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Abstract. In this paper, we propose a viscosity iterative algorithm for approximating a

common solution of finite family of variational inequality problem and fixed point problem

for finite family of multi-valued type-one demicontractive mappings in real Hilbert spaces.

A strong convergence result of the aforementioned problems were proved and some conse-

quences of our result was also displayed. In addition, we discuss an application of our main

result to convex minimization problem. The result presented in this article complements

and extends many recent results in literature.

1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let CB(C) and K(C) denote the family of nonempty, closed and bounded
subset and nonempty compact subset of C, respectively. The Hausdorff metric
on CB(C) is defined by

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for A,B ∈ CB(C),

0Received May 23, 2021. Revised September 9, 2021. Accepted November 6, 2021.
02020 Mathematics Subject Classification: 47H06, 47H09, 47J05, 47J25.
0Keywords: Variational inequality problem, demicontractive-type mappings, fixed point

problems, iterative method.
0Corresponding author: M. A .Olona(219095783@stu.ukzn.ac.za).



150 M. A. Olona and O. K. Narain

where d(x,C) = inf{||x− y|| : y ∈ C}.
Let T : C → CB(C) be a multi-valued mapping. Then PTx = {u ∈ Tx :

||x − u|| = d(x, Tx)}. A point x ∈ C is called a fixed point of T if x ∈ Tx.
However, if Tx = {x}, then x is called a strict point of T . We denote the
set of fixed points of T by F (T ). A multi-valued mapping T is said to be
L-Lipschitzian if there exists L > 0 such that

H(Tx, Ty) ≤ L||x− y||, x, y ∈ C. (1.1)

In (1.1), if L ∈ (0, 1), then T is called a contraction while T is called nonex-
pansive if L = 1.

A mapping T : C → CB(C) is said to be

(i) of type-one, if

||u− v|| ≤ H(Tx, Ty), ∀x, y ∈ C, u ∈ PTx, v ∈ PT y,

(ii) λ-hybrid (see [45]), if there exists λ ∈ R such that

(1 + λ)H(Tx, Ty)2 ≤ (1− λ)||x− y||2 + λd(y, Tx)2

+ λd(x, Ty)2, ∀x, y ∈ C,

(iii) quasi-nonexpansive, if F (T ) 6= ∅ and

H(Tx, Ty) ≤ ||x− y||, ∀x ∈ C, y ∈ F (T ),

(iv) demicontractive-type in the sense of [24] if F (T ) 6= ∅ and

H2(Tx, Ty) ≤ ||x− y||2 + kd2(x, Tx), x ∈ C, y ∈ F (T ) and k ∈ (0, 1).

Remark 1.1. Clearly, every multi-valued quasi-nonexpansive mapping is a
multi-valued demicontractive-type mapping. However, the following example
shows that the converse of this statement is not always true.

Let C be a nonempty, closed and convex subset of a real Hilbert space H,
the variational inequality problem (VIP) is to find x ∈ C such that

〈A(x), y − x〉 ≥ 0, ∀y ∈ C, (1.2)

where A : C → H is a nonlinear mapping. We denote by VI(C,A) the solution
set of (1.2).

Variational inequality theory introduced by Stampacchia and Fichera [19,
43] independently, in early sixties in mechanics and potential theory respec-
tively provides the natural, unified and efficient framework for a general treat-
ment of a wide class of unrelated linear and nonlinear problems arising in
elasticity, economics, transportation, optimization, control theory and engi-
neering sciences (see [1, 5, 2, 3, 4, 10, 11, 20, 22, 28, 33, 34, 36, 37, 39]).
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The development of variational inequality theory can be viewed as the si-
multaneous pursuit of two different lines of research. The first aspect reveals
the fundamental facts on the qualitative behavior of solutions to important
classes of problems. On the other hand, it allows us to develop highly efficient
and powerful numerical methods to solve, for instance, obstacle, unilateral,
free and moving boundary value problems.

