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1. INTRODUCTION

In 1994, the concept of D*-metric space is defined by Dhage [12] which is a
generalized metric space.

Definition 1.1. ([12]) Let X# () be aset. A function D* : XxXxX — [0, 00) is
called a D*-metric, if the following properties are satisfied for each x,y, z € X.
(D*1) : D*(x,y,2) > 0.

(D*2) : D¥*(z,y,2) =0if x =y = 2.

(D*3) : D*(x,y,2) = D*(p(x,y, z)); for any permutation p(x,y, z) of x,y, z.
(D*4) : D*(x,y,2) < D*(z,y,l2) + D*(lo, 2, 2).

A pair (X, D*) is called a D*-metric space.

In the following, the notion of the b—metric space is defined by Bakhtin [6]
and Czerwik [11], there are many fixed point theorems in a b-metric space for
more information. I refer to the reader to look at [1 — 11], [15 — 39].

Definition 1.2. ([6, 11]) Let X# () be a set and S > 1 be a real number.
A function d : X x X — [0,00) is called a b-metric [6, 12], if it satisfies the
following properties for each x,y, z € X.

(b1) : d(z,y) =0iff x = y;

(b2) : d(z,y) = d(y, );

(b3) : d(x,z) < Sd(z,y) +d(y, 2)].

Now, we define the notion of the M*-metric space which is a generalization
of a b-metric space and an M *-metric space the tetrahedral inequality axiom
is weaker than for a D*-metric space.

Definition 1.3. Let X be a non empty set and R > 1 be a real number. A
function M* : X x X x X — [0, 00) is called a M*-metric, if the followings are
satisfied the properties: for each z,y, z € X.

(M*1) : M*(z,y,2) > 0.

(M*2) : M*(z,y,2)=0if z =y = 2.

(M*3) : M*(z,y,z) = M*(p(x,y, z)); for any permutation p(z,y, z) of x,y, z.
(M*4) : M*(z,y,z) < RM*(z,y,u) + M*(u, z, z).

A pair (X, M*) is called an M*-metric space.

Now, we introduce two examples that satisfy the four axioms for M*-metric.

Example 1.4. For x,y, z €R, define
(1) M; (2,9,2) = & [lz — 9] + ly — 2| + | — 2.
(2) Me(w.y,2) = b max{lo -y, Iy - 2|, |2 — o]}
Then we can say that (R, M7) and (R, M%) are M*-metric spaces.



A common fixed point theorem in an M *-metric space and an application 291
Example 1.5. Define a function M* on X x X x X by
0, fe=y==2
M* — ) . )
(@.9,2) { 1,  otherwise.
Then M* is the discreet M™*-metric on X.

Note: In the following, we will present very important characteristics that
are always realized in the M *-metric space, the importance of which lies in the
theories presented in this paper. It is worth noting that these characteristics
need not be satisfied in M R-metric space defined by Malkawi et. al. [23].

(M*5) : M*(z,z,y) = M*(x,y,y).
(M*6) : M*(z,y,y) < RM*(y,y,z) + M*(z,z,z).
Since
M*(z,z,y) < RM*(xz,z,x)+ M*(x,y,y)
= M*(xa:%y)
and
M*(z,y,y) < RM*(y,y,y)+M"(y,z,z)
= M*(z,2,y).
Thus, we have
M*(x7x7y) :M*(x,y,y)
Next, also we have from (M*5)
M*(l‘)yﬁ'/) = M*(y,y,x)
< RM*(y,y,z) + M*(z,z,)
= RM*(y,y,z) + M*(z, z, z).

Remark 1.6. The M*-metrics in examples 1.4, 1.5 are satisfied the following
properties: For all z,y, 2z, 41,02 in X, we have

(M*7) : M*(z,y,y) < RM*(x,y, z).

(M*g) : M*(IIT, Y, Z) < % [M*(CC, gla El) + M*(Z'elv 62)] :

We well use the following example to show that (M*6) does not implies
(M*T7).

