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Abstract. In this paper, we introduce new hybrid inertial contraction projection algo-

rithms for solving variational inequality problems over the intersection of the fixed point

sets of demicontractive mappings in a real Hilbert space. The proposed algorithms are

based on the hybrid steepest-descent method for variational inequality problems and the

inertial techniques for finding fixed points of nonexpansive mappings. Strong convergence

of the iterative algorithms is proved. Several fundamental experiments are provided to il-

lustrate computational efficiency of the given algorithm and comparison with other known

algorithms

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and its induced
norm ‖ · ‖, C be a nonempty, closed and convex subset of H, and A : H → H
be an operator. The variational inequality problem, in short VI(C,A), is to

0Received May 12, 2021. Revised September 9, 2021. Accepted November 27, 2021.
02020 Mathematics Subject Classification: 65K10, 90C25, 49J35, 47J25, 47J20, 91B50.
0Keywords: Variational inequality problem, fixed point, Lipschitz continuous, strongly

monotone, inertial technique, demicontractive mapping.
0Corresponding author: J. K. Kim(jongkyuk@kyungnam.ac.kr).



204 N. D. Truong, J. K. Kim and T. H. H. Anh

find a point x∗ ∈ C such that

〈A(x∗), x− x∗〉 ≥ 0, ∀x ∈ C.

The variational inequality problem VI(C,A) was introduced first by Kinder-
lehrer and Stampacchia in [21] and has been applied to solve practical problems
from various fields such as partial differential equations, optimal control, eco-
nomics, circuits in electronics and others, see, for examples, [20, 22, 27, 30,
33, 35].

Thanks to this, many authors have constructed a large number of numerical
methods for solving the problem VI(C,A). Among the algorithms for solving
the problem VI(C,A), the projection method is one of the most popular and
attractive methods in H. It has been shown that the projection method,
in general, is not convergent for the monotone problem VI(C,A). In order
to obtain convergent projection algorithms, the extragradient algorithms have
been proposed first by Korpelevich in [23] in the Euclidean spaceRn for solving
the problem VI(C,A), where the cost mapping A is monotone and Lipschitz
continuous, see also [6].

To enhance convergence of double projection algorithms, recently hybrid
projection-cutting, linesearch projection algorithms and other have been pro-
posed for the pseudomonotone problem VI(C,A) without Lipschitz continuous
assumptions of A [19]. However, the projection of a point onto the domain C
may not be easy to compute due to the complexity of the convex set C. To
order to reduce the complexity probably caused by the projection, Yamada
[36, 37] proposed hybrid steepest-descent algorithms for solving the problem
VI(C,A). By using a nonexpansive mapping S : H → H, i.e, ‖Sx − Sy‖ ≤
‖x − y‖ for all x, y ∈ H via its fixed point set C := {x ∈ H : Tx = x}, the
iterative sequence is defined by the starting point x0 ∈ H and

xk+1 = Sxk − λk+1µA(Sxk), k ≥ 0.

Under assumptions that A is strongly monotone and Lipschitz continuous,
the author proved convergence results of {xk} to the unique solution of the
problem VI(C,A) under certain conditions onto parameters λk and µ.

In recent years, much studies have been given to develop efficient the hybrid
steepest-descent algorithms. Some popular algorithms for solving the problem
VI(C,A) are found such as the modified methods of Zeng, Wong and Yao
[41, 42], the relaxed methods of Zeng et al. [43], the implicit methods of Ceng
et al. [15, 16] and other [3, 28, 34].

For each i ∈ I := {1, 2, ...}, let Si : H → H be a mapping. The set of all fixed
points of Si is denoted by Fix(Si) and assumed to be Ω :=

⋂
i∈I Fix(Si) 6= ∅.
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In this paper, we consider the variational inequality problem with the fixed
point constraint VIF(Ω, A), which consists of the following:

Find x∗ ∈ Ω such that 〈A(x∗), x− x∗〉 ≥ 0, x ∈ Ω.

When Si(i ∈ I) is the identity mapping, the problem VIF(Ω, A) is formulated
in the form of the problem VI(C,A). This problem has closely related to many
other, for example, as the fixed point problem when A = 0, the lexicographic
variational inequality problem when Six := PrC [x − λG(x)](i ∈ I), where
λ > 0, G : C → H, PrC is the metric projection on C, and other [8, 5, 19, 32].
In the case I = {1, 2, ..., n} and Si is nonexpansive for each i ∈ I, Yamada [36]
introduced the following iteration algorithm:

xk+1 = S[k+1]x
k − λk+1µA(S[k+1]x

k), k ≥ 0, (1.1)

where S[k] := Skmodn for k ∈ N with the mod function taking values in the
set I. Under the conditions that A is β−strongly monotone and L−Lipschitz
continuous, µ ∈ (0, 2β

L2 ), λk ∈ (0, 1),
∑∞

k=0 λk =∞,
∑∞

k=0 |λk − λk+n| <∞,
limk→∞ λk = 0, the author proved the strong convergence of {xk} to the
unique solution of the problem VIF(Ω, A).