In 1985, Pang [38] showed that a variety of equilibrium models, for example,
the traffic equilibrium problem, the spatial equilibrium problem, the Nash
equilibrium problem and the general equilibrium programming problem can
be uniformly modelled as a VIP.

In 1976, Korpelevich [29] proposed the following extragradient method for
solving VIP (1.2), when A is monotone and Lipschitz continuous in the finite-
dimensional Euclidean space RN .

x1 = x ∈ C chosen arbitrarily,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),

for each n ∈ N under some suitable conditions, the sequence {xn} and {yn}
converge to the some point z ∈ V I(C,A).

In 2012, Censor et al. [14] introduced the general common solutions to
variational inequality problem (CSVIP), which consists of finding common
solutions to unrelated variational inequalities for finite number of sets. That
is, find x∗ ∈ ∩Ni=1Ci such that for each i = 1, 2, · · · , N,

〈Ai(x∗), x− x∗〉 ≥ 0, for all x ∈ Ci, i = 1, 2, · · · , N, (1.3)

where Ai : H → H is a nonlinear operator for each i = 1, 2, · · · , N and Ci is
a nonempty, closed and convex subset of H. They proved a weak convergence
theorem for approximating a solution of (1.3) using the following algorithm{

x0 ∈ H,
xk+1 = ΠN

i=1(PCi(I − λAi))(xk).

For more information on research output on variational inequality problem,
(see [1, 25, 46, 47] and the references contained in).

In 2017, Ming Tian and Bing-Nan Jiang [47] proposed an iterative method
for finding an element to solve a class of split variational inequality problems
under weaker conditions and get a weak convergence theorem, Let H1 be
real Hilbert space. Let C be a nonempty closed convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A 6= 0, f : C → H1

be a monotone and k- Lipschitz continuous mapping and T : H2 → H2 be a
nonexpansive mapping. Setting Γ := {z ∈ V I(C, f) : Az ∈ Fix(T )}, assume
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that Γ 6= ∅, Let the sequences {xn}, {yn} and tn be generated by x1 = x ∈ C
and 

yn = PC(xn − γnA∗(I − T )Axn),

tn = PC(yn − λnf(yn)),

x(n+ 1) = PC(yn − λnf(tn)).

Recently, Chinedu Izuchukwu [25] introduced a new iterative algorithm for
approximating a common solution of certain class of multiplesets split varia-
tional inequality problems. Let H1 and H2 be real Hilbert spaces, and for each
i = 1, 2, · · · , N, let Ci be a nonempty closed and convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A 6= 0. Let fi : H1 → H1

be an αi-inverse strongly monotone mapping and S : H2 → H2 be k−strictly
pseudo-contractive mapping. Assume that

Γ = {z ∈
N⋂
i=1

V I(Ci, fi) : Az ∈ F (S) 6= ∅}

and the sequence {xn} is generated for arbitrary x1, u ∈ H1 by
un = (1− βn)xn + βnu,

yn = PC(un − γnA∗(I − Tβ)Aun),

xn+1 = PCN
(I − λfN ) ◦ · · · ◦ PC1(I − λf1)yn, n ≥ 1.

Motivated by the aforementioned results, we introduced a viscosity iterative
method for approximating a common solution of finite families of variational
inequality problem and fixed point problem for finite family of multi-valued
demicontractive-type mappings in real Hilbert spaces. We prove a strong
convergence result to a common solution of the aforementioned problems and
state some consequences of our main results. We also give an application of
our main result. The result present in this paper extends and complements
many related results in literature.

Our contributions are as follows:

(i) We were able to dispense for each p ∈ Γ, Si(p) = {p} for all i ∈ N, see
[3]. The type-one condition employed in this paper is weaker than the
condition employed in [3].

(ii) By taking g = u for some u ∈ H, the algorithm (3.1) becomes the
Halpern-type algorithm.

(iii) We prove a strong convergence result without imposing a compactness
condition, see [3]. The strong convergence result proved in this article
is more desirable than the weak convergence result proved in [14, 47].
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2. Preliminaries

We state some known and useful results which will be needed in the proof
of our main theorem. In the sequel, we denote strong and weak convergence
by ”→” and ”⇀” respectively.

