z| = 1,

|q′(z)| = |np(z)− zp′(z)|. (2.3)

Now, for every real or complex number α, the polar derivative of p(z) with
respect to α is

Dαp(z) = np(z) + (α− z)p′(z). (2.4)

This implies on |z| = 1,

|Dαp(z)| ≤ |np(z)− zp′(z)|+ |α||p′(z)|. (2.5)

Using (2.3) in (2.5), on |z| = 1, we have

|Dαp(z)| ≤ |q′(z)|+ |α||p′(z)|. (2.6)

Similarly on |z| = 1,

|Dαq(z)| ≤ |p′(z)|+ |α||q′(z)|. (2.7)

Adding (2.6) and (2.7), we have

|Dαp(z)|+ |Dαq(z)| ≤ (|α|+ 1)
{
|p′(z)|+ |q′(z)|

}
. (2.8)

Using Lemma 2.1 in (2.8), we get

|Dαp(z)|+ |Dαq(z)| ≤ n(|α|+ 1) max
|z|=1

|p(z)|, (2.9)

which completes the proof of Lemma 2.2. �

The next lemma is due to Aziz and Rather [3].

Lemma 2.3. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k,
k ≥ 1, then for every real or complex number α with |α| ≥ k,

max
|z|=1

|Dαp(z)| ≥ n
(
|α| − k
1 + kn

)
max
|z|=1

|p(z)|. (2.10)
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The following lemma was obtained by Govil and McTume [10].

Lemma 2.4. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k,
k ≥ 1, then for every real or complex number α with |α| ≥ 1 + k + kn,

max
|z|=1

|Dαp(z)| ≥
n(|α| − k)

1 + kn
max
|z|=1

|p(z)|

+ n

{
|α| − (1 + k + kn)

1 + kn

}
min
|z|=k

|p(z)|. (2.11)

3. Main results

In this paper, we first prove the following result which extends Theorem 1.1
to polar derivative of p(z).

Theorem 3.1. If p(z) is a polynomial of degree n having no zero in |z| < k,

k ≤ 1, then for every real or complex number α with |α| ≥ 1

k
,

max
|z|=1

|Dαp(z)| ≤
n(|α|+ kn + kn−1 + 1)

1 + kn
max
|z|=1

|p(z)|, (3.1)

provided |Dαp(z)| and |Dαq(z)| attain their maximal at the same point on the
circle |z| = 1, where

q(z) = znp

(
1

z

)
.

Proof. The proof of this theorem follows on the same lines as that of next
theorem but instead of applying Lemma 2.4, we apply Lemma 2.3 and we
omit it. �

Remark 3.2. From the hypotheses of Theorem 3.1, |Dαp(z)| and |Dαq(z)|
attain their maximal at the same point on |z| = 1. Further, if they are
divided by |α| and considering limit as α→∞, then they become |p′(z)| and
|q′(z)| respectively which attain their maximal at the same point on |z| = 1.
Hence, dividing both sides of inequality (3.1) as well as the quantities |Dαp(z)|
and |Dαq(z)| by |α| and taking respective limit as |α| → ∞, we readily get
inequality (1.7) of Theorem 1.1 along with the agreement that |p′(z)| and
|q′(z)| attain their maximal at the same point on the circle |z| = 1.

Next, under the same hypotheses, we further prove the following improved
result which sharpens Theorem 3.1.
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Theorem 3.3. If p(z) is a polynomial of degree n having no zero in |z| < k,
k ≤ 1, then for every real or complex number α with |α| ≥ 1 + 1

k + 1
kn ,

max
|z|=1

|Dαp(z)| ≤
n(|α|+ kn + kn−1 + 1)

1 + kn
max
|z|=1

|p(z)|

− n
{
kn|α| − (kn + kn−1 + 1)

kn(1 + kn)

}
min
|z|=k

|p(z)|, (3.2)

provided |Dαp(z)| and |Dαq(z)| attain their maximal at the same point on the
circle |z| = 1, where

q(z) = znp

(
1

z

)
.