Motivated and inspired by the Yamada algorithm (1.1), many interesting
solution algorithms have been extended for a special class of the problem
VIF(Ω, A) such as the parameter approximation algorithms of Zeng et al. in
[42] and of Yao and Noor in [38], the three-step relaxed hybrid steepest-descent
algorithms of Ding et al. [18] and Yao et al. in [39] and some other [36, 43].

One of the useful tools for solving the monotone problem VI(C,A) is the
inertial iteration technique. This technique was first used by Polyak [29] as
an acceleration process in solving a smooth convex minimization problem.
It includes two-step iterations, where one is defined by making use of the
previous two iterates. It is well known that incorporating an inertial term in
an algorithm speeds up or accelerates the rate of convergence of the sequence
generated by the algorithm.

Recently, there are growing interests in modified inertial techniques for
solving a strongly monotone and Lipschitz continuous class of the problem
VIF(Ω, A) [13, 14, 25], the minimization of the sum of two nonconvex func-
tions [12], Ky Fan minimax inequalities [17], maximal monotone operators
[1, 9] and other [11, 24].

The purpose of this paper is to propose new iteration algorithms by using
the recent interest on the hybrid steepest-descent method (1.1) and inertial
iteration techniques for solving the problem VIF(Ω, A), where the cost map-
ping A is strongly monotone and Lipschitz continuous on H. Furthermore,
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we will show strong convergence results of the proposed algorithms under the
conditions on parameters.

The paper is organized as follows. In Section 2, we present some definitions
and lemmas which will be used in the paper. Section 3 deals with an hybrid
inertial subgradient algorithm for solving the problem VIF(Ω, A) and proves
its strong convergence in a real Hilbert space H. In the final section, some
numerical results are provided, which show the advantages of the proposed
algorithm.

2. Preliminaries

Let H be a real Hilbert space. For each i ∈ I := {1, 2, ...}, let Si : H → H
be a mapping. The fixed point set of Si is denoted by Fix(Si) and assumed to
be nonempty.

Definition 2.1. A mapping Si : H → H is said to be: .

(1) quasinonexpansive on H, if

‖Six− x̂‖ ≤ ‖x− x̂‖, ∀(x, x̂) ∈ H × Fix(Si);

(2) τi−strictly pseudocontractive on H, where τi ∈ [0, 1), if

‖Six− Siy‖2 ≤ ‖x− y‖2 + τi‖(x− y)− [Six− Siy]‖2, ∀x, y ∈ H;

(3) βi−demicontractive on H where βi ∈ [0, 1), if

‖Six− x̂‖2 ≤ ‖x− x̂‖2 + βi‖x− Six‖2, ∀(x, x̂) ∈ H × Fix(Si);

(4) demiclosed, if {xk} weakly converges to x̄ and {(I − Si)(xk)} strongly
converges to 0, then x̄ ∈ Fix(Si).

Definition 2.2. Let S : H → H be a mapping such that ∅ 6= Fix(S) ⊂⋂
i∈I Fix(Si). Then

(1) {Si} is said to satisfy NST-condition (I) with S [9], if for each bounded
sequence {xi} ⊂ H,

lim
i→∞
‖xi − Sixi‖ = 0 implies lim

i→∞
‖xi − Sxi‖ = 0.

(2) the sequence {Si} with a nonempty common fixed point set is said
to satisfy the condition (Z) [9, 10], if whenever {xi} is a bounded
sequence in H such that

lim
i→∞
‖xi − Sixi‖ = 0,

It follows that every weak cluster point of {xi} belongs to
⋂
i∈I Fix(Si).
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Definition 2.3. A mapping A : H → H is said to be:

(1) strongly monotone with constant β > 0 (shortly β-strongly monotone),
if

〈A(x)−A(y), x− y〉 ≥ β‖y − x‖2, ∀x, y ∈ C;

(2) Lipschitz continuous with constant L > 0 (shortly L-Lipschitz contin-
uous), if

‖A(x)−A(y)‖ ≤ L‖x− y‖, ∀x, y ∈ H;

(3) contraction with constant L > 0, if A is L-Lipschitz continuous where
L < 1;

(4) nonexpansive, if A is 1-Lipschitz continuous on H.