Let C be a nonempty, closed and convex subset of a real Hilbert space H.
A mapping M : C → C is said to be

(i) monotone, if

〈Mx−My, x− y〉 ≥ 0, ∀ x, y ∈ C,

(ii) α−inverse strongly monotone (ism), if there exists a constant α > 0
such that

〈Mx−My, x− y〉 ≥ α‖Mx−My‖2, ∀ x, y ∈ C,

(iii) firmly nonexpansive, if

〈Mx−My, x− y〉 ≥ ‖Mx−My‖2, ∀ x, y ∈ C,

(iv) Lipschitz, if there exists a constant L > 0 such that

‖Mx−My‖ ≤ L‖x− y‖, ∀ x, y ∈ C.

Remark 2.1. It is generally known that every α- ism mapping is 1
α Lipschitz

continuous (see [9]).

If M is a multi-valued mapping, that is, M : H → 2H , then M is called
monotone, if

〈x− y, u− v〉 ≥ 0, ∀ x, y ∈ H,u ∈M(x), v ∈M(y)

and M is maximal monotone, if the graph G(M) of M defined by

G(M) := {(x, y) ∈ H ×H : y ∈M(x)}

is not properly contained in the graph of any other monotone mapping. It is
generally known that M is maximal if and only if for (x, u) ∈ H × H, 〈x −
y, u− v〉 ≥ 0 for all (y, u) ∈ G(M) implies u ∈ M(x). A mapping T : C → C
is said to be averaged nonexpansive if for all x, y ∈ C, T = (1−β)I+βS holds
for a nonexpansive operator S : C → C and β ∈ (0, 1). The term ”averaged
mapping” was first developed by Baillon et al. [8]. Recall that a mapping T is
firmly nonexpansive if and only if T can be expressed as T = 1

2(I + s), where
S is nonexpansive (see [35]). Thus, we make the following remark which can
be easily verified.

Remark 2.2. In a real Hilbert space, T is firmly nonexpansive if and only if
it is averaged with β = 1

2 .
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The metric projection PC is a map defined on H onto C which assign to
each x ∈ H, the unique point in C, denoted by PCx such that

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.
It is well known that PCx is characterized by the inequality 〈x−Pcx, z−PCx〉 ≤
0, for all z ∈ C and PC is a firmly non-expansive mapping. We also know that
if f is β-inverse strongly monotone mapping with λ ∈ (0, 2β), then PC(I−λf)
is averaged nonexpansive (see [14], Lemma 2.9). Hence, from Remark 2.2 we
obtain the following.

Remark 2.3. In a real Hilbert space, if f is β-inverse strongly monotone with
λ ∈ (0, 2β), then PC(I − λf) is firmly nonexpansive.

For more information on metric projections, (see [14, 21]) and the references
therein. Recall that the normal cone of C at the point z ∈ H is define as

NCz =


{d ∈ H : 〈d, y − z〉 ≤ 0y ∈ C}, z ∈ C,

∅, otherwise.

Definition 2.4. Let H be a real Hilbert space and T : H → CB(H) a multi-
valued mapping. Then, T is said to be demiclosed at the origin if for any
sequence {xn} ⊂ H with xn ⇀ x∗, and d(xn, T (xn))→ 0, we have x∗ ∈ Tx∗.

Lemma 2.5. ([15]) Let H be a real Hilbert space. Then for all x, y ∈ H and
α ∈ (0, 1), we have

(i) 2〈x, y〉 = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2,
(ii) ||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2,

(iii) ||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉.

Lemma 2.6. ([18]) Let H be a real Hilbert space and xi ∈ H, (1 ≤ i ≤ m)
and {αi}mi=1 ⊂ (0, 1) such that

∑m
i=1 αi = 1, the following identity holds:

||
m∑
i=1

αixi||2 =

m∑
i=1

αi||x||2 −
∑

i,j=1, i6=j
αiαj ||xi − xj ||2.

