
Nonlinear Functional Analysis and Applications
Vol. 14, No. 1 (2009), pp. 151-165

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2009 Kyungnam University Press

CONVERGENCE THEOREMS OF THREE STEP
RANDOM ITERATION SCHEME WITH ERRORS FOR

NONSELF ASYMPTOTICALLY NONEXPANSIVE
RANDOM MAPPINGS

Jong Kyu Kim1 and G. S. Saluja2

1Department of Mathematics Education, Kyungnam University
Masan, Kyungnam, 631-701, Korea
e-mail: jongkyukkyungnam.ac.kr

2Department of Mathematics & I.T.
Government College of Science, Raipur (C.G.), India

e-mail: saluja 1963@rediffmail.com

Abstract. In this paper, we introduce a three step random iteration scheme with errors and

prove that the iteration scheme converges to a random fixed point of nonself asymptotically

nonexpansive random mappings in uniformly convex separable Banach spaces. The results

presented in this paper extend and improve the recent ones announced by Zhou and Wang [21]

and many others.

1. Introduction

Let K be a nonempty closed convex subset of real normed linear space E.
A self-mapping T : K → K is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ K. A self-mapping T : K → K is called asymptotically non-

expansive if there exists sequence {kn} ∈ [1,∞) with limn→∞ kn = 1 such
that

‖Tnx− Tny‖ ≤ kn ‖x− y‖ (1.1)
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for all x, y ∈ K and each n ≥ 1. A self-mapping T : K → K is said to be
uniformly L-Lipschitzian if there exists a constant L > 0 such that

‖Tnx− Tny‖ ≤ L ‖x− y‖ (1.2)

for all x, y ∈ K and each n ≥ 1.
Being an important generalization of the class of asymptotically nonex-

pansive self-mappings, the concept of deterministic non-self asymptotically
nonexpansive mappings was introduced by Chidume et al. [4] in 2003. The
non-self asymptotically nonexpansive mapping is defined as follows:

Definition 1.1. ([4]) Let K be a nonempty subset of a real normed linear
space E. Let P : E → K be the nonexpansive retraction of E onto K. A
non-self mapping T : K → E is called asymptotically nonexpansive if there
exists sequence {kn} ∈ [1,∞) with limn→∞ kn = 1 such that∥∥T (PT )n−1x− T (PT )n−1y

∥∥ ≤ kn ‖x− y‖ (1.3)

for all x, y ∈ K and each n ≥ 1. A mapping T : K → E is said to be uniformly
L-Lipschitzian if there exists a constant L > 0 such that∥∥T (PT )n−1x− T (PT )n−1y

∥∥ ≤ L ‖x− y‖ (1.4)

for all x, y ∈ K and each n ≥ 1.

In 2003, Chidume et al. [4] studied the following iteration process:{
x1 ∈ K,
xn+1 = P ((1− αn)xn + αnT (PT )n−1xn), n ≥ 1,

(1.5)

in the framework of uniformly convex Banach space, where K is a closed con-
vex nonexpansive retract of a real uniformly convex Banach space E with P
as a nonexpansive retract. They got some strong convergence theorems for
non-self asymptotically nonexpansive mapping.

In 2006, Wang [19] further generalized the iteration scheme as follows:



x1 ∈ K,
xn+1 = P ((1− αn)xn + αnT (PT )n−1yn),
yn = P ((1− βn)xn + βnT (PT )n−1xn), n ≥ 1

(1.6)

and got some new results.

Remark 1.1. If T is a self mapping, then P becomes identity mapping. Thus
(1.3) and (1.4) reduce to (1.1) and (1.2), respectively.

Remark 1.2. If we take βn = 0 for all n ≥ 1, the iteration scheme (1.6)
reduces to iteration scheme (1.5).

The theory of random operator is an important branch of probabilistic anal-
ysis which plays a key role in many applied areas. The study of random
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fixed point theory was initiated by the Prague school of Probabilities in the
1950s [7, 8, 18]. The machinery of random fixed point theory provides a con-
venient way of modeling many problems arising from economic theory (see
e.g. [12]) and references mentioned therein. The survey article by Bharucha-
Reid attracted the attention of several mathematicians and gave wings to the
theory. A lot of efforts have been devoted to random fixed point theory and
applications (see e.g. [1, 2, 5, 6, 9, 10, 11, 15, 16, 20]).