Let C be a nonempty closed convex subset of H. For each x ∈ H, there
exists a unique point in C, denoted by PrC(x) satisfying

‖x− PrC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.

The mapping PrC is usually called the metric projection of H on C. An
important property of PrC is nonexpansive on H.

Now we recall the following lemmas which are useful tools for proving our
convergence results.

Lemma 2.4. ([26, Remark 4.2]) Let S : H → H be a K-demicontractive
mapping, Fix(S) 6= ∅ and α ∈ [0, 1−K]. Then,

‖Sαx− x̄‖2 ≤ ‖x− x̄‖2 − α(1−K − α)‖Sx− x‖2, ∀x̄ ∈ Fix(S), x ∈ H,

where Sα = (1− α)I + αS and I is the identity mapping.

Lemma 2.5. ([31, Lemma 2.6]) Let {sk} be a sequence of nonnegative real
numbers and {pk} be a sequence of real numbers. Let {αk} be a sequence of
real numbers in (0, 1) such that

∑∞
k=1 αk =∞. Assume that

sk+1 ≤ (1− αk)sk + αkpk, k ∈ N .

If lim supi→∞ pki ≤ 0 for every subsequence {ski} of {sk} satisfying

lim inf
i→∞

(ski+1 − ski) ≥ 0,

then limk→∞ sk = 0.
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3. Algorithm and its convergence

For solving the variational inequality problem VIF(Ω, A) over the fixed point
set, we assume the mappings A and parameters Sk(k ∈ I) satisfy the following
conditions:

(A1) The A is β-strongly monotone and L-Lipschitz continuous;
(A2) For each k ∈ I, Sk is ξk−demicontractive and satisfies the condition

(Z) with

Ω :=
⋂
k∈I

Fix(Sk) 6= ∅;

(A3) For every k ≥ 0, positive parameters βk, γk, τk, λk and {µk} satisfy the
following restrictions:

0 < c1 ≤ βk ≤ c2 < 1, µk ≤ η,
αk ∈ (0, 1− ξk], infk αk > 0,

0 < γk < 1, lim
k→∞

γk = 0,
∑∞

k=1 γk =∞,

lim
k→∞

τk
γk

= 0, λk ∈
(
β
L2 ,

2β
L2

)
, a ∈ (0, 1),

√
1− 2λkβ + λ2kL

2 < 1− a.
(3.1)

Algorithm 3.1. (Hybrid inertial contraction projection algorithm)

Initialization: Take x0, x1 ∈ H arbitrarily.

Iterative steps: k = 1, 2, . . ..
Step 1. Compute an inertial parameter

θk =

 min

{
µk,

τk
‖xk − xk−1‖

}
if ‖xk − xk−1‖ 6= 0,

µk otherwise.
(3.2)

Step 2. Compute
wk = xk + θk(x

k − xk−1),
S̄kw

k = (1− αk)wk + αkSkw
k,

zk = (1− γk)S̄kwk + γk
[
wk − λkA(wk)

]
,

S̄kz
k = (1− αk)zk + αkSkz

k,
xk+1 = (1− βk)S̄kwk + βkS̄kz

k.

(3.3)

Step 3. Set k := k + 1 and return to Step 1.

A strong convergence result is established by the following theorem.

Theorem 3.2. Assume that the assumptions (A1)− (A3) are satisfied. Then,
the sequence {xk} generated by the Algorithm 3.1 converges strongly to a unique
solution x∗ of the problem VIF(Ω, A).
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Proof. Since A is β-strongly monotone and L-Lipschitz continuous on H, for
each λk > 0, we have

‖[wk − λkA(wk)]− [x∗ − λkA(x∗)]‖2

= ‖wk − x∗‖2 − 2λk〈A(wk)−A(x∗), wk − x∗〉

+ λ2k‖A(wk)−A(x∗)‖2

≤ ‖wk − x∗‖2 − 2λkβ‖wk − x∗‖2 + λ2kL
2‖wk − x∗‖2

= (1− 2λkβ + λ2kL
2)‖wk − x∗‖2. (3.4)

It is well known that A is strongly monotone and Ω 6= ∅, so the problem
VIF(Ω, A) has a unique solution x∗ ∈ Ω. By Lemma 2.4 and x∗ ∈ Fix(Sk), we
have

‖S̄kwk − x∗‖2 ≤ ‖wk − x∗‖2

− αk(1− ξk − αk)‖Skwk − wk‖2

≤ ‖wk − x∗‖2. (3.5)

Combining the scheme (3.3) and the relation (3.4), we obtain

‖zk − x∗‖ =
∥∥∥(1− γk)S̄kwk + γk

[
wk − λkA(wk)