Lemma 2.7. ([42]) Let {an} be a sequence of positive real numbers, {αn} be
a sequence of real numbers in (0, 1) such that

∑∞
n=1 αn = ∞ and {dn} be a

sequence of real numbers. Suppose that

an+1 ≤ (1− αn)an + αndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condi-
tion

lim inf
k→∞

{ank+1 − ank
} ≥ 0,
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then lim
n→∞

an = 0.

3. Main Results

In this section, we propose a viscosity iterative algorithm for approximat-
ing a common solution of finite family of variational inequality problem and
fixed point problem for finite family of multi-valued type-one demicontractive
mappings in real Hilbert spaces. A strong convergence result of the aforemen-
tioned problems will be proved and some consequences of our result are also
displayed.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and {Si}mi=1 : H → CB(H) be a finite family of multi-valued type-one
demicontractive type mappings with constant ki ∈ (0, 1) such that I − Si is
demiclosed at zero. Let fj : H → H for j = 1, 2, · · · , N be an αj-inverse
strongly monotone mapping and g : H → H be a contractive mapping with
constant θ ∈ (0, 1). Suppose that

Ω :=
{ m⋂
i=1

F (Si)
⋂ N⋂

j=1

V I(C, fj)
}
6= ∅.

For x1 ∈ H, let the sequence {xn} be defined by
wn = γng(xn) + (1− γn)xn,

un = βn,0wn +
∑m

i=1 βn,iz
i
n, n ≥ 1,

xn+1 = PC(I − λfN ) ◦ PC(I − λfN−1) ◦ · · · ◦ PC(I − λf1)un,
(3.1)

for n ∈ N, where zin ∈ PSiwn , PSiwn = {zin ∈ Siwn : ||zin−wn|| = d(wn, Siwn)}
and λ ∈ (0, 2α), α = min{αj , j = 1, 2, · · · , N}, and the sequences {βn,i}∞n=1

for all i ≥ 0 and {γn}∞n=1 satisfy the following conditions:

(i) {βn,0} ∈ (k, 1), {βn,i} ∈ (0, 1) such that
∑m

i=0 βn,i = 1, k < a ≤ βn,i ≤
b < 1, i = 1, 2, ...,m, k := sup

i≥1
{ki} < 1;

(ii) γn ∈ (0, 1), lim
n→∞

γn = 0 and
∑∞

n=1 γn =∞.

Then {xn} converges strongly to an element in Ω.

Proof. Let z ∈ Ω, ΦN = PC(I−λfN )◦PC(I−λfN−1)◦ · · ·PC(I−λf1), where
Φ0 = I. Then from (3.1), Lemma 2.5 and Lemma 2.6, and the fact that Si is
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of type-one demicontractive-type mapping for each i, we obtain that

||xn+1 − x∗||2 = ||PC(I − λfN )(ΦN−1un)− z||2

≤ ||ΦN−1un − z||2

...

≤ ||un − z||2

= ||βn,0wn +
m∑
i=1

βn,iz
i
n − z||2

= ||βn,0(wn − z) +
m∑
i=1

βn,i(z
i
n − z)||2

= βn,0||wn − z||2 +
m∑
i=1

βn,i||zin − z||2 −
m∑
i=1

βn,0βn,i||wn − zin||2

≤ βn,0||wn − z||2 +

m∑
i=1

βn,iH2(Siwn, Siz)

−
m∑
i=1

βn,0βn,i||wn − zin||2

≤ βn,0||wn − z||2 +

m∑
i=1

βn,i
[
||wn − z||2 + k||wn − zin||2

]
−

m∑
i=1

βn,0βn,i||wn − zin||2

= ||wn − z||2 + (k − βn,0)
m∑
i=1

βn,i||wn − zin||2

≤ ||wn − z||2. (3.2)

This implies that

||xn+1 − z|| ≤ ||wn − z||
= ||γn(g(xn)− z) + (1− γn)(xn − z)||
≤ γn||g(xn)− z||+ (1− γn)||xn − z||
≤ γn

(
||g(xn)− z||+ ||g(z)− z||

)
+ (1− γn)||xn − z||

≤ γn
(
θ||xn − z||+ ||g(z)− z||

)
+ (1− γn)||xn − z||
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= (1− γn(1− θ))||xn − z||+ γn(1− θ) ||g(z)− z||
1− θ

≤ max
{
||xn − z||,

||g(z)− z||
1− θ

}
.

