Nonlinear Functional Analysis and Applications Vol. 14, No. 1 (2009), pp. 135–141

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2009 Kyungnam University Press

SOME PROPERTIES OF CERTAIN MEROMORPHICALLY MULTIVALENT FUNCTIONS

Jin-Lin $Liu¹$ and Khalida Inayat Noor²

¹Department of Mathematics, Yangzhou University Yangzhou 225002, Jiangsu, People's Republic of China e-mail: jlliu@yzu.edu.cn

²Mathematics Department, COMSATS Institute of Information Technology Islamabad, Pakistan e-mail: khalidanoor@hotmail.com

Abstract. The main object of the present paper is to investigate some interesting properties of certain meromorphically multivalent functions associated with a linear operator $L_p(a, c)$.

1. Introduction and preliminaries

Let \sum_{p} denote the class of meromorphically multivalent functions $f(z)$ of the form

$$
f(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad (p \in N = \{1, 2, 3, \cdots\}),
$$
 (1.1)

which are analytic in the punctured unit disk

$$
U^* = \{ z : z \in C \text{ and } 0 < |z| < 1 \} = U \setminus \{ 0 \}.
$$

For functions $f \in$ $\overline{ }$ $_p$ given by (1.1) and $g \in$ $\overline{ }$ $_p$ given by

$$
g(z) = z^{-p} + \sum_{k=1}^{\infty} b_{k-p} z^{k-p} \quad (p \in N),
$$
 (1.2)

 0 Received June 16, 2007. Revised July 21, 2008.

⁰ 2000 Mathematics Subject Classification: 30C35, 30C50.

 0 Keywords: Analytic, Hadamard product (or convolution), subordinate, convex univalent, meromorphically multivalent function.

we define the Hadamard product (or convolution) of f and g by

$$
(f * g)(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} b_{k-p} z^{k-p} = (g * f)(z).
$$
 (1.3)

In terms of the Pochhammer symbol (or the shifted factorial) $(\lambda)_n$ given by

$$
(\lambda)_0 = 1 \quad \text{and } (\lambda)_n = \lambda(\lambda + 1) \cdots (\lambda + n - 1) \quad (n \in N), \tag{1.4}
$$

we now define the function $\phi_p(a, c; z)$ by

$$
\phi_p(a,c;z) = z^{-p} + \sum_{k=1}^{\infty} \frac{(a)_k}{(c)_k} z^{k-p}
$$
\n(1.5)

$$
(z \in U^*; a \in R; c \in R \setminus Z_0^-; Z_0^- = \{0, -1, -2, \dots\}).
$$

Corresponding to the function $\phi_p(a, c; z)$, we introduce here a linear operator $L_p(a, c)$ which is defined by means of the following Hadamard product (or convolution):

$$
L_p(a,c)f(z) = \phi_p(a,c;z) * f(z) \quad (f \in \Sigma_p). \tag{1.6}
$$

It is easily verified from the definitions (1.5) and (1.6) that

$$
z(L_p(a,c)f(z))' = aL_p(a+1,c)f(z) - (a+p)L_p(a,c)f(z).
$$
 (1.7)

The definition (1.6) of the linear operator $L_p(a, c)$ was first introduced and investigated by Liu and Srivastava [3]. A linear operator $L_p(a, c)$, analogous to $L_p(a, c)$ defined here, was considered earlier by Saitoh [7] on the space of analytic and p -valent functions in U . We remark in passing that a much more general convolution operator than the operator $L_p(a, c)$ considered by Saitoh [7], involving the generalized hypergeometric function in the defining Hadamard product (or convolution), was introduced and studied recently by Dziok and Srivastava [1,2].

Given two functions $f(z)$ and $g(z)$, which are analytic in U, we say that the function $g(z)$ is subordinate to $f(z)$, if there exists a Schwarz function $w(z)$ with $w(0) = 0$ and $|w(z)| < 1$ ($z \in U$) such that $q(z) = f(w(z))$ ($z \in U$). In particular, if $f(z)$ is univalent in U, we have the following equivalence

$$
g(z) \prec f(z)
$$
 $(z \in U) \Longleftrightarrow g(0) = f(0)$ and $g(U) \subset f(U)$.

Further, we define a function $H(z)$ by

$$
H(z) = (1 - \lambda(a + p + 1))L_p(a, c)f(z) + \lambda aL_p(a + 1, c)f(z)
$$
(1.8)

for $f \in$ $\overline{ }$ $_p, \lambda > 0, a \in R \text{ and } c \in R \setminus Z_0^-$. We shall need the following lemmas.