]
− x∗

∥∥∥
≤γk

∥∥∥[wk − λkA(wk)]− x∗
∥∥∥+ (1− γk)‖S̄kwk − x∗‖

≤γk
∥∥∥[wk − λkA(wk)]− [x∗ − λkA(x∗)]

∥∥∥
+ γkλk ‖A(x∗)‖+ (1− γk)‖S̄kwk − x∗‖

≤γk
√

1− 2λkβ + λ2kL
2‖wk − x∗‖

+ γkλk ‖A(x∗)‖+ (1− γk)‖wk − x∗‖

=[1− γk(1− δk)]‖wk − x∗‖+ γkλk‖A(x∗)‖, (3.6)

where δk :=
√

1− 2λkβ + λ2kL
2 ∈ (0, 1− a).

By a similar way as in (3.5), we have

‖S̄kzk − x∗‖2 ≤ ‖zk − x∗‖2

− αk(1− ξk − αk)‖Skzk − zk‖2

≤ ‖zk − x∗‖2.
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Combining this, (3.6) and (3.1), we obtain

‖xk+1 − x∗‖ = ‖(1− βk)S̄kwk + βkS̄kz
k − x∗‖

≤ (1− βk)‖S̄kwk − x∗‖+ βk‖S̄kzk − x∗‖

≤ (1− βk)‖wk − x∗‖+ βk‖zk − x∗‖

≤ [1− βkγk(1− δk)]‖wk − x∗‖+ βkγkλk‖A(x∗)‖

≤ [1− βkγk(1− δk)]
(
‖xk − x∗‖+ θk‖xk − xk−1‖

)
+ βkγk

2β‖A(x∗)‖
L2

≤ [1− βkγk(1− δk)]‖xk − x∗‖

+ βkγk

(
θk
βkγk

‖xk − xk−1‖+
2β‖A(x∗)‖

L2

)
≤ [1− βkγk(1− δk)]‖xk − x∗‖

+ βkγk(1− δk)
(

θk
aβkγk

‖xk − xk−1‖+
2β‖A(x∗)‖

aL2

)
.

By using Step 1 and the conditions (3.1), we deduce

0 ≤ θk
βkγk

‖xk − xk−1‖ ≤ τk
c1γk

→ 0 as k →∞.

This implies M := supk

{
θk

aβkγk
‖xk − xk−1‖+ 2β‖A(x∗)‖

aL2

}
< +∞. Then, we

have

‖xk+1 − x∗‖ ≤ [1− βkγk(1− δk)]‖xk − x∗‖+ βkγk(1− δk)M

≤ max
{
‖xk − x∗‖,M

}
.

By mathematical induction, we deduce that

‖xk − x∗‖ ≤ max
{
‖x1 − x∗‖,M

}
, ∀k ≥ 1.

So, {xk} is bounded. It follows from (3.3) that

‖wk − xk‖ = θk‖xk − xk−1‖ < +∞.

By using (3.6), we also have that both {zk} and {wk} are bounded. By
(3.4) and the relation

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H,
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we get

2‖zk − x∗‖2

=
∥∥∥(1− γk)(S̄kwk − x∗) + γk[w

k − λkA(wk)− (x∗ − λkA(x∗))]− γkλkA(x∗)
∥∥∥2

≤‖(1− γk)(S̄kwk − x∗) + γk[w
k − λkA(wk)− (x∗ − λkA(x∗))]‖2

− 2γkλk〈A(x∗), zk − x∗〉

≤(1− γk)‖S̄kwk − x∗‖2 + γk‖wk − λkA(wk)− (x∗ − λkA(x∗))‖2

− 2γkλk〈A(x∗), zk − x∗〉

≤(1− γk)‖wk − x∗‖2 + γkδ
2
k‖wk − x∗‖2 − 2γkλk〈A(x∗), zk − x∗〉

≤
[
1− γk(1− δ2k)

]
‖wk − x∗‖2 − 2γkλk〈A(x∗), zk − x∗〉. (3.7)

From wk = xk + θk(x
k − xk−1), it implies

‖wk − x∗‖2 = ‖xk − x∗‖2 + θ2k‖xk − xk−1‖2 + 2θk〈xk − x∗, xk − xk−1〉

≤ ‖xk − x∗‖2 + θ2k‖xk − xk−1‖2 + 2θk‖xk − x∗‖‖xk − xk−1‖.
(3.8)