By continuous taking this process, we obtain that

||xn − z|| ≤ max
{
||x1 − z||,

||g(z)− z||
1− θ

}
,

for all n ∈ N. Therefore, {xn} is bounded. Consequently, {un} and {wn} are
bounded.

Now, from (3.2) and Lemma 2.5, we obtain that

||xn+1 − z||2 ≤ ||un − z||2

= ||wn − z||2 + (k − βn,0)
∞∑
i=1

βn,i||wn − zin||2

= ||γng(xn) + (1− γn)xn − z||2 + (k − β(n),0)
m∑
i=1

βn,i||wn − zin||2

≤ (1− γn)2||xn − z||2 + 2γn〈xn+1 − z, g(xn)− z〉

+ (k − βn,0)
m∑
i=1

βn,i||wn − zin||2

≤ (1− γn)||xn − z||2 + γn(2〈xn+1 − z, g(xn)− z〉). (3.3)

On substituting dn = 〈xn+1−z, g(xn)−z〉 in view of Lemma 2.7, we need to
prove that lim supk→∞ dnk

≤ 0 for every {||xnk
− z||} of {||xn− z||} satisfying

the condition

lim
k→∞
{||xnk+1

− z|| − ||xnk
− z||} ≥ 0. (3.4)

To show this, suppose that {||xnk
− z||} is a subsequence of {||xn − z||} such

that (3.4) holds. Then

lim inf
k→∞

(
||xnk+1

− z||2 − ||xnk
− z||2

)
= lim

k→∞

(
(||xk+1 − z|| − ||xnk

− z||)(||xnk+1
− z||+ ||xnk

− z||)
)

≥ 0.
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Now, using (3.3), we have that

lim sup
k→∞

( m∑
i=1

βnk,i(βnk,0 − k)||wnk
− zink

||2
)

≤ lim sup
k→∞

(
(1− γnk

)||xnk
− z||2 − ||xnk+1

− z||2

+ γnk

(
2〈xnk+1

− z, g(xnk
− z〉)

)
≤ lim sup

k→∞

(
||xnk

− z||2 − ||xnk+1
− z||2

)
+ lim sup

k→∞

(
γnk

(2〈xnk+1
− z, g(xnk

)− z〉〉
)

= − lim inf
k→∞

(
||xnk+1

− z||2 − ||xnk
− z||2

)
≤ 0. (3.5)

Using condition (i) and (ii) of (3.1), we obtain that

lim
k→∞

||wnk
− zink

|| = 0., i = 1, 2, · · · ,m.

Hence, we have that

lim
k→∞

d(wnk
, Siwnk

) = lim
k→∞

||wnk
− zink

|| = 0, i = 1, 2, · · · ,m. (3.6)

From (3.1), we obtain that

||wnk
− xnk

|| = γnk
||g(xnk

)− xnk
|| → 0 as k →∞. (3.7)

Also, from (3.1) and (3.6), we obtain that

||unk
− wnk

|| ≤
m∑
i=1

βnk,i||z
i
nk
− wnk

|| → 0 as k →∞. (3.8)

Using (3.7) and (3.8), we get that

lim
k→∞

||unk
− xnk

|| = 0. (3.9)
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Applying the firmly nonexpansivity of PC(I − λfN ) (See Remark 2.3), we
obtain that

||xn+1 − z||2 = ||PC(I − λfN )ΦN−1un − z||2

≤ 〈xn+1 − z,ΦN−1un − z〉

=
1

2

(
||xn+1 − z||2 + ||ΦN−1un − z||2

− ||xn+1 − ΦN−1un||2
)
, (3.10)

which implies from (3.10) that

lim sup
k→∞

(
||xnk+1

− ΦNk−1unk
||2
)

≤ lim sup
k→∞

(
||ΦNk−1unk

− z||2 − ||xnk+1
− z||2

)
...

