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Abstract. This paper investigates the existence of positive solutions for second-order sin-

gular three point boundary value problems. A necessary and sufficient condition for the

existence of C[0, 1] as well as C1[0, 1] positive solutions is given by constructing lower and

upper solutions and with the maximal theorem. Also, the uniqueness of the C[0, 1] positive

solutions is studied. Our nonlinearity may be singular at t = 0 and/or t = 1.

1. Introduction and the Main Results

The singular ordinary differential equations arises in the fields of gas dy-
namics, Newtonian fluid mechanics, the theory of boundary layer and so on.
The theory of second order three-point boundary value problems has become
an important area of investigation in recent years (see [1]-[3], [9], [10], [13], [14]
and the references therein). In this paper, we will consider the positive solu-
tions to the following nonlinear singular three-point boundary value problems
of second-order ordinary differential equation

−u′′(t) = f(t, u(t)), 0 < t < 1, (1.1)

with
u(0) = au(η), u(1) = 0, (1.2)
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where 0 < a < 1, 0 < η < 1, and f satisfies the following hypothesis.
(H) f(t, u) : (0, 1)× (0, +∞) → [0, +∞) is continuous, decreasing on u for

each fixed t ∈ (0, 1), and there exists constant b > 0 such that f(t, cu) ≤
c−bf(t, u), ∀c ∈ (0, 1), (t, u) ∈ (0, 1)× (0,+∞).

Clearly, from the condition (H), we have

f(s, u) = f(s,
u

v
v) ≤

(v

u

)b
f(s, v), ∀ 0 < u ≤ v. (1.3)

By means of (1.3), we also have

f(s, u) ≤
(

u + v + |u− v|
2u

)b

f(s, v), ∀ u, v ∈ R+. (1.4)

By singularity we mean that the functions f in (1.1) are allowed to be
unbounded at the points t = 0 and/or t = 1.

A function u(t) ∈ C[0, 1] ∩ C2(0, 1) is called a C[0, 1] (positive) solution of
(1.1) and (1.2) if it satisfies (1.1) and (1.2) (u(t) > 0, for t ∈ (0, 1)). A C[0, 1]
(positive) solution of (1.1) and (1.2) is called a C1[0, 1] (positive) solution if
both u′(0+) and u′(1−) exist (u(t) > 0, for t ∈ (0, 1)).

When the function f ∈ C([0, 1]×R,R) in (1.1), i.e. f is continuous, problem
(1.1) and (1.2) is nonsingular, the existence of solutions to (1.1) and (1.2) has
been studied by many authors using nonlinear alternative of Leray-Schauder,
coincidence degree theory and fixed point theorem in cone (see [1]-[3], [9], [10]
and references therein).

Very recently, the existence and multiplicity of positive solutions to the sin-
gular boundary value problem (1.1) and (1.2) have been widely studied by
many authors, see, for example, [13]-[14]. But there are few papers concerned
with the sufficient and necessary conditions of the multi-point boundary prob-
lems. The objective of the present paper is to fill this gap.

To seek necessary and sufficient conditions for the existence of solutions
to the above problems is important and interesting, but difficult. Thus, re-
searches in this respect are rare up to now. In this paper, we shall study the
existence of positive solutions to the second-order singular three-point bound-
ary value problem (1.1) and (1.2). A necessary and sufficient conditions for
the existence of C[0, 1] as well as C1[0, 1] positive solutions is given by con-
structing lower and upper solutions and with the maximal theorem. Also, the
uniqueness of the C[0, 1] positive solutions is studied.

A function α(t) is called a lower solution to the problem (1.1), (1.2), if
α(t) ∈ C[0, 1]

⋂
C2(0, 1) and satisfies

{
α′′(t) + f(t, α(t)) ≥ 0, t ∈ (0, 1),

α(0)− aα(η) ≤ 0, α(1) ≤ 0.
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Upper solution is defined by reversing the above inequality signs. If there
exist a lower solution α(t) and an upper solution β(t) to problem (1.1), (1.2)
such that α(t) ≤ β(t), then (α(t), β(t)) is called a couple of upper and lower
solution to problem (1.1), (1.2).

In order to prove the main results, we need the following Lemma which can
be found in [13].

Lemma 1.1. (maximum principle) Suppose that 0 < η < bn, and

Fn = {x ∈ C[0, bn] ∩ C2(0, bn), x(0)− ax(η) ≥ 0, x(bn) ≥ 0}.
If x ∈ Fn such that −x′′(t) ≥ 0, t ∈ (0, bn), then x(t) ≥ 0, t ∈ [0, bn].