Example 1.7. Suppose X has at least three elements. Define M™* on X x Xx X
by

0, ife=y=z,
M*(z,y,2) = ﬁ, if z,y, z are distinct,
1, otherwise.

Then (X, M*) is an M*-metric space but (M*7) is not satisfied.
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By adding some conditions and properties, we will presented some of the
interconnections between M *-metric space and b-metric space.

Proposition 1.8. If the M*-metric space (X, M*) satisfies (M*5) and (M*6),
then d(z,y) = M*(x,y,y) is a b-metric on X.
Proof. Let x,y € X, we want to show (X, d) is a b-metric space.

(i) By (M*1), d(z,y) = M*(x,y,y) > 0.
(ii) By (M*2), d(z,y) = M*(z,y,y) =0 iff v = y.
(iii) By (M*5), (M*3),

d(SE,y) = M*(l‘ayay) = M*(CL‘,SC,y) = M*(y,x,x) = d(yvl‘)
(iv) By (M~6),

d(x,y) = M*(x,y,y) < RM*(z,2,2z) + M*(z,y,y)
= Rd(z,2) +d(z,y)
< Rld(z,2) +d(z,y)].

Thus, (X, d) is a b-metric space. O

Example 1.9. Let X := [,(R) with 0 < p < 1, where [,,(R) := {{z,} C R :
o0

ST Jzn|P < 0o}. Define M* : X x X x X — R* by

n=1

0, iff r=y=z,
1, iff x, 1, z are distinct,

iff x#£y=zorz=2z2%#y,
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n=1

where z = {x,}, y = {yn} and z = {2, }. Then (X, M*) is a M*-metric space
with coefficient R > 1.

To show M™* is an M*-metric, we have to show that only (M*4) is hold,
since (M*1), (M*2) and (M*3) are obvious.

Case 1: If x,y, z are distinct, then we have two cases:
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(1) If u ¢ {x,y, z}, then

1= M*(x,y,2)
< RM*(xz,y,u) + M*(u, z, 2)

1

© )
=R-1+ <Z\zn—un]p> .

n=1
(2) If u = x, then

1=M"(z,y,z)

1

o0 »
:R-1+<Z\un—zn|p> )

n=1

It is similar if u =y or u = z.
Case 2 : If z = y # z, then we have three cases:
(1) If u ¢ {y, 2}, then

= 5
(zryn \)
n=1

< RM*(z,y,u) + M*(u, z,z2)
1
00 0o P
= R <Z|yn_un|p> + (Z |un_2n|p> .
n=1 n=1

(2) f u=x =y # z, then

M*(z,y, z)

B =

” }
M*(xvyaz) = (Z‘ynzﬂp)
n=1

< RM*(w,y,u) + M*(u, 2, 2)

0 v
= 0+ (Z]un—zn\p>
n=1

1
00 p
- <Z |yn — Zn|p> :
n=1
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(3) If x =y # z = u, then

o0 v
M*(xvyvz) = (Z‘yn_znV))
n=1

< RM*(z,y,u) + M*(u, z,2)

1
00 P
_ R(zryn—unw) +0
n=1
1
o0 P
_ R(zm—znp)
n=1

and it is similar if x # y = 2.
Moreover, (X, M*) is not D*-metric space.
Let z =(1,1,...,1,0,0,...),y = (—-1,—1,...,—1,0,0,...)

and u = (1,-1,...,—1,0,0,...), where the number of nonzero element of x, y, u
is 2n. So,
oo % 2n % 1
ey = (Sm-ur) = (S2) -2 @0
i=1 i=1

Q=
RS

M*(z,z,u) = <Z|xi—ui\p) = <Z2p> :2-(71)%,
i=1 i=1
i=1 =1

S
B =

D=

But,
32=M*"(z,z,y) £ M*(z,x,u) + M*(u,y,y) =8+ 8 =16,
Whenn:2andp:%.

Theorem 1.10. If (X, M*) is an M*-metric space, then any function d :
X x X — R* defined by

(i) for 1 <q< o0, d(x,y) = {M*(z,y,y) + M*q($,x,y)}% is a b-metric
on X.