≤ lim sup
k→∞

(
||unk

− z||2 − ||xnk+1
− z||2

)
≤ lim sup

k→∞

(
||unk

− xnk
||2 + 2||unk

− xnk
|| ||xnk

− z||2

+ ||xnk
− z||2 − ||xnk+1

− z||2
)

≤ lim sup
k→∞

(
||unk

− xnk
||2 + 2||unk

− xnk
|| ||xnk

− z||2
)

+ lim sup
k→∞

(
||xnk

− z||2 − ||xnk+1
− z||2

)
= − lim inf

k→∞

(
||xnk+1

− z||2 − ||xnk
− z||2

)
≤ 0. (3.11)

Hence,

lim
k→∞

||xnk+1
− ΦNk−1unk

|| = 0. (3.12)

By a similar argument as in (3.11) and applying (3.8), we obtain that
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lim sup
k→∞

(
||ΦNk−1unk

− ΦNk−2unk
||2
)

≤ lim sup
k→∞

(
||ΦNk−2unk

− z||2 − ΦNk−1unk
− z||2

)
...

≤ lim sup
k→∞

(
||unk

− z||2 − ||ΦNk−1unk
− z||2

)
≤ lim sup

k→∞

(
||unk

− z||2 − ||xnk+1
− z||2

)
≤ lim sup

k→∞

(
||unk

− xnk
||2 + 2||unk

− xnk
|| ||xnk

− z||2

+ ||xnk
− z||2 − ||xnk+1

− z||2
)

≤ lim sup
k→∞

(
||unk

− xnk
||2 + 2||unk

− xnk
|| ||xnk

− z||2
)

+ lim sup
k→∞

(
||xnk

− z||2 − ||xnk+1
− z||2

)
= − lim inf

k→∞

(
||xnk+1

− z||2 − ||xnk
− z||2

)
≤ 0. (3.13)

Hence,

lim
k→∞

||ΦNk−1unk
− ΦNk−2unk

|| = 0. (3.14)

Continuing in the same manner, we obtain that

lim
k→∞

||ΦNk−2unk
− ΦNk−3unk

|| = · · · = lim
k→∞

||Φ2unk
− Φ1unk

||

= lim
k→∞

||Φ1unk
− unk

|| = 0. (3.15)

From (3.12), (3.14) and (3.15), we conclude that

lim
k→∞

||Φjunk
− Φj−1unk

|| = 0, j = 1, 2, · · · , N. (3.16)

By Remark 2.1, we have that fj is Lipschitz continuous for each j = 1, 2, · · · , N .
Thus,

lim
k→∞

||fjΦjunk
− fjΦj−1unk

|| = 0, j = 1, 2, · · · , N. (3.17)
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Also,

||xnk+1
− unk

|| ≤ ||ΦNunk
− ΦN−1unk

||+ ||ΦN−1unk
− ΦN−2unk

||
+ · · ·+ ||Φ1unk

− unk
||, (3.18)

which implies from (3.16) that

lim
k→∞

||xnk+1
− unk

|| = 0. (3.19)

By applying (3.9) and (3.19), we have that

lim
k→∞

||xnk+1
− xnk

|| = 0. (3.20)

Since {xnk
} is bounded, there exists a subsequence {xnkt

} of {xnk
} such

that {xnkt
} converges weakly to p. By (3.7) and (3.9), we have that there exist

subsequences {wnkt
} of {wnk

} and {unkt
} of {unk

} that converges weakly to p

respectively. Thus, by the demi-closedness of Si at zero and (3.6), we obtain
that p ∈ F (Si) for each i = 1, 2, · · · ,m.