By Lemma 2.4 with x∗ ∈ Fix(Sk), (3.7), (3.8) and xk+1 = (1 − βk)S̄kwk +
βkS̄kz

k, we obtain

‖xk+1 − x∗‖2 =‖(1− βk)(S̄kwk − x∗) + βk(S̄kz
k − x∗)‖2

=(1− βk)‖S̄kwk − x∗‖2 + βk‖S̄kzk − x∗‖2

− βk(1− βk)‖S̄kwk − S̄kzk‖2

≤(1− βk)‖wk − x∗‖2 + βk‖zk − x∗‖2

− βk(1− βk)‖S̄kwk − S̄kzk‖2

≤(1− βk)‖wk − x∗‖2 + βk[1− γk(1− δ2k)]‖wk − x∗‖2

− 2βkγkλk〈A(x∗), zk − x∗〉 − βk(1− βk)‖S̄kwk − S̄kzk‖2

=[1− βkγk(1− δ2k)]‖wk − x∗‖2 − 2βkγkλk〈A(x∗), zk − x∗〉

− βk(1− βk)‖S̄kwk − S̄kzk‖2

≤[1− βkγk(1− δ2k)]‖xk − x∗‖2 + θ2k‖xk − xk−1‖2

+ 2θk‖xk − x∗‖‖xk − xk−1‖

− 2βkγkλk〈A(x∗), zk − x∗〉 − βk(1− βk)‖S̄kwk − S̄kzk‖2

≤[1− βkγk(1− δ2k)]‖xk − x∗‖2 − βk(1− βk)‖S̄kwk − S̄kzk‖2

+ βkγk(1− δ2k)σk,
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where

σk :=
1

1− δ2k

{
θ2k
βkγk

‖xk − xk−1‖2 +
2θk
βkγk

‖xk − x∗‖‖xk − xk−1‖

− 2λk〈A(x∗), zk − x∗〉
}

≤ 1

a(2− a)

{
− 2λk〈A(x∗), zk − x∗〉+

(
θk
c1γk
‖xk − xk−1‖

)
θk‖xk − xk−1‖

+ 2‖xk − x∗‖
(

θk
c1γk
‖xk − xk−1‖

)}
.

Since {xk} is bounded, we have supk σk < +∞. It follows that

‖xk+1 − x∗‖2 ≤ [1− βkγk(1− δ2k)]‖xk − x∗‖2

− βk(1− βk)‖S̄kwk − S̄kzk‖2 + βkγk(1− δ2k)σk. (3.9)

Now we apply Lemma 2.5 for sk := ‖xk − x∗‖2, αk := βkγk(1− δ2k) ∈ (0, 1)
and pk := σk. It follows from (3.9) that

sk+1 ≤ (1− αk)sk + αkpk.

Assume that {ski} is any subsequence of {sk} such that

lim inf
i→∞

(ski+1 − ski) ≥ 0.

Then, using the conditions (3.1) and (3.9), we obtain

0 ≤ c1(1− c2) lim sup
i→∞

∥∥∥S̄kiwki − S̄kizki∥∥∥2
≤ lim sup

i→∞
βki (1− βki)

∥∥∥S̄kiwki − S̄kizki∥∥∥2
≤ lim sup

i→∞

[
ski − ski+1 + βkiγki(1− δ

2
ki

)σ
]

≤ lim sup
i→∞

(ski − ski+1)

= − lim inf
i→∞

(ski+1 − ski)

≤ 0.

Consequently,

lim
i→∞

∥∥∥S̄kiwki − S̄kizki∥∥∥ = 0. (3.10)

It follows from the scheme (3.3) that

‖zk − S̄kwk‖ = γk‖wk − λkA(wk)− S̄kwk‖,
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and hence ∥∥∥zki − S̄kiwki∥∥∥ = γki

∥∥∥wki − λkiA(wki)− S̄kiw
ki
∥∥∥ .

Since (3.8) and {xk} is bounded, we deduce that {wk} is also bounded. From
lim
k→∞

γk = 0, we get

lim
i→∞

∥∥∥zki − S̄kiwki∥∥∥ = 0. (3.11)

Since S̄kiz
ki = (1− αki)zki + αkiSkiz

ki , (3.10) and (3.11), we obtain

αki‖z
ki − Skiz

ki‖ =
∥∥∥zki − S̄kizki∥∥∥
≤
∥∥∥zki − S̄kiwki∥∥∥+

∥∥∥S̄kiwki − S̄kizki∥∥∥
→0, as i→∞. (3.12)

By (3.12), the assumption infk αk > 0 leads to∥∥∥zki − Skizki∥∥∥→ 0, as i→∞. (3.13)

We next show that lim sup
i→∞

pki ≤ 0. Since the conditions (3.1), we have

pk =σk

≤ 1

a(2− a)

{
− 2λk〈A(x∗), zk − x∗〉+

(
θk
c1γk
‖xk − xk−1‖

)
θk‖xk − xk−1‖

+ 2‖xk − x∗‖
(

θk
c1γk
‖xk − xk−1‖

)}
≤ 1

a(2−a)

{
− 2λk〈A(x∗), zk−x∗〉+

τk
γk

(
µk‖xk−xk−1‖

c1
+

2‖xk−x∗‖
c1

)}
.