(i) d(x,y) = max {M*(z,y,y), M*(z,x,y)} for all x,y € X, is a b-metric
on X.

Proof. Tt suffices to prove (i), since (ii) are the same.
Obviously, d(z,y) > 0 for all z,y € X and d(z,y) = 0 if and only it x = y.
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Now, let z,y, z € X. Then, for 1 < ¢ < o0,
1
d(z,y) ={M"x,y,y) + M*(z,x,y)}a
1
={M"(y,y,x) + M™(y,z,2)}q
)

= {M*9(y, 2, 2) + M*(y,y, )}
=d(y, ).

1
d(z,y) = {M*(z,y,y) + M™(z,z,y)}
<A{(RM*(y,y,2) + M*(z,2,2))"
1
+ (RM™(y,y,2) + M*(z,2,2)) "}«
< R{(M*(y,y,2) + M*(z,z,2))*
1
+ (M*(y, y, 2) + M*(z,2,2))"}e
< R{M(y,y,2) + M*(z,z,2)}s
1
+ {M™(z,y,y) + M™(z,2,y)}a].
< R[d(z,z) +d(z,y)].
Hence d is a b-M*-metric on X. O
Theorem 1.11. Let M* : X x X x X — [0,00) be a function satisfying (M*1),
(M*2), (M*3), (M*7) and (M*8). Then M* is an M*-metric on X.

Proof. In order to show that M* is an M*-metric on X it is enough to show
that (M*4) is satisfied. Let z,y,z € X,

M*(2,y,2) < M (@, 6) + M (2,61, )

R
< M (. by, y) + M7 (6, 41, 2)
< RM*(x,y,01) + M* (41, 2, 2).
Thus (M*4) holds and hence M* is an M*-metric on X. O

2. WAYS OF GENERATING M ™*-METRICS

In this section, we present some ways of generating M *-metric spaces. Let
N = {(bl,bg,bg) S (R+)3 by < %(bg + bg),bz < %(bl + bg),bg < %(bl + bz)} .
Theorem 2.1. Suppose that the function ¥ : X — R satisfies
(i) U(S1,82,33) = U(p(S1,82,33)), for any permutation p(S1, J2, I3)
of 31, Fa, 3.
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(11) \I’(gl, 32, %3) = 0 ’Lﬁ 31 = SQ = %3 = O,
(iii) W(t,t,0) < U(SF, 1, S2) for every (I, 1, J2) €N,
(iv) U(S1, S, Bs) < L (WS, 3, 3Y) + U(S, 3, 3Y)]
for all (31,2, ), (81,3, 3Y), (85,3, 3Y) and (35,3, 3%) in X, where

<%17 %37 %/2)7 (%17 %&/7 %/2/)7 (%27 %/27 %g>7 (%27 %/2/7 %g)’ (%37 %g7 33)7 <%37 %g7 %{I_/)
e N. Let (X,d) be a b—metric space. Define a function M* : XxXxX — [0, 00)
by
M*(xz,y,z) = RV (d(x,y),d(y, z),d(z,z)) .
Then M* is an M*-metric on X.
Proof. Since M* satisfies (M*1), (M*2) and (M*3), it is enough to show that
(M*7) and (M*8) are satisfied.
Let x,y, z, 01,05 € X. Then it follows from (iii) and (iv) that
M*(z,y,y) = R¥(d(x,y),0,d(y,z))
< RY(d(2,y),d(y, 2),d(z,x))
= RM*(z,y,2)

and

M*(z,y,2) = R¥(d(x,y),d(y, 2),d(z,2))
< U (d(z,1),d(l2,x))
+ U (d(zz,01),d(l1, l2),d(l2,2))
< RM™(x,01,01) + M*(4q, 2, 03).