We next show that p ∈ ∩Nj=1V I(C, fj).
Let

Bjv =

{
fj(v) +NCv, ∀ v ∈ C;

φ, ∀ v /∈ C.

Then, Bj is maximal monotone for each j = 1, 2, · · · , N . Let (v, w) ∈ G(Bj).
Then we have

w ∈ Bjv = fj(v) +NCv.

Hence

w − fj(v) ∈ NCv.

For Φjunkt
∈ C, we obtain

〈v − Φjunkt
, w − fjv〉 ≥ 0, j = 1, 2, · · · , N. (3.21)

From Φjunkt
= PC(I − λfj)Φj−1unkt

, we have

〈v − Φjunkt
,Φjunkt

− (Φj−1unkt
− λfjΦj−1unkt

)〉 ≥ 0, j = 1, 2, · · · , N,

which implies that

〈v − Φjunkt
,
Φjunkt

− Φj−1unkt

λ
+ fjΦ

j−1unkt
〉 ≥ 0, for each j = 1, 2, · · · , N.
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From (3.21), we have

〈v − Φjunkt
, w〉

≥ 〈v − Φjunkt
, fjv〉

≥ 〈v − Φjunkt
, fjv〉 − 〈v − Φjunkt

,
Φjunkt

− Φj−1unkt

λ
+ fjΦ

j−1unkt
〉

= 〈v − Φjunkt
, fjz − fjΦj−1unkt

−
Φjunkt

− Φj−1unkt

λ
〉

= 〈v − Φjunkt
, fjz − fjΦj−1unkt

〉+ 〈v − Φjunkt
, fjΦ

junkt
− fjΦj−1unkt

〉

− 〈v − Φjunkt
,
Φjunkt

− Φj−1unkt

λ
〉

≥ 〈v − Φjunkt
, fjΦ

junkt
− fjΦj−1unkt

〉

− 〈v − Φjunkt
,
Φjunkt

− Φj−1unkt

λ
〉. (3.22)

By applying (3.16), (3.17) and (3.19) on (3.22), we obtain that

〈v − p, w〉 ≥ 0.

Now, we conclude that since Bj , j = 1, 2, · · · , N is maximal monotone,

thus p ∈ B−1j (0), which implies that 0 ∈ Bj(p). Hence p ∈ ∩∞j=1V I(C, fj).
Therefore, we conclude that p ∈ Ω.

We next show that lim supk→∞〈xnk+1
−z, g(xnk

)−z〉 ≤ 0. Indeed, let {xnkt
}

be a sequence such that {xnk
} converges weakly to p and

lim sup
k→∞

〈xnk+1
− z, g(xnk

)− z〉 = lim
t→∞
〈xnkt

+1 − z, g(xnkt
)− z〉.

Using (3.20), we obtain that

lim sup
k→∞

〈xnk+1
− z, g(xnk

)− z〉 = lim
t→∞
〈xnkt+1

− z, g(xnkt
)− z〉

≤ 〈p− z, g(p)− z〉
≤ 0. (3.23)

On substituting (3.23) in (3.3) and applying Lemma 2.7, we obtain that {xnk
}

converges strongly to p. This completes the proof. �

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and {Si}mi=1 : H → CB(H) be a finite family of multi-valued type-
one demicontractive-type mappings with constant ki ∈ (0, 1) such that I − Si
is demiclosed at zero. Let f : H → H be an α-inverse strongly monotone
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mapping and g : H → H be a contractive mapping with constant θ ∈ (0, 1).
Suppose that

Ω :=
{ m⋂
i=1

F (Si)
⋂
V I(C, f)

}
6= ∅.