Now we state the main results of this paper as follows.

Theorem 1.1. Suppose that (H) holds. Then a necessary and sufficient con-
dition for problem (1.1) and (1.2) to have C[0, 1] positive solution is that

0 <

∫ 1

0
e(s)f(s, 1)ds < +∞, (1.5)

where e(s) = G(s, s) = s(1−s), G(t, s) is the Green’s function of the problem
u′′ = 0 subject to the boundary value condition u(0) = u(1) = 0, which can
be written as

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s < t ≤ 1.

It is obvious that

e(t)e(s) ≤ G(t, s) ≤ e(t), ∀ t, s ∈ I. (1.6)

Theorem 1.2. Suppose (H) holds, then a necessary and sufficient condition
for problem (1.1) and (1.2) to have C1[0, 1] positive solution is that

0 <

∫ 1

0
f(s, 1− s)ds < +∞. (1.7)

Theorem 1.3. Suppose (H) holds, then the C[0, 1] positive solution of (1.1)
and (1.2) is unique.

2. The proof of Theorem 1.1

2.1. Necessity of Theorem 1.1.
First we shall prove that the first inequality of (1.5) holds.
Suppose w(t) is a positive solution of (1.1) (1.2), and w = max

t∈I
w(t). In

view of (1.4), we have

0 ≤ f(s, w(s)) ≤
(

w(s) + 1 + |w(s)− 1|
2w(s)

)b

f(s, 1), ∀s ∈ J. (2.1)
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If f(s, 1) ≡ 0 on J , then from (2.1), it is easy to see that f(t, w(t)) ≡ 0, that
is, w(t) ≡ 0. This contradicts the assumption that w(t) is a positive solution
of (1.1) and (1.2). Hence f(s, 1) 6≡ 0. So the first inequality of (1.5) holds.

Next we shall prove that the second inequality of (1.5) holds.
From (1.2), there is t0 ∈ J such that w′(t0) = 0. So

∫ t

t0

f(s, w(s))ds = −
∫ t

t0

w′′(s)ds

= −w′(t), t ∈ J.

(2.2)

This implies

Sgn(t− t0)
∫ t

t0

f(s, w)ds ≤ Sgn(t− t0)
∫ t

t0

f(s, w(s))ds

= Sgn(t− t0)(−w′(t)), t ∈ J,

(2.3)

where Sgn(t) denotes the symbolic function of t. It follows that
∫ t0

0
sf(s, w)ds =

∫ t0

0
ds

∫ s

0
f(s, w)dt

=
∫ t0

0
dt

∫ t0

t
f(s, w)ds

≤
∫ t0

0
w′(t)dt

= w(t0)− w(0),

(2.4)

and ∫ 1

t0

(1− s)f(s, w)ds =
∫ 1

t0

ds

∫ 1

s
f(s, w)dt

=
∫ 1

t0

dt

∫ t

t0

f(s, w)ds

≤
∫ 1

t0

(−w′(t))dt

= w(t0)− w(1).

(2.5)

Thus by (1.4) (2.4) and (2.5), we get

∫ t0

0
sf(s, 1)ds ≤

(
1 + w + |1− w|

2

)b ∫ t0

0
sf(s, w)ds

< ∞,

(2.6)
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and ∫ 1

t0

(1− s)f(s, 1)ds ≤
(

1 + w + |1− w|
2

)b ∫ 1

t0

(1− s)f(s, w)ds

< ∞.

(2.7)

Therefore, (2.6) and (2.7) imply that the second inequality (1.5) holds.

2.2. The existence of lower solutions and upper solutions.
Suppose that (1.5) is satisfied. Choosing the real number m such that

mb > 1. Let

h(t) =
∫ 1

0
G(t, s)f(s, 1)ds +

a(1− t)
1− a + aη

∫ 1

0
G(η, s)f(s, 1)ds,

g(t) =
∫ 1

0
G(t, s)f(s, k(s))ds +

a(1− t)
1− a + aη

∫ 1

0
G(η, s)f(s, k(s))ds + k(t), t ∈ I,

l = min
{
1,

(
1 + aη

1− a + aη

∫ 1

0
e(s)f(s, 1)ds

)−1 }
,

L = max
{
1,

(
1 + aη

1− a + aη

∫ 1

0
e(s)f(s, 1)ds

)−1

,

(k)b, (k)b

(
1 + aη

1− a + aη

∫ 1

0
e(s)f(s, 1)ds

)−1 }
,

H(t) = lh(t), Q(t) = Lg(t), t ∈ I,
(2.8)

where k(t) = (h(t))
1

mb , t ∈ I, k = max
t∈I

k(t).