Thus, the hypothesis of Theorem 1.11 are satisfied for M* and hence M* is
an M*-metric on X. 0

Theorem 2.2. Suppose that ® : RT™ — R satisfies the following properties:
(i) @(b) =0 iff b =0,
(ii) ® is monotone increasing,
(iii) ®(s+1t) < H[®(s) + @(t)] for all 5,t € RT.
Then W(by,ba,b3) = P(b1) + ®(b2) has all the properties that identified in
Theorem 2.1.
Proof. It is clear that ¥ satisfy (i) of Theorem 2.1. Note that
\I/(bl, b27b3) =0 < @(bl) + (I)(bg) + (I)(bg) =0<=by =by=b3=0.

Let (b1,bo,bs3) € N. Consider the following triples in N:
(bh b27 b3)a (bllv bv blll)a ( /27 bv blzl)a ( ga bv bg)a (bh blla bI2)7 <b17 b/1/7 b/2/)’ (va /27 bg)?
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(b, b4, b%), (b3,b%,04) € R. Then (b3,b%,b%) € R, where X € (R+)3. So,
U(31,F2,F3) = (1) + B(Ig)
<O +I+39) + (S + S+ 9%)
1 1

[y

< E(I)(%/l) + @‘I)(%) + ﬁq’(%g)
1 1 1
+ E@(%g) + ﬁcb(%) + ﬁﬂ%g)
1

It is clear that W(b,b,0) < W(b,by,bs) for all (by,b,b2) € N. Hence V¥ satisfies
all conditions specified in Theorem 2.1. O

Now, in order to show that the two conditions (ii) and (iii) are independent
in previous theorem, we give the following example.

Example 2.3. Define a function ® : R™ — RT by ®(b) = 2b for all b € R
satisfies the hypothesis of Theorem 2.2.

Also, the conditions (ii) and (iii) are independent. For example the function
2»2, (ii) holds but (iii) does not hold. While ®(b) = 0if b =0 and ®(b) =b+{
if b > 0 satisfies (iii) but not (ii).

Theorem 2.4. Let (X, d) be a metric space. Define real functions M, M3, M,
M; on X x X x X by

Mik(:L‘, Y, z) = d(l’, y) + d(y7 Z) + d(Z, x),
M (z,y,2z) = max{d(x,y),d(y, 2),d(z,2)},

Mi{(z,y,2), ifx,y,z are distinct
* _ 1 »d ’ (B ’
Mg (2, y,2) = { M (x,y,2), otherwise,
and
M (z,y,2), if z,y,z are distinct
* _ oco\&9r 9 ) s Yy 3
Mi(z,y,2) = { M (z,y, 2), otherwise.
Then M, MZ , M3, My are M*-metric on X.

Proof. It is clear that M and M are M*-metrics and all the proofs of My
and M are similar, it is enough to show that Mj is an M*-metric. Also, it is
enough to show that tetrahedral inequality is satisfied.
Let x,y, 2,01 € X.
Case 1: z,y,z are distinct. While preserving the generality, we assume
that
d(z,y) < d(y,z) <d(z,z).
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(1) If 4 ¢ {z,y,2}, then
Mj(x,y,2) = d(z, 2)
< Rld(z, 1)+ d({1, 2)]
< R[Mj(z,y, 61) + M (l1, 2, 2)] .
(2) If 41 = x, then
MZ(xaf%z) - M:(£17y7 Z) - d(elaz)
< RMi(z,y,01) + M{((1, 2, 2).
If {1 =y or ¢1 = z, then the proof is similar.
Case 2: Assume z = y # z.
(1) If 41 ¢ {y, z}, then
My (z,y,2) = d(y, z) + d(z,y)
<R [d(y7€1) + d(gl’ Z) + d(zagl) + d(gh y)]
< RMI(x?yagl) + Mi(ehz?z)'
(2) If 41 =y, then
MZ(QZ’,y,Z) = MZ(I’,fl,Z)
< RMZ(I’, Y, €1) + MI(Elv 2, Z)
(3) If 44 = z # y, then
Mi(xyyvz) = Mi(xvyvgl)
< RMI(IL’,y,El) + MZ(éla 2 Z)‘

Hence Mj is an M*-metric on X. O

3. TYPES OF CONVERGENCE ASSOCIATED WITH AN M *-METRIC

In light of the definition of a D-convergent and a D-Cauchy for a D-metric
[13], we define M*-convergent and M*-Cauchy for M*-metric.