Lemma 1.1. ([4]) Let $h(z)$ be convex univalent in U, $h(0) = 1$, and let $g(z) =$ $1 + b_1 z + \cdots$ be analytic in U. If

$$
g(z) + \frac{1}{c}zg'(z) \prec h(z),
$$

then for $c \neq 0$ and $Rec \geq 0$

$$
g(z) \prec \frac{c}{z^c} \int_0^z t^{c-1} h(t) dt.
$$

Lemma 1.2. ([5,6]) Let a function $p(z) = 1 + c_1z + \cdots$ be analytic in U and $p(z) \neq 0 \ (z \in U)$. If there exists a point $z_0 \in U$ such that

 $|argp(z)| < \pi \gamma/2$ $(|z| < |z_0|)$ and $|argp(z_0)| = \pi \gamma/2$ $(0 < \gamma \le 1)$,

then we have $z_0 p'(z_0)/p(z_0) = ik\gamma$, where

$$
k \ge \frac{1}{2}(a + \frac{1}{a}) \quad (\text{where } \arg p(z_0) = \pi \gamma/2),
$$

$$
k \le -\frac{1}{2}(a + \frac{1}{a}) \quad (\text{where } \arg p(z_0) = -\pi \gamma/2),
$$

and $(p(z_0))^{1/\gamma} = \pm ia \ (a > 0).$

In this paper, we shall derive several interesting properties of $H(z)$ defined by (1.8).

2. Main results

Theorem 2.1. Let $f \in$ $\overline{ }$ $_p$ and let $H(z)$ be defined by (1.8). If

$$
\frac{H^{(j)}(z)}{(-1)^j z^{-p-j}} \prec (1 - \lambda - \lambda p)(p)_j \frac{1 + Az}{1 + Bz},
$$
\n(2.1)

then

$$
\frac{(L_p(a,c)f(z))^{(j)}}{(-1)^j z^{-p-j}} \prec \frac{(1-\lambda-\lambda p)(p)_j}{\lambda} \int_0^1 u^{(1-\lambda-\lambda p)/\lambda-1} \left(\frac{1+Auz}{1+Buz}\right) du, (2.2)
$$

where $j \geq 0, \lambda > 0, |B| \leq 1$ and $A \neq B$.

Proof. From (1.7) and (1.8) , we have

$$
H^{(j)}(z) = (1 - \lambda(a + p + 1))(L_p(a, c)f(z))^{(j)} + \lambda a(L_p(a + 1, c)f(z))^{(j)}
$$

=
$$
(1 - \lambda + \lambda j)(L_p(a, c)f(z))^{(j)} + \lambda z(L_p(a, c)f(z))^{(j+1)}.
$$
 (2.3)

Putting

$$
g(z) = \frac{1}{(p)_j} \cdot \frac{(L_p(a,c)f(z))^{(j)}}{(-1)^j z^{-p-j}}
$$
(2.4)

for $f \in$ $\overline{ }$ $_p$, we see that $g(z) = 1 + b_1 z + \cdots$ is analytic in U. Note that

$$
\frac{H^{(j)}(z)}{(-1)^j z^{-p-j}} = (1 - \lambda - \lambda p)(p)_j \left(g(z) + \frac{\lambda}{1 - \lambda - \lambda p} z g'(z) \right). \tag{2.5}
$$

Then by (2.1) , we obtain

$$
g(z) + \frac{\lambda}{1 - \lambda - \lambda p} z g'(z) \prec \frac{1 + Az}{1 + Bz}.
$$

Since $h(z) = (1 + Az)/(1 + Bz)$ is convex univalent in U, an application of Lemma 1 yields

$$
g(z) \prec \frac{1 - \lambda - \lambda p}{\lambda} z^{-(1 - \lambda - \lambda p)/\lambda} \int_0^z t^{(1 - \lambda - \lambda p)/\lambda - 1} \left(\frac{1 + At}{1 + Bt}\right) dt.
$$

This proves (2.2).