It follows from (1.5) and (1.6) that

h(t) ≤ 1 + aη

1− a + aη

∫ 1

0
e(s)f(s, 1)ds < ∞,

which implies that h(t), k(t), l, L, k, H(t) are well defined on I.
In the following we shall show that g(t) exists. In fact, we only need to

prove that ∫ 1

0
e(s)f(s, k(s))ds < ∞ (2.9)

By (2.8), it is easy to see that

1
2

∫ t

0
sf(s, 1)ds ≤ (1− t)

∫ t

0
sf(s, 1)ds ≤ h(t), t ∈ [0,

1
2
],

1
2

∫ 1

t
(1− s)f(s, 1)ds ≤ t

∫ 1

t
(1− s)f(s, 1)ds ≤ h(t), t ∈ [

1
2
, 1].

(2.10)
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In view of (2.10) and m > 1, we have

(h(t))−
1
m ≤ 2

1
m

(∫ t

0
sf(s, 1)ds

)− 1
m

, t ∈ [0,
1
2
],

(h(t))−
1
m ≤ 2

1
m

(∫ t

0
(1− s)f(s, 1)ds

)− 1
m

, t ∈ [
1
2
, 1].

Since the function
(∫ t

0 sf(s, 1)ds
)1− 1

m is increasing on [0, 1
2 ] and the function

(∫ 1
t (1− s)f(s, 1)ds

)1− 1
m is decreasing on [12 , 1], their derivatives are integrable

on the interval [0, 1
2 ] and [12 , 1] respectively. So by the condition (H) and the

above reasons, we obtain
∫ 1

2

0
e(t)f(s, k(t))ds

≤ d−b

∫ 1
2

0
t(1− t)(h(t))−

1
m f(t, 1)dt

≤ d−b2
1
m

∫ 1
2

0
t(1− t)

(∫ t

0
sf(s, 1)

)− 1
m

f(t, 1)dt

≤ d−b2
1
m

m

m− 1

∫ 1
2

0
(1− t)

[
(
∫ t

0
sf(s, 1)ds)1−

1
m

]′
dt,

(2.11)

and ∫ t

1
2

e(t)f(s, k(t))ds

≤ d−b

∫ 1

1
2

t(1− t)(h(t))−
1
m f(t, 1)dt

≤ d−b2
1
m

∫ 1

1
2

t(1− t)
(∫ 1

t
(1− s)f(s, 1)

)− 1
m

f(t, 1)dt

≤ d−b2
1
m

m

m− 1

∫ 1

1
2

t

[
(
∫ 1

t
(1− s)f(s, 1)ds)1−

1
m

]′
dt.

(2.12)

Consequently by (2.11) and (2.12), we have
∫ 1

0
e(s)f(s, k(s))ds < ∞.

Hence, g(t), Q(t) are well defined.



Positive solutions of three-point boundary value problems 127

It is obvious that H(t) > 0, t ∈ J and H(t), Q(t) ∈ C(I)
⋂

C2(J),
{

H(0) = aH(η), H(1) = 0,

Q(0)− aQ(η) ≥ 0, Q(1) = 0.
(2.13)

Clearly, (2.8) implies that

Lmin{1, (k)−b} ≥ min

{
1,

(
1 + aη

1− a + aη

∫ 1

0
e(s)f(s, 1)ds

)−1
}

= l,

and thus

Q(t) ≥ L

[∫ 1

0
G(t, s)f(s, k(s))ds +

a(1− t)
1− a + aη

∫ 1

0
G(η, s)f(s, k(s))ds

]

≥ L

[∫ 1

0
G(t, s)f(s, k)ds +

a(1− t)
1− a + aη

∫ 1

0
G(η, s)f(s, k)ds

]

≥ Lmin{1, k
−b}

[∫ 1

0
G(t, s)f(s, 1)ds +

a(1− t)
1− a + aη

∫ 1

0
G(η, s)f(s, 1)ds

]

≥ H(t), t ∈ I.
(2.14)