Definition 3.1. A sequence {z,} in an M*-metric space (X, M™*) is called
M*-convergent if there exists z in X such that for € > 0, there exists a N > 0
integer number such that M*(x,, ;,m,x) < € for all m > N, n > N. Then we
called that {z,} is M*-convergent to = and x is a limit of {z,} .

Definition 3.2. A sequence {z,} in an M*-metric space (X, M*) is called
M*-Cauchy if for a given € > 0, there exists a positive integer N such that
M*(xy, Tm, xp) < € for all m,n,p > N.
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In the following, we introduce the concept of an M*-strongly convergent
and a very M™*-strongly convergent. Take into can a sequence {z,} in an
M*-metric in the following two definitions.

Definition 3.3. Let (X, M*) be an M*-metric space and {z,,} be a sequence
in X, we say that {z,,} is M*-strongly convergent to an element x in X if

(i) M*(zp,Tm,x) — 0 as m,n — oo,

(ii) {M*(y,y,xn)} converges to M*(y,y,x) for all y € X.

Definition 3.4. Let (X, M*) be an M*-metric space and {z,} be a sequence
in X, we call that {z,} is very M*-strongly convergent to an element z in X if
(i) M*(zp,Tm,x) — 0 as m,n — oo,
(ii) {M*(y, z,xy)} converges to M*(y, z,z) for all y, z € X.

By using some properties of Remark 1.1, we present some results on M *-
convergence, M*-Cauchy, M*-strongly convergent and very M *-strongly con-
vergent.

Theorem 3.5. Let (X, M*) be an M*-metric space. Then {x,} converges
to x in (X, M*) strongly if and only if {xz,} converges to x in (X, M*) and
lim M*(x,z,zy,) =0.

n—oo

Proof. Let {x,} be an M*-convergent sequence in X with limit z, that is,
lim M*(x,z,z,) =0 and € > 0. Then there is a positive integer N such that

n—oo

M*(x,z,z,) < e for all n > N. Let y € X. Then for n > N,
M*(y,y,2n) < RM*(y,y,z)+ M*(zp,2,2)
< R[M*(y,y,x) + M(zp,z,x)].
This produces that
|M*(y,y, z,) — RM*(y,y,x)| < RM*(z,z,z,) < Re =¢; for all n > N.
Consequently, we get
|M*(y,y,xn) — M*(y,y,x)| < RM*(z,x,2,) < Re = €.

Hence {M*(y,y,xn)} converges to M*(y,y,x) for all y € X. This means that
{zn} converges strongly to = in X. O

We can easily prove the theorem from the definition of the M*-metric.

Theorem 3.6. Let (X, M*) be an M*-metric space and let {x,} be a sequence
in X and x € X. Assume the following implications:

(1) M*(z,z,z,) — 0 as n — oo,

(2) M*(x,zp,xn) — 0 as n — oo,
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M*(x,xn, Tm) — 0 as n,m — oo,

M*(y,y,xn) = M*(y,y,x) as n — oo for ally € X,
M*(y, xp, xm) = M*(y,x,z) as n,m — oo for all y € X,
M*(y,z,x,) = M*(y,z,x) as n — oo for ally € X,
M*(y,z,xn) = M*(y,z,x) as n — oo for all z,y € X.

)= (6) = (1), (7) = (4) = (1) and (5) = (3) = (2).

Proof. We can easily prove the theorem from the definition of the M *-convergent
and M*-metric. 0

Inside the following example, we provide some non implications of Theorem

3.6.

Example 3.7. Either (3) or (4) does not imply (5), (6) or (7).
Let X = R with an M*-metric. Then the function Mj is defined in Theorem
2.4 on X x X x X reduces to the following.