In recent years, many results about deterministic nonexpansive self-mappings
and asymptotically nonexpansive self-mappings have been randomized by some
authors ( [2] and therein). The purpose of this paper is to construct a random
three-step iteration scheme to approximate random fixed points of non-self
asymptotically nonexpansive random mappings and to prove some convergence
theorems for such mappings in uniformly convex separable Banach spaces.

2. Preliminaries

Let (Ω, Σ) be a measurable space (Σ- sigma algebra) and K a nonempty
subset of a real Banach space E. A mapping ξ : Ω → K is said to be measurable
if ξ−1(U ∩K) ∈ Σ for every Borel subset U of E. A mapping T : Ω×K → K is
said to be a random mapping if for each fixed x ∈ K, the mapping T (., x) : Ω →
K is measurable. A measurable mapping ξ∗ : Ω → K is called a random fixed
point of the random mapping T : Ω×K → K if T (ω, ξ∗(ω)) = ξ∗(ω), for each
ω ∈ Ω.

Throughout of this paper, we denote the set of all random fixed points of a
random mapping T by RF (T ).

Definition 2.1. A subset K of E is said to be retract if there exists continuous
mapping P : E → K such that Px = x for all x ∈ K. Every closed convex
subset of a uniformly convex Banach space is a retract. A mapping P : E → E
is said to be a retraction if P 2 = P .

Note: If mapping P is a retraction, then Pz = z for every z ∈ R(P ), range
of P .

Definition 2.2. Let K be a nonempty closed convex subset of a real uniformly
convex separable Banach space E and T : Ω ×K → E be a non-self random
mapping. Then the random mapping T is said to be a

(1) nonself asymptotically nonexpansive random mapping [21] if there exists
a measurable mapping sequence kn : Ω → [0,∞) with limn→∞ kn(ω) = 0 for
each ω ∈ Ω, such that for arbitrary x, y ∈ K and each ω ∈ Ω,

∥∥T (PT )n−1(ω, x)− T (PT )n−1(ω, y)
∥∥ ≤ (1 + kn(ω)) ‖x− y‖ , (2.1)

where, n = 1, 2, · · · .
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(2) uniformly L-Lipschitzian random mapping [21] if there exists a constant
L > 0 such that for arbitrary x, y ∈ K and each ω ∈ Ω,

∥∥T (PT )n−1(ω, x)− T (PT )n−1(ω, y)
∥∥ ≤ L ‖x− y‖ , (2.2)

where, n = 1, 2, · · · .
(3) semi-compact random mapping if for a sequence of measurable mappings

{ξn} from Ω to K, with limn→∞ ‖ξn(ω)− T (ω, ξn(ω)‖ = 0, for every ω ∈ Ω,
one has a subsequence {ξnk

} of {ξn} and a measurable mapping ξ : Ω → K
such that {ξnk

} converges pointwisely to ξ as k →∞.
(4) completely continuous random mapping if the sequence {xn} in K con-

verges weakly to x0 implies that {T (ω, xn)} converges strongly to T (ω, x0) for
each ω ∈ Ω.

(5) demicompact random mapping if for a sequence of measurable mappings
{ξn} from Ω to K, with limn→∞ ‖ξn(ω)− T (ω, ξn(ω)‖ = 0 for each ω ∈ Ω,
there exists a subsequence {ξnk

} of {ξn} such that ξnk
(ω) → ξ(ω) as k →∞,

for each ω ∈ Ω, where ξ is a measurable mapping from Ω → K.

Remark 2.1. As a matter of fact, every non-self asymptotically nonexpansive
random mapping is uniformly L-Lipschitzian, where L = 1+supω∈Ω,n≥1 kn(ω).