By the condition (H) and (2.8), we obtain

H ′′(t) + f(t,H(t)) = f(t, lh(t))− lf(t, 1) ≥ 0, t ∈ J,

k′′(t) =
1

mb

(
1

mb
− 1

)
(h(t))(

1
mb
−2)(h′(t))2 +

1
mb

(h(t))(
1

mb
−1)h′′(t) ≤ 0,

Q′′(t) + f(t,Q(t)) ≤ f(t,Q(t))− Lf(t, k(t)) ≤ 0, t ∈ J.
(2.15)

Thus (2.13) (2.14) and (2.15) imply that H(t) and Q(t) are lower solution and
upper solution to (1.1) (1.2) respectivly.

2.3. Sufficiency of Theorem 1.1.
First of all, we define a partial ordering in C(I)

⋂
C2(J) by x ≤ y if and

only if
x(t) ≤ y(t), t ∈ I.

Then, we shall define an auxillary function. ∀x(t) ∈ C(I)
⋂

C2(J),

g(t, x) =





f(t,H(t)), if H(t) 6≥ x(t),

f(t, x(t)), if H(t) ≤ x(t) ≤ Q(t),

f(t,Q(t)), if x(t) 6≤ Q(t).
(2.16)

By the condition (H), we have g : J ×R → [0, +∞) is continuous.
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Let {bn} be a sequence satisfying 0 < η < b1 < · · · < bn < bn+1 < · · · < 1,
and bn → 1 as n →∞, and let {rn}, be a sequence satisfying

H(bn) ≤ rn ≤ Q(bn), n = 1, 2, · · · .

For each n, consider the nonsingular problem
{
− x′′(t) = g(t, x), t ∈ [0, bn],

x(0)− ax(η) = 0, x(bn) = rn.
(2.17)

obviously, the problem (2.17) is equivalent to the integral equation

x(t) = Anx(t) =
((1− a)t + aη)
bn(1− a) + aη

rn +
∫ bn

0
Gn(t, s)g(s, x(s))ds

+
a(bn − t)

bn(1− a) + aη

∫ bn

0
Gn(η, s)g(s, x(s))ds, t ∈ [0, bn],

(2.18)

where

Gn(t, s) =
1
bn

{
(bn − t)s, s < t,

(bn − s)t, t ≤ s.

It is easy to verify that An : Xn → Xn = C[0, bn] is completely continuous and
An(Xn) is a bounded set. Moreover, x ∈ C[0, bn] is a solution to (2.17) if and
only if Anx = x. Using the Schauder’s fixed point theorem, we assert that An

has at least one fixed point xn ∈ C2[0, bn].
We claim that

H(t) ≤ xn(t) ≤ Q(t), t ∈ [0, bn], (2.19)
and hence xn(t) ∈ C2[0, bn] and satisfies

−x′′(t) = f(t, x(t)), t ∈ [0, bn]. (2.20)

Indeed, suppose by contradiction that xn 6≤ Q(t). By the definition of g, we
have

g(t, xn(t)) = f(t,Q(t)), t ∈ [0, bn],
and therefore

−x′′n(t) = f(t,Q(t)), t ∈ [0, bn]. (2.21)
On the other hand, since Q(t) is an upper solution of (1.1) and (1.2), we also
have

−Q′′(t) ≥ f(t,Q(t)), t ∈ J. (2.22)
Then setting

z(t) = Q(t)− xn(t), t ∈ [0, bn].
By (2.17) (2.21) and (2.22), we obtain

−z′′(t) ≥ 0, t ∈ (0, bn), z ∈ C[0, bn]
⋂

C2(0, bn), z(0)− az(η) ≥ 0, z(bn) ≥ 0.
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By Lemma 1.1, we can conclude that z(t) ≥ 0, t ∈ [0, bn], a contrdiction with
the assumption xn(t) 6≤ Q(t). Therefore xn(t) 6≤ Q(t) is impossible.

Similarly, we can show that H(t) ≤ xn(t). So, we have shown that (2.19)
holds.

Using the method of [11] and the Theorem 3.2 in [7], we can obtain that
there is a C(I) positive solution x(t) to (1.1) (1.2) such that H(t) ≤ x(t) ≤
Q(t), and a subsequence of {xn(t)} converges to x(t) on any compact subin-
tervals of J. This completes the proof of theorem 1.1.