0, lf xTr = y = Z7
M3 = |z —y|+ |y — 2| + |z — 2|, if x,y, 2z are distinct,
max {|z —y|, |y — 2|, [z — 2|}, otherwise.

Then (X, M3) is an M*-metric space in which (3) and (4) are satisfied but
(5), (6) and (7) are not satisfied.

Let z, = 2 for n = 1,2,3,... . Then {x,} converges to 1 as n — oo with
respect to the M*-metric. For m > n, we have

Mz (1,27, 2m) ‘1—2n

+‘2%—1‘%0, as n, m — oo.

1 1
’2% — 2%

Therefore, {2%} convergent to 1 with respect to M3. Since for y € X,

M; (.27 ) = max {Jy =27 |,0, |y 25|} = |y — 25,
we have lim M3 (y,y, 2%> = M*(y,y,1) for all y € X. Thus (3) and (4) hold.
n—oo
Let y = 3 and = = 1. Trivially, li_>m M3 <3, 1,2%) # M3 (3,1,1), thus (6)

n—oo

and (7) do not hold. Additionally lim M; (3,2%,2%) £ Mz (3,1,1), thus
n,M—00

(5) does not hold.

Theorem 3.8. Let (X, M*) be an M*-metric space satisfying (M7) and (Mg).
Then the function d on X x X — [0,00) is defined by d(x,y) = M*(z,y,y) is
b-metric on X and the following are equivalent:

(i) lim =z, =z in (X,d).
n—oo

(i) lim z, =z in (X, M*).
n—oo
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(iii)) lim x, = x strongly in (X, M™).

n—o0

Proof. By Proposition 1.8, it is clear that (X, d) is a b-metric space.
Assume (i) holds, then ILm zn, =z in (X, d).

Let € > 0. Then there exists an integer number N > 0 such that d(z,z,) <
§ for allm > N. For n,m > N,
M*(x,xp, ) < = [M*(x, 2, 2m) + M* (2,2, 2]

[d(x, Tm) + d(x,2,)] <e.

o ===

Thus (i)==(ii).
Assume (ii) holds, then lim x,, = x in (X, M™).
n—oo
Let € > 0. Then there exists a positive integer N such that M*(z,, T, ) <
e for all m,n > N. For y € X and n > N, by (M*7),
M*(y, y, on) < RM*(2,y, xn)
R
S E[M*(xal‘7xn) + M*(y,x,fl?)]
< M*(ﬂfaxmxn) + M*(yvyax)'

Then, we get
|M*(y,y,xn) — M*(y,y,x)| < M*(x, 2, x,) < % for all n > N.

Hence {M*(y,y,xy)} converges to M*(y,y,x) for all y € X. Thus, (ii)=(iii)
hold.

The implicates (iii)==(ii) is trivial.

Now, we need to prove (ii)==(i).

Assume (ii) holds, then nh_)rgo xn =z in (X, M*).

Let € > 0. Then there exists a positive integer N such that M*(x,,, zp, x) < €
for all m,n > N. For n > N, by (M*7),

d(x,xy) = M*(z,x,2,) < RM™ (2, X, xp) < Re.
Hence lim z, =z in (X,d). Thus (ii)==(i). O

n—oo

4. COMMON FIXED POINT THEOREMS IN M*-METRIC SPACE

Theorem 4.1. Let (X, M*) be an complete M*-complete metric space and
let S : X — X be a mapping which satisfies the following condition for all
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x,y,z € X with R > 1,

aM*(z,y, z),
. 1 b[M*(xz, Sz, Sy) 4+ 2M*(y, Sy, Sy)],
< = .
M(ST 89520 < Jmaxq yar o, 5y, 5y) + M (. S, 59), (0 )
M*(z,Ty,Tx)]

where 0 < a <1 and 0 <b< % Then S has a unique fized point.