Since λk ∈ ( β
L2 ,

2β
L2 ), the boundedness of {xk} and {µk}, we deduce that if

lim supi→∞〈A(x∗), x∗ − zki〉 ≤ 0 then lim sup
i→∞

pki ≤ 0. Since {zk} is bounded,

without loss of generality, we can assume that there exists a subsequence {z̄ki}
of {zki} such that z̄ki ⇀ x̄ and

lim sup
i→∞

〈A(x∗), x∗ − zki〉 = lim
i→∞
〈A(x∗), x∗ − z̄ki〉.

Using (3.13), if follows from the condition (Z) of the sequence {Si} that x̄ ∈ Ω.
Therefore,

lim sup
i→∞

〈A(x∗), x∗ − zki〉 = 〈A(x∗), x∗ − x̄〉 ≤ 0.

By Lemma 2.5, we can conclude that xk → x∗ as k →∞. This completes the
proof. �
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4. Numerical results

This section provides some several numerical experiments to illustrate strong
convergence of the proposed algorithm and compare them with two algorithms:
The parallel projection algorithm (PPA) of Anh et al. in [4, Scheme (3.1)]
and the hybrid steepest descent scheme HSDA (1.1) of Yamada in [36].

Example 4.1. Consider an academic example, where H := l2, the mappings
Si, A : H → H are given as follows, for each x ∈ H, i ∈ I := {1, 2, ...},

l2 :=

{
x = (x1, x2, ...)

> :
∞∑
i=1

x2i < +∞

}
,

A(x) := (2x1, x2, 2x3, ..., 2x2i−1, x2i, ...)
> ∈ H,

S1x := x,

Six := {y ∈ H : y2j = x2j , x2j−1 = 0, ∀j ≥ 2} , ∀i ≥ 2.

Then for each k ∈ I, Sk is 0−demicontractive, A is 1−strongly monotone and
2−Lipschitz continuous. It is easy to see that the common fixed point set is
defined in the form:

Ω =
⋂
k∈I

Fix(Sk)

=
{
x = (x1, x2, ..., x2i−1, x2i, ...)

> ∈ H : x2i−1 = 0, ∀i ≥ 1
}
. (4.1)

Choose µk = 1, βk = 1
2 , γk = τk = 1

k+1 , λk = 3
10 , αk = 1

2 ∈ (0, 1 − ξk] where

ξk = 0, and hence
√

1− 2λkβ + λ2kL
2 =

√
19
5 ∈ (0, 1). Taking any sequence

{xk := (xk1, x
k
2, ...)

>} such that lim
k→∞

‖Skxk − xk‖ = 0, we have

0 = lim
k→∞

‖Skxk − xk‖

= lim
k→∞

‖(xk1, 0, xk3, 0, ..., xk2i−1, 0, ...)>‖

= lim
k→∞

√
(xk1)2 + (xk3)2 + ...+ (xk2i−1)

2 + ... .

This implies that {xk} converges strongly to a point in Ω and hence the con-
dition (Z) is satisfied. Thus, the assumptions (A1) − (A3) and the condition
(Z) hold. Take x0, x1 ∈ H. By the algorithm 3.1, for each k ≥ 1, we have
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θk = min

{
1,

1

(k + 1)‖xk − xk−1‖

}
if ‖xk − xk−1‖ = 0, else θk = 0,

wk =xk + θk(x
k − xk−1),

z1 =(1− γ1)S̄1w1 + γ1[w
1 − λ1A(w1)]

=(1− γ1)S̄1w1 + γ1[w
1 − λ1A(w1)]

=
1

2
S̄1w

1 +
1

2

[
w1 − 1

2
A(w1)

]
=

(
7

10
w1
1,

17

20
w1
2, ...,

7

10
w1
2i−1,

17

20
w1
2i, ...

)>
,

zk =(1− γk)S̄kwk + γk[w
k − λkA(wk)]

=
k

k + 1

(
1

2
wk1 , w

k
2 ,

1

2
wk3 , w

k
4 , ...

)>
+

1

k + 1

[
wk − 3

10

(
2wk1 , w

k
2 , 2w

k
3 , w

k
4 , ...

)>]
=

(
4− k

10(k + 1)
wk1 ,

7

10
wk2 , ...,

4− k
10(k + 1)

wk2i−1,
7

10
wk2i, ...