Theorem 2.2. Let $f \in$ $\overline{ }$ $_p$ and let $H(z)$ be defined by (1.8). If

$$
\frac{(L_p(a,c)f(z))^{(j)}}{(-1)^j z^{-p-j}} \prec (p)_j \frac{1+(1-2\alpha)z}{1-z} \quad (z \in U),
$$
\n(2.6)

then

$$
\frac{H^{(j)}(z)}{(-1)^j z^{-p-j}} \prec (1 - \lambda - \lambda p)(p)_j \frac{1 + (1 - 2\alpha)z}{1 - z} \quad (|z| < \rho), \tag{2.7}
$$

where $j \ge 0, 0 \le \alpha < 1, 0 < \lambda < 1/(p+1)$ and

$$
\rho = \left[1 + \left(\frac{\lambda}{1 - \lambda - \lambda p}\right)^2\right]^{1/2} - \frac{\lambda}{1 - \lambda - \lambda p}.\tag{2.8}
$$

The bound $\rho \in (0,1)$ is best possible.

Proof. Put

$$
\varphi(z) = (1 - \beta) \frac{z}{1 - z} + \beta \frac{z}{(1 - z)^2}
$$
 $(z \in U),$

where $\beta = \lambda/(1 - \lambda - \lambda p) > 0$ for $0 < \lambda < 1/(p + 1)$. We now show that

$$
Re\left\{\frac{\varphi(\rho z)}{\rho z}\right\} > \frac{1}{2} \quad (z \in U), \tag{2.9}
$$

where $\rho = (1 + \beta^2)^{1/2} - \beta$ and $0 < \rho < 1$. Let $1/(1-z) = Re^{i\theta}$ and $|z| = r < 1$. In view of

$$
cos\theta = \frac{1 + R^2(1 - r)}{2R}, \quad R \ge \frac{1}{1 + r},
$$

we have

$$
2Re\left\{\frac{\varphi(z)}{z} - \frac{1}{2}\right\} = 2(1-\beta)Rcos\theta + 2\beta R^2 cos2\theta - 1
$$

= $R^4 \beta (1 - r^2)^2 + R^2 ((1 - \beta)(1 - r^2) - 2\beta r^2)$
 $\geq R^2 (\beta (1 - r)^2 + (1 - \beta)(1 - r^2) - 2\beta r^2)$
= $R^2 (1 - 2\beta r - r^2) > 0$

for $|z| = r < \rho$, which gives (2.9). Thus the function φ has the integral representation

$$
\frac{\varphi(\rho z)}{\rho z} = \int_{|x|=1} \frac{d\mu(x)}{1 - xz} \quad (z \in U),\tag{2.10}
$$

where $\mu(x)$ is a probability measure on $|x| = 1$.

Now putting

$$
g(z) = \frac{1}{(p)_j} \frac{\left(L_p(a,c)f(z)\right)^{(j)}}{(-1)^j z^{-p-j}},
$$

we see that $g(z) = 1 + b_1 z + \cdots$ is analytic in U and it follows from (2.6) that $Reg(z) > \alpha \quad (0 \le \alpha < 1; z \in U).$ (2.11)

Since we can write

$$
g(z) + \beta z g'(z) = \left(\frac{\varphi(z)}{z}\right) * g(z),
$$

it follows from (2.10) and (2.11) that

$$
Re{g(\rho z) + \beta \rho z g'(\rho z)} = Re\left\{ \left(\frac{\varphi(\rho z)}{\rho z} \right) * g(z) \right\}
$$

=
$$
Re \left\{ \int_{|x|=1} g(xz) d\mu(x) \right\} > \alpha \quad (z \in U).
$$
 (2.12)

Thus, from (2.5) in the proof of Theorem 1 and (2.12) , we conclude that (2.7) holds. $\overline{ }$

To show that the bound ρ is sharp we take $f \in$ $_p$ defined by

$$
\frac{1}{(p)_j} \frac{(L_p(a,c)f(z))^{(j)}}{(-1)^j z^{-p-j}} = \alpha + (1-\alpha) \frac{1+z}{1-z}.
$$

Noting that

$$
\frac{1}{(p)_j(1 - \lambda - \lambda p)} \frac{H^{(j)}(z)}{(-1)^j z^{-p-j}} = \alpha + (1 - \alpha) \frac{1 + z}{1 - z} + \beta (1 - \alpha) z \left(\frac{1 + z}{1 - z}\right)^j
$$

$$
= \alpha + (1 - \alpha) \frac{1 + 2\beta z - z^2}{(1 - z)^2}
$$

$$
= \alpha
$$

for $z = \rho e^{i\pi}$, the proof is completed.