In 2007, Zhou and Wang [21] studied the following random iteration scheme
for convergence of random fixed point for non-self asymptotically nonexpansive
random mappings in uniformly convex separable Banach space.

Let T : Ω×K → E be a non-self random mapping, where K is a nonempty
convex subset of a separable real uniformly convex Banach space E. The
random iteration scheme is defined as follows:{

ξn+1(ω) = P ((1− αn)ξn(ω) + αnT (PT )n−1(ω, ηn(ω))),
ηn(ω) = P ((1− βn)ξn(ω) + βnT (PT )n−1(ω, ξn(ω))), n ≥ 1 (2.3)

where 0 ≤ αn, βn < 1 and ξ1 : Ω → K is an arbitrary given measurable
mapping from Ω to K, P is a nonexpansive retraction from E to K.

If we take βn = 0 for any n ≥ 1, the iteration scheme (2.3) reduces to the
following random iteration scheme:

ξn+1(ω) = P ((1− αn)ξn(ω) + αnT (PT )n−1(ω, ξn(ω))), n ≥ 1. (2.4)

Obviously, the sequences {ξn} and {ηn} are two measurable sequences from Ω
to K.

Motivated and inspired by Zhou and Wang [21] and some others we define
the following random iteration scheme:

Definition 2.3. Let T : Ω × K → E be a non-self random mapping, where
K is a nonempty convex subset of a separable real uniformly convex Banach
space E. Let ξ0 : Ω → K be a measurable mapping from Ω to K, let {fn},
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{f ′n}, {f ′′n} be bounded sequences of measurable functions from Ω to K. Define
sequences of functions {ζn}, {ηn} and {ξn}, as given below:




ζn(ω) = P (α′′nT (PT )n−1(ω, ξn(ω) + β′′nξn(ω) + γ′′nf ′′n(ω)),
ηn(ω) = P (α′nT (PT )n−1(ω, ζn(ω) + β′nξn(ω) + γ′nf ′n(ω)),
ξn+1(ω) = P (αnT (PT )n−1(ω, ηn(ω) + βnξn(ω) + γnfn(ω)),

(2.5)

for each ω ∈ Ω, n = 0, 1, 2, . . . , where {αn}, {α′n}, {α′′n}, {βn}, {β′n}, {β′′n},
{γn}, {γ′n} and {γ′′n} are sequences of real numbers in [0, 1] with αn+βn+γn =
α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1, P is a nonexpansive retraction from E to
K.

If we take γn = γ′n = γ′′n = 0, α′′n = 0 and α′n = βn, the random itera-
tion scheme (2.5) reduces to the random iteration scheme (2.3) of Zhou and
Wang [21].

In the sequel, we will need the following lemmas.

Lemma 2.1. (Tan and Xu [17]) Let {an}∞n=1, {βn}∞n=1 and {rn}∞n=1 be se-
quences of nonnegative real numbers satisfying

an+1 ≤ (1 + rn)an + βn, ∀n ∈ N.

If
∑∞

n=1 rn < ∞,
∑∞

n=1 βn < ∞. Then
(i) limn→∞ an exists.
(ii) If lim infn→∞ an = 0, then limn→∞ an = 0.

Lemma 2.2. (Schu [14]) Let E be a uniformly convex Banach space and
0 < a ≤ tn ≤ b < 1 for all n ≥ 1. Suppose that {xn} and {yn} are sequences
in E satisfying

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r,

lim
n→∞ ‖tnxn + (1− tn)yn‖ = r,

for some r ≥ 0. Then
lim

n→∞ ‖xn − yn‖ = 0.

Lemma 2.3. (Chidume et al. [4]) Let E be a real uniformly convex Banach
space, K a nonempty closed subset of E, and let T : K → E be a non-self
asymptotically nonexpansive mapping with a sequence {kn} ∈ [1,∞) and kn →
1 as n →∞. Then I − T is demiclosed at zero.

3. Main result

In this section, we investigate the convergence of three-step random iter-
ative process with errors for non-self asymptotically nonexpansive random
mappings to obtain the random solution of the random fixed point. This
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random iteration process extends the random iteration process of Zhou and
Wang [21].