)>
, ∀k ≥ 2,

and

x2 =(1− β1)S̄1w1 + β1S̄1z
1

=
1

2
z1 +

1

2
S̄1z

1,

xk+1 =(1− βk)S̄kwk + βkS̄kz
k

=
1

2
zk +

1

2
S̄kz

k

=

(
4− k

20(k + 1)
wk1 ,

7

10
wk2 , ...,

4− k
20(k + 1)

wk2i−1,
7

10
wk2i, ...

)>
, ∀k ≥ 2.

Example 4.2. Let us take H := R5, the mappings Si : R5 → R5(i = 1, 2 · · · )
are defined by, for each x = (x1, x2, ..., x5)

> ∈ R5,

S1x =

(
x1, sinx2,

1

3
x3, x4, sin

3 x5

)>
,

Skx =

(
x1,

1

2
x2, sinx3, sin

2 x4,
1

4
x5

)>
, ∀k ≥ 2.
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The cost mapping A : R5 → R5 is given in the form A(x) = sx + Qx + q,
where P is a 5× 5 matrix, H is a 5× 5 skew-symmatric matric, K is a 5× 5
diagonal matrix, Q = PP> +H +K used in [2, 7] and ‖Q‖ < s ∈ R, q ∈ Rn.

Then, it is easy to see that A is strongly monotone with constant β := s−‖Q‖
and Lipschitz continuous with constant L := ‖sE+Q‖ where E is the identity
matrix, the mappings Sk(k ≥ 1) are 0−demicontractive. The common fixed
point set of {Sk} is computed by

Ω = {(x1, 0, 0, 0, 0)> : x1 ∈ R}.

Suppose that the sequence {xk} ⊂ R5 satisfies lim
k→∞

‖Sk(xk) − xk‖ = 0.

Then,

0 = lim
k→∞

‖Sk(xk)−xk‖ = lim
k→∞

∥∥∥∥∥
(

0,
1

2
xk2, x

k
3 − sinxk3, x

k
4 − sin2 xk4,

3

4
xk5

)>∥∥∥∥∥ = 0,

and hence lim
k→∞

xki = 0 for all i = 2, 3, 4, 5. So, the condition (Z) holds.

Test 1. The matrices P,H,K and the vector q are randomly chosen:

P =


2 3 0 4 1
3 2 1 0 2
0 1 3 1 2
4 1 3 1 0
1 0 1 −1 3

 , H =


0 1 2 1 4
1 3 2 0 2
2 −2 1 1 −3
3 0 −1 1 0
5 −2 3 0 2

 ,

K =


7 0 0 0 0
0 2 0 0 0
0 0 5 0 0
0 0 0 15 0
0 0 0 0 12

 , q =


−2
5
7
10
2

 .

Taking s = 80. Then, we get that ‖Q‖ ' 78.2072, A is β−strongly monotone
and L−Lipschitz continuous, where β = s−‖Q‖ ' 80−78.2072 = 1.7928, L =
‖sE + Q‖ ' 158.1860. For each k ≥ 1, the other parameters are chosen as
follows:

µk = 10, γk =
1

k + 3
, τk =

1

k2 + 1
, αk = 0.1 +

1

k + 10
,

λk = 0.0001 ∈ (6.8644e− 05, 1.3729e− 04) =

(
β

L2
,
2β

L2

)
, βk = 0.5 +

1

2k + 9
.

We obtain that the conditions (3.1) hold and the numerical results of the Al-
gorithm 3.1 in Figure 1 and Table 1. As usual, the tolerance error is ε−solution,
if ‖xk+1 − xk‖ ≤ ε.
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Figure 1. The Algorithm 3.1 with x0 = (1, 2, 3, 4, 5)>,
x1 = (0, 1,−1, 2, 3)>, the tolerance ε = 10−3.

Table 1 contains the numerical results of the Algorithm 3.1 for 10 choices
of parameters.

Case µk γk τk αk λk βk No. Iter. CPU times
1 10 1

k+3
1

k2+1
0.10 + 1

k+10 0.00010 0.5 + 1
2k+9 109 0.0012

2 15 1
2k+3

1
k2+10

0.15 + 1
k+10 0.00012 0.5 + 1

2k+7 112 0.0625

3 25 1
3k+10

1
k2+10

0.15 + 1
k+10 0.00012 0.5 + 1

2k+7 120 0.0313

4 25 1
3k+10

1
2k2+10

0.15 + 1
3k+10 0.00012 0.5 + 1

2k+7 121 0.0469

5 25 1
3k+10

1
2k2+10

0.16 + 1
k+1 0.00010 0.7 + 1

5k+2 116 0.0156

6 2 1
10k+1

1
2k2+10

0.16 + 1
k+1 0.00010 0.7 + 1

5k+2 92 0.0469

7 20 1
10k+1

1
2k2+10

0.16 + 1
k+1 0.00019 0.7 + 1

5k+2 111 0.0156

8 50 1
10k+1

1
2k2+10

0.10 + 1
k+100 0.00019 0.7 + 1

5k+2 156 0.0313

9 70 1
k+1

1
k2+10

0.10 + 1
k+100 0.00019 0.7 + 1

5k+2 206 0.0469

10 100 1
k+10

1
2k2+15

0.17 + 1
k+16 0.00014 0.3 + 1

5k+1 294 0.0156

Table 1. The Algorithm 3.1 with different parameters and ε = 10−3.