For x1 ∈ H, let the sequence {xn} be defined by
wn = γng(xn) + (1− γn)xn,

un = βn,0wn +
∑m

i=1 βn,iz
i
n, n ≥ 1,

xn+1 = PC(I − λf)un, n ∈ N,
(3.24)

where zin ∈ PSiwn , PSiwn = {zin ∈ Siwn : ||zin − wn|| = d(wn, Siwn)} and
{αn}, {βn,i}, λ ∈ (0, 2α), and the sequences {βn,i}∞n=1 for all i ≥ 0 and
{γn}∞n=1 satisfy the following conditions:

(i) {βn,0} ∈ (k, 1), {βn,i} ∈ (0, 1) such that
∑m

i=0 βn,i = 1, k < a ≤
βn,i ≤ b < 1, i = 1, 2, ...,m, k := sup

i≥1
{ki} < 1;

(ii) γn ∈ (0, 1), lim
n→∞

γn = 0 and
∑∞

n=1 γn =∞.

Then {xn} converges strongly to an element in Ω.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and {Si}mi=1 : H → CB(H) be a finite family of multi-valued quasi-
nonexpansive mappings. Let f : H → H be an α-inverse strongly monotone
mapping and g : H → H be a contractive mapping with constant θ ∈ (0, 1).
Suppose that

Ω :=
{ m⋂
i=1

F (Si)
⋂
V I(C, f)

}
6= ∅.

For x1 ∈ H, let the sequence {xn} be defined by
wn = γng(xn) + (1− γn)xn,

un = βn,0wn +
∑m

i=1 βn,iz
i
n, n ≥ 1,

xn+1 = PC(I − λf)un, n ∈ N,
(3.25)

where zin ∈ Siun, λ ∈ (0, 2α), and the sequences {βn,i}∞n=1 for all i ≥ 0 and
{γn}∞n=1 satisfy the following conditions:

(i) {βn,0} ∈ (0, 1), {βn,i} ∈ (0, 1) such that
∑m

i=0 βn,i = 1;

(ii) γn ∈ (0, 1), lim
n→∞

γn = 0 and
∑∞

n=1 γn =∞.

Then {xn} converges strongly to an element in Ω.
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4. Application to convex minimization problem

Let F : C → R be a convex and differentiable function. We know that if
5F is 1

α -Lipschitz continuous, then it is α-inverse strongly monotone, where
5F is the gradient of F . Moreover,

p = argminx∈CF (x) ⇔ p ∈ V I(C,5F ). (4.1)

Suppose the solution set of (4.1) is Γ. Then the setting fj = 5Fj for each
j = 1, 2, · · · , N in (3.1), we obtain the following result.

Theorem 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and {Si}mi=1 : H → CB(H) be a finite family of multi-valued type-one
demicontractive-type mappings with constant ki ∈ (0, 1) such that I − Si is
demiclosed at zero. Let Fj : H → R for j = 1, 2, · · · , N be an αj-inverse
strongly monotone mapping and g : H → H be a contractive mapping with
constant θ ∈ (0, 1). Suppose that

Ω :=
{ m⋂
i=1

F (Si)
⋂ N⋂

j=1

V I(C,5Fj)
}
6= ∅.

For x1 ∈ H, let the sequence {xn} be defined by
wn = γng(xn) + (1− γn)xn,

un = βn,0wn +
∑m

i=1 βn,iz
i
n, n ≥ 1,

xn+1 = PC(I−λ5 FN ) ◦ PC(I−λ5 FN−1) ◦ · · · ◦ PC(I−λ5 F1)un,

(4.2)

for all n ∈ N, where zin ∈ PSiwn , PSiwn = {zin ∈ Siwn : ||zin − wn|| =
d(wn, Siwn)} and λ ∈ (0, 2α), α = min{αj , j = 1, 2, · · · , N}, and the se-
quences {βn,i}∞n=1 for all i ≥ 0 and {γn}∞n=1 satisfy the following conditions:

(i) {βn,0} ∈ (k, 1), {βn,i} ∈ (0, 1) such that
∑m

i=0 βn,i = 1, k < a ≤
βn,i ≤ b < 1, i = 1, 2, ...,m, k := sup

i≥1
{ki} < 1;

(ii) γn ∈ (0, 1), lim
n→∞

γn = 0 and
∑∞

n=1 γn =∞.

Then {xn} converges strongly to an element in Ω.
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