Lemma 3.1. Let E be a real uniformly convex separable Banach space, and
let K be a nonempty closed and convex subset which is also a nonexpansive
retract of E. Let T : Ω×K → K be non-self asymptotically nonexpansive ran-
dom mapping with sequence of measurable mapping kn : Ω → [0,∞) satisfying∑∞

n=1 kn(ω) < ∞, for each ω ∈ Ω. Assume that RF (T ) 6= φ and let {ξn}
be the sequence as defined by (2.5) with

∑∞
n=1 γn < ∞,

∑∞
n=1 γ′n < ∞ and∑∞

n=1 γ′′n < ∞. Then limn→∞ ‖ξn(ω)− ξ(ω)‖ exists for all ξ(ω) ∈ RF (T ) and
for each ω ∈ Ω.

Proof. The existence of random fixed point of T follows from Bharucha-Reid’s
stochastic analogue (see [3]) of well-known Schauder’s fixed point theorem.
Let ξ : Ω → K be the random fixed point of T . Since {fn}, {f ′n} and {f ′′n} are
bounded sequences of measurable functions from Ω to K, we can put

M(ω) = sup
n≥1

‖fn(ω)− ξ(ω)‖ ∨ sup
n≥1

∥∥f ′n(ω)− ξ(ω)
∥∥ ∨ sup

n≥1

∥∥f ′′n(ω)− ξ(ω)
∥∥ .

Then M(ω) is a finite number for each ω ∈ Ω. For n ≥ 1, we have

‖ξn+1(ω)− ξ(ω)‖
=

∥∥P (αnT (PT )n−1(ω, ηn(ω)) + βnξn(ω) + γnfn(ω))− P (ξ(ω))
∥∥

=
∥∥αnT (PT )n−1(ω, ηn(ω)) + βnξn(ω) + γnfn(ω)− ξ(ω)

∥∥
≤ αn

∥∥T (PT )n−1(ω, ηn(ω))− ξ(ω)
∥∥ + βn ‖ξn(ω)− ξ(ω)‖

+γn ‖fn(ω)− ξ(ω)‖
≤ αn(1 + kn(ω)) ‖ηn(ω)− ξ(ω)‖+ βn ‖ξn(ω)− ξ(ω)‖

+γnM (3.1)

Similarly, we have

‖ηn(ω)− ξ(ω)‖
≤ α′n(1 + kn(ω)) ‖ζn(ω)− ξ(ω)‖+ β′n ‖ξn(ω)− ξ(ω)‖

+γ′n
∥∥f ′n(ω)− ξ(ω)

∥∥
≤ α′n(1 + kn(ω)) ‖ζn(ω)− ξ(ω)‖+ β′n ‖ξn(ω)− ξ(ω)‖

+γ′nM (3.2)
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and

‖ζn(ω)− ξ(ω)‖
≤ α′′n(1 + kn(ω)) ‖ξn(ω)− ξ(ω)‖+ β′′n ‖ξn(ω)− ξ(ω)‖

+γ′′n
∥∥f ′′n(ω)− ξ(ω)

∥∥
≤ α′′n(1 + kn(ω)) ‖ξn(ω)− ξ(ω)‖+ β′′n ‖ξn(ω)− ξ(ω)‖

+γ′′nM (3.3)

Substituting (3.3) in (3.2), we get

‖ηn(ω)− ξ(ω)‖
≤ α′nα′′n(1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖+ α′nβ′′n(1 + kn(ω)) ‖ξn(ω)− ξ(ω)‖

+α′nγ′′n(1 + kn(ω))M + β′n ‖ξn(ω)− ξ(ω)‖+ γ′nM

= (1− β′n − γ′n)α′′n(1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖+ β′n ‖ξn(ω)− ξ(ω)‖
+(1− β′n − γ′n)β′′n ‖ξn(ω)− ξ(ω)‖+ mn(ω)

≤ (1− β′n)α′′n(1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖+ β′n(1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖
+(1− β′n)β′′n(1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖+ mn(ω)

≤ (1− β′n)(1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖+ β′n(1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖
+mn(ω)