Table 2 presents the numerical results of the Algorithm 3.1 with different
starting points.



218 N. D. Truong, J. K. Kim and T. H. H. Anh

Case Start. point x0 Start. point x1 No. Iter. CPU times

1 (1, 2, 3, 4, 5)> (0, 1,−1, 2, 3)> 17 0.6875

2 (−1, 2,−3, 4,−5)> (0,−1, 1,−2,−3)> 111 0.0156

3 (0, 2, 0, 4, 0)> (1, 1, 1, 1, 1)> 102 0.0469

4 (2, 4, 6, 8, 10)> (3, 5, 7, 9, 11)> 90 0.0469

5 (1, 2, 0.5, 3, 0)> (1, 2, 0.5, 3, 0)> 67 0.0313

6 (1.2, 2.2, 3.3, 4.4, 5.5)> (−2.1, 3.2,−4.3, 5.4,−6.5)> 125 0.0469

7 (1, 2, 0.5, 3, 0)> (−10, 2,−3, 4,−5)> 324 0.0156

8 (10, 20, 30, 40, 50)> (−10, 2,−3, 4,−5)> 604 0.0156

9 (10, 20, 30, 40, 50)> (0, 0, 0, 0, 0)> 318 0.0469

10 (1.5, 2.7, 0.1, 5.3, 1.9)> (−1,−2,−5,−7, 9)> 118 0.0313

Table 2. The algorithm 3.1 with different starting points,
where ε = 10−3.

Test 2. Compare the Algorithm 3.1 (Alg.1) with the algorithm PPA and the
algorthm HSDA. The stopping criterion of the algorithms is ‖xk+1−xk‖ ≤ ε.
Choosing randomly x0 = (1, 2, 3, 4, 5)>, x1 = (0, 0, 0, 0, 0)>. Let all entries
P,H, and K be randomly generated by using the commands P = 2 ∗ 5 ∗
rand(5, 5) − 5;H = skewdec(5, 1);K = diag(1 : 5). The comparative results
are reported in Table 3 for q = (3, 7, 9, 10,−17)>. Data of the algorithms are
given as follows:

(1) Alg.1: µk = 15, γk = 1
2k+1 , τk = 1

k2+5
, αk = 0.5+ 1

k+10 , λk = 0.00012, βk =

0.7 + 1
2k+100 ;

(2) PPA: f(x, y) = 〈F (x), y − x〉 ∀x, y ∈ R5, αk,i = 0.01 + 1
2k+19 (i =

1, 2), εk = 0, γk = 1
9k+15 ;

(3) HSDA: µ = 0.1, λk = 1
2k+1 for all k ∈ N .

Iter. CPU times
Case Alg.1 PPA HSDA Alg.1 PPA HSDA
1 110 24 509 0.0469 0.0156 0.0781
2 111 937 541 0.0337 0.1250 0.0625
3 114 40 520 0.0483 0.0156 0.0625
4 108 30 516 0.0469 0.0313 0.0313
5 117 281 509 0.0905 0.0938 0.0156
6 96 44 500 0.0532 0.0441 0.0313
7 120 30 516 0.0716 0.0074 0.0156
8 114 159 507 0.0550 0.0663 0.0156
9 101 81 502 0.0712 0.0860 0.0469
10 119 28 522 0.0622 0.0052 0.0156

Table 3. The comparative results for Test 2 with ε = 10−3.

All the programs are written in in MATLAB R2016a running on a PC with
Intel Core i7-7800X CPU @ 3.50 GHz 32 GB Ram. From the computational
results of the hybrid inertial subgradient algorithm Alg.1, the the parallel
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projection algorithm PPA and the hybrid steepest decent algorithm HSDA
reported in the tables, we observe that:

(i) The convergent speed of the Algorithm 3.1 is quite sensitive to the
choice of the parameter sequences {µk}, {γk}, {τk}, {λk} and {βk};

(ii) Test on R5, the CPU time and the iteration numbers of our Algorithm
3.1 are less than of the algorithms PPA and HSDA.
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