3. The proof of Theorem 1.2

3.1. Necessity of Theorem 1.2.
Assume that w(t) is a C1[0, 1] positive solution to (1.1) and (1.2). Then

w′′(t) ≤ 0, ∀t ∈ J. So w(t) is a concave function on [0, 1]. It is well known
that w(t) can be stated as

w(t) =
∫ 1

0
G(t, s)f(s, w(s))ds +

a(1− t)
1− a + aη

∫ 1

0
G(η, s)f(s, w(s))ds, (3.1)

where G(t, s) is defined in Theorem 1.1.
It is easy to see that

w(0) > 0, w(t) ≥ t(1− t)‖w‖, t ∈ I. (3.2)

Here, ‖w‖ = max
t∈[0,1]

|w(t)|. For t ∈ I, from the concavity of w and (3.2) we have

that

w(t) ≥ 1− t

1− η
w(η) ≥ 1− t

1− η
η(1− η)‖w‖ = η‖w‖(1− t), t ∈ I. (3.3)

Since w(t) is a C1[0, 1] positive solution to (1.1) and (1.2), from (1.2), we have

w(t) =
∫ 1

t
(−w′(s))ds ≤ max

t∈[0,1]
|w′(t)|(1− t), t ∈ I. (3.4)

Setting I1 = η‖x‖, I2 = ‖x′‖, then from (3.3) and (3.4) we know that there
are constants 0 < I1 < I2, such that

I1(1− t) ≤ w(t) ≤ I2(1− t), t ∈ I. (3.5)

Without loss of generality, we may assume that 0 < I1 < 1 < I2. This together
with the condition (H) implies that

∫ 1

0
f(t, 1− t)dt ≤ I2

b

∫ 1

0
f(t, w(t))dt = I2

b[w′(1−)− w′(0+)] < +∞. (3.6)

Hence, the second part of (1.7) holds.
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Assume that f(t, 1− t) ≡ 0, t ∈ J. By (H) and (3.5) it is easy to see that

0 ≤ f(t, w(t)) ≤ f(t, I1(1− t)) ≤ I1
−bf(t, 1− t), t ∈ J. (3.7)

Then f(t, w(t)) ≡ 0, that is, w(t) ≡ 0, which contradicts the assumption that
w(t) is a positive solution to (1.1) and (1.2). Thus f(t, 1−t) 6≡ 0. Consequently
the first part of (1.7) holds.

3.2. Sufficiency of Theorem 1.2.
In view of the condition (H) and (1.7) we have

∫ 1

0
e(s)f(s, 1)ds ≤

∫ 1

0
e(s)f(s, 1− s)ds ≤

∫ 1

0
f(s, 1− s)ds < +∞.

Hence, from the proof of theorem 1.1, there exists a positive solution w(t) to
(1.1) and (1.2) such that

H(t) ≤ w(t) ≤ Q(t), ∀t ∈ I, (3.8)

where H(t), Q(t) are defined in (2.8).
It follows from (1.7) and (2.8) that

w(t) ≥ la(1− t)
1− a + aη

∫ 1

0
G(η, s)f(s, 1)ds = lk1(1− t), t ∈ I,

where k1 = a
1−a+aη

∫ 1
0 G(η, s)f(s, 1)ds. Thus,

f(t, w(t)) ≤ f(t, lk1(1− t)) ≤ max{1, (lk1)−b}f(t, 1− t). (3.9)

From (3.9) we know that f(t, w(t)) is integratable on J , that is, the derivable
function w′′(t) of w′(t) is integratable on J . Therefore, w′(0+), w′(1−0) exist,
that is w(t) ∈ C1(I)

⋂
C2(J). This completes the proof of theorem 1.2.

4. The proof of theorem 1.3

Suppose that u1(t), u2(t) are C(I) positive solution to (1.1) and 1.2. We
may assume without loss of generality that there exists t∗ ∈ J such that
u2(t∗)− u1(t∗) = max

t∈I
u2(t∗)− u1(t∗) > 0. Let

α = inf{t1 | 0 ≤ t1 < t∗, u2(t) ≥ u1(t), for t ∈ (t1, t∗]},
β = sup{t2 | t∗ < t2 ≤ 1 u2(t) ≥ u1(t), for t ∈ (t∗, t2]}

z(t) = u2(t)− u1(t), t ∈ I.