Proof. Let xg € X be arbitrary, there exists 1 € X such that Sxy = z; and
let {x,,} in X be a sequence with Sz,,_; = x,. By using (4.1), we have

M*(xnamnvxn-i-l)
= M*(Smn_l,an_l,an)
aM*($n_1,IL’n_1,CEn),b[M*(xn_l,SJIn_l,Sl’n_l)

+2M*(xn_1,5xn_1,5xn_1)],

b[M*(xn—la an—17 an—l) + M*(xn—la an—la an—l)

+M*($n,an_1,Sl'n_1)]

G,M*(l'n_l,xn,fﬂn),b[M*($n_1,$n,.%'n)

1 +2M*(xn—1axmmn>]a

R b[M*(xn—1, Tn, Tn) + M*(Tn_1,Tn, Tn)

. +M*($naxnaxn)]

_ l CLM*(LUn_l,In_l,l‘n),?)bM*(ﬁUn_l,fEn,l’n),

o R max QbM*(xn—17$naxn)

< OCM*(xn_l,.’L'n_l,xn), (42)

where o = max {a,3b} and 0 < a < 1.
By repeating the application of the above inequality and equality (4.2), we
have

M*(Jin,.Tn,Q?m) < RM*($nuxnaxn+1) + RM*(xn—i-lpxn—l—la $n+2)

+ RM*(xm—Zv Tm—2, xm—l) + M*(xm—ly ITm—1, xm)

< R[M* (xn7 Tn, $n—&—l) + M*(ﬂjn—i-la Tn+1, xn+2)

+ M*(xm—Q) Tm—2, xm—l) + M*($m_1, Tm—1, l‘m)]
< (@" 4" 4+ o™ Y RM* (29, 20, 1)

an

<

T o M (20, 20, 21).

Thus, M*(zpn, Tn, Tm) — 0 as n,m — oo.
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Also, for n,m,l € N,
M*(xn, Tm,x1) < RM*(xn,Tm,Tm) + M (2, x, 77)

n an
RQM*(xo,xo,x1)+ 1 RM™(z9, xo,x1)-

l1—« —«

(0}

<

Taking n,m,l — oo, we get M*(xy, xm, ;) — 0, so {z,} is an M*-Cauchy
sequence. Since X is an M*-complete, there exists u such that x, — u as

n — 0.
If S(X) C X, we have u € X. Then there exists p € X such that p = u. We

claim that Sp = u. From

M*(Sp,u,u)
= M*(Sp, Sp,u)
< RM*(Sp, Sp, Sxy,) + M*(Sxp, u,u)
< max{ aM™* (u, w, xy), [ M*(u, p, Tpt1) + 2M*(u, Sp, Sp)], }
- +b[M*(u, Sp, Sp) + M*(u, Sp, Sp) + M*(zy,, Sp, Sp)] [’
as n — oo, we get M*(Sp,u,u) =0 and Sp = u, that is, Sp = p. Thus, S has

a fixed point.
Next, we need to prove that S has a unique fixed point. Assume there exists

q in X such that ¢ = Sq. Then, we have

M*(Sp, Sp, Sq)

x { aM*(p,p,q),b[M*(p, Sp, Sq) + 2M*(p, Sp, Sp)], }
b[M*(p, Sp, Sp) + M*(p, Sp, Sp) + M*(q, Sp, Sp)]
s { aM*(Sp, Sp, Sq),b[M*(Sp, Sp, Sq) 4+ 2M*(Sp, Sp, Sp)], }
b[M*(Sp, Sp, Sp) + M*(Sp, Sp, Sp) + M*(Sq, Sp, Sp)]

< —m

max {aM*(Sp, Sp, Sq),bM*(Sq, Sp, Sp)}

- == =

= —M*(Sp, Sp, Sq), where 8 = max {a,b}.

=

Hence, we have

M*(Sp, Sp, Sq) < yM*(Sp, Sp, Sq),
where v = %, that is, (y — 1)M*(Sp, Sp, Sq) > 0. Since v € (0,1),
(v — 1)M*(Sp, Sp, Sq) < 0.