Theorem 2.3. Let $f \in$ $\overline{ }$ $_p$ and let $H(z)$ be defined by (1.8). If

$$
\left| arg \left(\frac{H^{(j)}(z)}{(-1)^j z^{-p-j}} \right) \right| < \frac{\pi}{2} \gamma \quad (z \in U), \tag{2.13}
$$

then

$$
\left| arg \left(\frac{\left(L_p(a,c)f(z) \right)^{(j)}}{(-1)^j z^{-p-j}} \right) \right| < \frac{\pi}{2} \gamma \quad (z \in U), \tag{2.14}
$$

where $0 < \gamma \leq 1, j \geq 0$ and $0 < \lambda < 1/(p+1)$.

Proof. Let

$$
g(z) = \frac{1}{(p)_j} \frac{\left(L_p(a, c)f(z)\right)^{(j)}}{(-1)^j z^{-p-j}}
$$

for $f \in$ $\overline{ }$ p. Then $g(z) = 1 + b_1 z + \cdots$ is analytic in U. Suppose that there exists a point $z_0 \in U$ such that

$$
|argg(z)| < \frac{\pi}{2}\gamma
$$
 (|z| < |z_0|) and $|argg(z_0)| = \frac{\pi}{2}\gamma$.

Then, By Lemma 2, we can write that $z_0 g'(z_0)/g(z_0) = ik\gamma$ and $(g(z_0))^{1/\gamma} =$ $\pm ia$ $(a > 0)$.

Therefore, if $arg g(z_0) = \pi \gamma/2$, then by (2.5)

$$
\frac{H^{(j)}(z_0)}{(-1)^j z_0^{-p-j}} = (1 - \lambda - \lambda p)(p)_j g(z_0) \left(1 + \frac{\lambda}{1 - \lambda - \lambda p} \frac{z_0 g'(z_0)}{g(z_0)}\right)
$$

$$
= (1 - \lambda - \lambda p)(p)_j a^{\gamma} e^{i\pi \gamma/2} \left(1 + \frac{\lambda}{1 - \lambda - \lambda p} \cdot ik\gamma\right).
$$

This implies that

$$
\arg\left(\frac{H^{(j)}(z_0)}{(-1)^j z_0^{-p-j}}\right) = \frac{\pi}{2}\gamma + \arg\left(1 + \frac{k\lambda\gamma i}{1 - \lambda - \lambda p}\right)
$$

$$
= \frac{\pi}{2}\gamma + \tan^{-1}\left(\frac{k\lambda\gamma}{1 - \lambda - \lambda p}\right)
$$

$$
\geq \frac{\pi}{2}\gamma \quad (\text{where } k \geq \frac{1}{2}(a + \frac{1}{a}) \geq 1),
$$

which contradicts the condition (2.13).

Similarly, if $arg g(z_0) = -\pi \gamma/2$, then we obtain that

$$
arg\left(\frac{H^{(j)}(z_0)}{(-1)^j z_0^{-p-j}}\right) \leq -\frac{\pi}{2}\gamma,
$$

which also contradicts the condition (2.13) . Thus, the function $g(z)$ has to satisfy $|arg g(z)| < \pi \gamma/2$ $(z \in U)$. This show that \overline{a} $\frac{1}{2}$

$$
\left | arg \left (\frac{\left (L_p(a,c)f(z) \right)^{(j)}}{(-1)^jz^{-p-j}} \right) \right | < \frac{\pi}{2} \gamma \quad (z \in U).
$$

The proof is now complete. \Box

Acknowledgments

The present investigation is partly supported by Jiangsu Gaoxiao Natural Science Foundation of People's Republic of China (04KJB110154).

REFERENCES

- [1] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1–13.
- [2] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7–18.
- [3] J. -L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), 566–581.
- [4] S. S. Miller and P. T. Mocanu, *Differential subordinations and univalent functions*, Michigan Math. J. 28 (1981), 157–171.
- [5] M. Nunokawa, On properties of non-caratheodory functions, Proc. Japan Acad. Ser.A, Math. Sci. 68 (1992), 152–153.
- [6] M. Nunokawa et al., Some results for strongly starlike functions, J. Math. Anal. Appl. 212 (1997), 98–106.
- [7] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon. 44 (1996), 31–38.
- [8] D. G. Yang, *Some properties of certain analytic functions*, Soochow J. Math. 23 (1997), 63–70.