= (1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖+ mn(ω) (3.4)

where mn(ω) = α′nγ′′n(1 + kn(ω))M + γ′nM .
Note that

∑∞
n=1 mn(ω) < ∞. Now substituting (3.4) in (3.1), we get

‖ξn+1(ω)− ξ(ω)‖
≤ αn(1 + kn(ω))3 ‖ξn(ω)− ξ(ω)‖+ αn(1 + kn(ω))mn(ω)

+βn ‖ξn(ω)− ξ(ω)‖+ γnM

≤ (αn + βn)(1 + kn(ω))3 ‖ξn(ω)− ξ(ω)‖+ An(ω)
≤ (1 + kn(ω))3 ‖ξn(ω)− ξ(ω)‖+ An(ω) (3.5)

where An(ω) = αn(1 + kn(ω))mn(ω) + γnM with
∑∞

n=1 An(ω) < ∞. Since∑∞
n=1 kn(ω) < ∞ and

∑∞
n=1 An(ω) < ∞, it follows from Lemma 2 [17] that

limn→∞ ‖ξn(ω)− ξ(ω)‖ exists for all ω ∈ Ω. This completes the proof. ¤

Lemma 3.2. Let E be a real uniformly convex separable Banach space, and
let K be a nonempty closed and convex subset which is also a nonexpansive
retract of E. Let T : Ω×K → K be non-self asymptotically nonexpansive ran-
dom mapping with sequence of measurable mapping kn : Ω → [0,∞) satisfying∑∞

n=1 kn(ω) < ∞, for each ω ∈ Ω. Assume that RF (T ) 6= φ and let {ξn} be
the sequence as defined by (2.5) with the following restrictions:

(i) αn + βn + γn = α′n + β′n + γ′n= α′′n + β′′n + γ′′n = 1.
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(ii)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ′n < ∞,
∑∞

n=1 γ′′n < ∞.
(iii) ∃n0 ∈ N such that 0 < α ≤ αn, α′n, α′′n < 1 − α, for some α ∈ (0, 1)

and for all n ≥ n0.
Then

lim
n→∞

∥∥T (PT )n−1(ω, ηn(ω))− ξn(ω)
∥∥ = lim

n→∞
∥∥T (PT )n−1(ω, ζn(ω))− ξn(ω)

∥∥

= lim
n→∞

∥∥T (PT )n−1(ω, ξn(ω))− ξn(ω)
∥∥

= 0.

Proof. For any ξ(ω) ∈ RF (T ), it follows from Lemma 3.1, we have limn→∞
‖ξn(ω)− ξ(ω)‖ exists for all ω ∈ Ω. Let limn→∞ ‖ξn(ω)− ξ(ω)‖ = a for some
a ≥ 0. From (3.4), we have

‖ηn(ω)− ξ(ω)‖ ≤ (1 + kn(ω))2 ‖ξn(ω)− ξ(ω)‖+ mn(ω).

Taking lim supn→∞ on both sides, we obtain

lim sup
n→∞

‖ηn(ω)− ξ(ω)‖ ≤ lim sup
n→∞

‖ξn(ω)− ξ(ω)‖
= lim

n→∞ ‖ξn(ω)− ξ(ω)‖ = a.

Note that

lim sup
n→∞

∥∥T (PT )n−1(ω, ηn(ω))− ξ(ω)
∥∥ ≤ lim sup

n→∞
(1 + kn(ω)) ‖ηn(ω)− ξ(ω)‖

≤ a.

Next consider
∥∥T (PT )n−1(ω, ηn(ω))− ξ(ω) + γn(fn(ω)− ξn(ω))

∥∥
≤ ∥∥T (PT )n−1(ω, ηn(ω))− ξ(ω)

∥∥ + γn ‖fn(ω)− ξn(ω)‖ .

Thus,

lim sup
n→∞

∥∥T (PT )n−1(ω, ηn(ω))− ξ(ω) + γn(fn(ω)− ξn(ω))
∥∥ ≤ a.