Proof. Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≤ 1.
In other words, p(z) has all its zeros in |z| ≥ k, k ≤ 1 and hence all the zeros

of q(z) = znp(1z ) lie in |z| ≤ 1/k, 1/k ≥ 1. Applying Lemma 2.4 on q(z), for

|α| ≥ 1 + 1
k + 1

kn , we have

max
|z|=1

|Dαq(z)| ≥
n(|α| − 1

k )

1 + 1
kn

max
|z|=1

|q(z)|+ n

{
|α| − (1 + 1

k + 1
kn )

1 + 1
kn

}
m′,

where m′ = min
|z|= 1

k

|q(z)|, which is equivalent to

max
|z|=1

|Dαq(z)| ≥
nkn−1(k|α| − 1)

1 + kn
max
|z|=1

|q(z)|

+ n

{
kn|α| − (kn + kn−1 + 1)

1 + kn

}
m′. (3.3)

Now

m′ = min
|z|= 1

k

|q(z)| =
1

kn
min
|z|=k

|p(z)|,

=
m

kn
, (3.4)

where m = min
|z|=k

|p(z)|. Using (3.4) in (3.3), we have

max
|z|=1

|Dαq(z)| ≥
nkn−1(k|α| − 1)

1 + kn
max
|z|=1

|q(z)|

+ n

{
kn|α| − (kn + kn−1 + 1)

kn(1 + kn)

}
m. (3.5)
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Also, since on |z| = 1, |p(z)| = |q(z)|, inequality (3.5) can be written as

max
|z|=1

|Dαq(z)| ≥
nkn−1(k|α| − 1)

1 + kn
max
|z|=1

|p(z)|

+ n

{
kn|α| − (kn + kn−1 + 1)

kn(1 + kn)

}
m. (3.6)

By Lemma 2.2, on |z| = 1,

|Dαp(z)|+ |Dαq(z)| ≤ n(|α|+ 1) max
|z|=1

|p(z)|. (3.7)

Let z0 be a point on |z| = 1 such that max
|z|=1

|Dαq(z)| = |Dαq(z0)|. Since

|Dαp(z)| and |Dαq(z)| attain their maximal at the same point on |z| = 1 with
|α| ≥ 1 + 1

k + 1
kn , we have

max
|z|=1

|Dαp(z)| = |Dαp(z0)|.

Thus, in particular (3.7) gives

max
|z|=1

|Dαq(z)| ≤ n(|α|+ 1) max
|z|=1

|p(z)| −max
|z|=1

|Dαp(z)|. (3.8)

Combining (3.6) and (3.8), we have

n(|α|+ 1) max
|z|=1

|p(z)| −max
|z|=1

|Dαp(z)| ≥
nkn−1(k|α| − 1)

1 + kn
max
|z|=1

|p(z)|

+ n

{
kn|α| − (kn + kn−1 + 1)

kn(1 + kn)

}
m,

(3.9)

which on simplification gives

max
|z|=1

|Dαp(z)| ≤
n(kn + |α|+ kn−1 + 1)

1 + kn
max
|z|=1

|p(z)|

− n
{
kn|α| − (kn + kn−1 + 1)

kn(1 + kn)

}
m. (3.10)

This completes the proof. �

Remark 3.4. If we adopt the similar arguments of Remark 3.2 in Theorem
3.3, we have the following result proved by Aziz and Ahmad [2, Theorem 3].

Corollary 3.5. If p(z) is a polynomial of degree n having no zero in |z| < k,
k ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kn

{
max
|z|=1

|p(z)| − min
|z|=k

|p(z)|
}
, (3.11)
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provided |p′(z)| and |q′(z)| attain their maximal at the same point on the circle
|z| = 1, where

q(z) = znp

(
1

z

)
.
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