Evidently, t∗ ∈ (α, β), u2(t) ≥ u1(t), f(t, u2(t)) ≤ f(t, u1(t)), t ∈ [α, β],
hence, z′′(t) = f(t, u1(t))− f(t, u2(t)) ≥ 0, t ∈ [α, β].

By (1.2), it is easy to check that there exist the following two possible cases

(1) z(α) = z(β) = 0, (2) z(α) > 0, z(β) = 0.
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For case (1). From z′′(t) ≥ 0, and z(α) = z(β) = 0 we derive that z(t) ≤
0, t ∈ [α, β], which is in contradiction with u2(t∗) > u1(t∗).

For case (2). In this case α = 0, z′(t∗) = 0. Since z′(t) is increasing on
[α, β], thus, z′(t) ≥ 0, t ∈ [t∗, β], that is, z(t) is increasing on [t∗, β]. From
z(β) = 0, we see z(t∗) ≤ 0, which is in contradiction with u2(t∗) > u1(t∗).

This completes the proof of theorem 1.3.

5. Concerned remarks and applications

Remark 1. This paper generalizes the results of the concrete functions

f(t, u) = p(t)uλ

in [11] to a class of functions which possess the abstract property (H). Most of
the proof in the known literature are not suitable for the class of functions in
our paper, and the conclusions in this paper are not weakened, on the contrary,
they are strengthened. Therefore this paper is essentially difficult.

Remark 2. Suppose ai(t) (i = 0, 1, 2, · · · , m) are nonnegative continuous
functions on (0,1), which may be unbounded at end points of (0,1). F is
the set of functions f(t,u) which satisfy the condition (H). Then we have the
following conclusions:

(1) ai(t) ∈ F, u−λ ∈ F, where 0 < λ < ∞;

(2) If 0 < bi < +∞ (i = 1, 2, · · · ,m), then [a0(t) +
m∑

i=1

ai(t)u−bi ] ∈ F ;

(3) if
m∑

i=0

ai(t) > 0, t ∈ J, then [a0(t) +
m∑

i=1

ai(t)ubi ]−1 ∈ F ;

(4) If f(t, u) ∈ F, then ai(t)f(t, u) ∈ F ;

(5) If fi(t, u) ∈ F, (i = 1, 2, · · · ,m), then max
1≤i≤m

{fi(t, u)} ∈ F ;

(6) If fi(t, u) ∈ F, (i = 1, 2, · · · ,m), then min
1≤i≤m

{fi(t, u)} ∈ F.

The above five facts can be verified directly. This indicates that functions
which satisfy the condition (H) are rather wide.

Using the results obtained in above section, we study the problem

u′′(t) +
n∑

i=1

ai(t)u−ai(t) = 0, 0 < t < 1. (5.1)
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with the boundary condition (1.2), where ai > 0, ai(t) (i = 1, 2 · · ·n) are
nonnegative continuous functions (may be unbounded) on J and

n∑

i=1

ai(t) > 0, t ∈ J,

we have
(i) a necessary and sufficient conditions for (1.1) and (1.2)to have C(I)

positive solutions is that
∫ 1

0
t(1− t)ai(t)dt < +∞, i = 1, 2, · · · , n; (5.2)

(ii) a necessary and sufficient condition for (1.1) and (1.2) to have C1(I)
positive solution is that

∫ 1

0
ai(t)(1− t)−aidt < +∞, i = 1, 2, · · · , n; (5.3)

(iii) if u∗(t) is a C(I) positive solution to (1.1) and (1.2), then it is unique.

Remark 3. Consider (1.1) and the singular three-point boundary value prob-
lem

u(0) = 0, u(1) = au(η). (5.4)

By analogous methods, we have the following results.
Assume that u(t) is a C(I) positive solution to (1.1) and (5.4). Then u(t)

can be stated

u(t) =
∫ 1

0
G(t, s)f(s, u(s))ds +

at

1− aη

∫ 1

0
G(η, s)f(s, u(s))ds.

Theorem A Suppose (H) holds, then a necessary and sufficient condition for
problem (1.1) and (5.4) to have C[0,1] positive solutions is that

0 <

∫ 1

0
t(1− t)f(t, 1)dt < +∞.

Theorem B Suppose (H) holds, then a necessary and sufficient condition for
problem (1.1) and (5.4) to have C1[0, 1] positive solutions is that

0 <

∫ 1

0
f(t, t)dt < +∞.

Theorem C Suppose (H) holds, then the C[0, 1] positive solutions of (1.1)
(5.4) is unique.
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