This means that S has a unique fixed point. This completes the proof. O
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5. M*-CONTRACTION AND AN APPLICATION TO SYSTEM OF
LINEAR EQUATIONS

In this section, we seek to present a solution to a system of linear equations.
Therefore, we will be to prove the following theorems.

Definition 5.1. Let M* be an M*-metric on a set X and 7' : X — X be a
mapping. 7' is said to be an M*-contraction if for all x,¢ € X there exists
0 € 10,1) such that

M*(Tx, Tz, Tl) < IM*(x,x,{).

Theorem 5.2. Let X be an M*-complete metric space and T : X — X be an
M*-contraction with 6 € [0,1) and R > 1. Assume that there exists x € X
such that M*(x,x,Tx) < co. Then there is £ € X such that x,, — ¢ and ¢ is a
unique fixed point of T.

Proof. Let xop € X and a sequence {z,} in X defined by z, = Tz,_1 = T"x0.
Then, we get

M*(T?xy, T?x0, T?x) < M (Txo, Txo, T)
< 82 M*(z0, z0, ).
If this process is repeated attain,
M*(T"xo, T"xo, T"x) < 6" M*(x0, 0, x).
Now, we have to prove that {x,} is an M*-Cauchy in X.

M* (2, 2, 2m) < RM™ (2, Ty, Tng1) + RM™ (2p41, Tng1, Tng2)

+ RM* (xmfla Tm—1, $m)
< R§"M* (20, x0, ©) + RS" T M* (o0, )

+ R6™ T M* (9, 20, 7)
= M*(zo, 20, 2)RS" [L+ 64+ (0> + ...+ ()" "], (5.1)
where n > m > 0. Letting n, m — oo in (5.1), we have

lim M™*(zp,Zn, Tm) = 0.
m,n—00

Thus, {z,} is an M*-Cauchy in X. Since X is an M*-complete, so {x,} is
M*-convergent to some /.
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From this inequality,
M*(Te,Tt,0) < RM*(£,0,x) + M* (2, xp, L))
S ROM™ (0,4, 2p—1) + M™ (2, 2, £)
= ROM™(xp—1,%n—1,0) + M*(xp, xp, )
=0 as n— oo,

we know that /¢ is fixed point of T.
Now, we need to prove that ¢ is unique fixed point of 7. Assume /7 is a
fixed point of T' such that £ # ¢;. Since
M*(l,0,01) = M* (T, T¢, Tl) < SM™*(L,0,¢7),
we get
(1 —0)M*(£,¢,¢1) <O.
This implies that M*(¢,¢,¢1) = 0, that is, £ = ¢;. This completes the proof. [

To achieve our purpose in this section, we must prove the following theorem
by Theorem 5.2.

Theorem 5.3. Let X =R" be an M*-metric space with the M*-metric:

n

M*(9,q,0) = (lpi — @il + lai — €| + |6 — pil) -
=1

If
n
Z laijl <a<1 forall j=1,2,..,n,
i=1

then the linear system

1191 + 1202 + ... + QinPn =M1
211 + 222 + ... + QanPn = Y2

(5.2)
Qp1P1 + Qp2§2 + ... + QppPn = Tn
has a unique solution.

Proof. Since X = R" is an M*-complete, we have to show that T : X — X is
defined by

T(p) = Ap+,
where p = (p1, P2, ..., on) € R™ and
a1 g2 e Qg
Qo1 Q2 - Qap

A= : : .. . 7&0’

Qnl Qp2 -+ Qpp
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is an M*-contraction. Since

M*(Tp,Tq,T¥) = Z Zaz, —4j) + (g = 4) + (4 — 9;))

=1 [j=1
<ZZI%II j = 45) + (45 = &) + (& — ))]

i=1 j=1
=ZZ|%|| qj) + (45 — &) + (& — )]

7j=11i=1

< az (95 — @) + (a5 = £5) + (€ — ©5)
=1

= aM*(p,q,1),

T is an M*-contraction and it is obvious that M*(gp, p,¥) < co. By Theorem

5.2,

(1]

2]

3]

[4]

the linear equation system (5.2) has a unique solution. O
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