Also,

‖ξn(ω)− ξ(ω) + γn(fn(ω)− ξn(ω))‖
≤ ‖ξn(ω)− ξ(ω)‖+ γn ‖fn(ω)− ξn(ω)‖

gives that

lim sup
n→∞

‖ξn(ω)− ξ(ω) + γn(fn(ω)− ξn(ω))‖ ≤ a.
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Moreover, we note that

a = lim
n→∞ ‖ξn+1(ω)− ξ(ω)‖

= lim
n→∞ ‖αnT (PT )n−1(ω, ηn(ω)) + βnξn(ω) + γnfn(ω)− ξ(ω)‖

= lim
n→∞ ‖αnT (PT )n−1(ω, ηn(ω)) + βnξn(ω) + γnfn(ω)

− (1− αn)ξ(ω)− αnξ(ω)‖
= lim

n→∞ ‖αn[T (PT )n−1(ω, ηn(ω))− ξ(ω) + γn(fn(ω)− ξn(ω))]

+ (1− αn)[ξn(ω)− ξ(ω) + γn(fn(ω)− ξn(ω))]‖.

By Lemma 2 (Schu [14]), we have

lim
n→∞

∥∥T (PT )n−1(ω, ηn(ω))− ξn(ω)
∥∥ = 0.

Next we prove that limn→∞
∥∥T (PT )n−1(ω, ζn(ω))− ξn(ω)

∥∥ = 0. For each
n ≥ 1, we have

‖ξn(ω)− ξ(ω)‖
≤ ∥∥T (PT )n−1(ω, ηn(ω))− ξn(ω)

∥∥ +
∥∥T (PT )n−1(ω, ηn(ω))− ξ(ω)

∥∥
≤ ∥∥T (PT )n−1(ω, ηn(ω))− ξn(ω)

∥∥ + (1 + kn(ω)) ‖ηn(ω)− ξ(ω)‖ .

Since, limn→∞
∥∥T (PT )n−1(ω, ηn(ω))− ξn(ω)

∥∥ = 0 = limn→∞ kn(ω), we ob-
tain that

a = lim
n→∞ ‖ξn(ω)− ξ(ω)‖ ≤ lim inf

n→∞ ‖ηn(ω)− ξ(ω)‖ .

It follows that

a ≤ lim inf
n→∞ ‖ηn(ω)− ξ(ω)‖ ≤ lim sup

n→∞
‖ηn(ω)− ξ(ω)‖ ≤ a.

This implies that

lim
n→∞ ‖ηn(ω)− ξ(ω)‖ = a.

On the other hand, we note that

‖ζn(ω)− ξ(ω)‖
=

∥∥α′′nT (PT )n−1(ω, ξn(ω)) + β′′nξn(ω) + γ′′nf ′′n(ω)− ξ(ω)
∥∥

≤ α′′n
∥∥T (PT )n−1(ω, ξn(ω))− ξ(ω)

∥∥ + β′′n ‖ξn(ω)− ξ(ω)‖
+ γ′′n

∥∥f ′′n(ω)− ξ(ω)
∥∥
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≤ α′′n(1 + kn(ω)) ‖ξn(ω)− ξ(ω)‖+ β′′n ‖ξn(ω)− ξ(ω)‖
+ γ′′n

∥∥f ′′n(ω)− ξ(ω)
∥∥

≤ α′′n(1 + kn(ω)) ‖ξn(ω)− ξ(ω)‖+ (1− α′′n)(1 + kn(ω)) ‖ξn(ω)− ξ(ω)‖
+ γ′′n

∥∥f ′′n(ω)− ξ(ω)
∥∥

≤ (1 + kn(ω)) ‖ξn(ω)− ξ(ω)‖+ γ′′n
∥∥f ′′n(ω)− ξ(ω)

∥∥ .

By boundedness of {f ′′n(ω)} and limn→∞ kn(ω) = 0 = limn→∞ γ′′n, we have

lim sup
n→∞

‖ζn(ω)− ξ(ω)‖ ≤ lim sup
n→∞

‖ξn(ω)− ξ(ω)‖ ≤ a,

and

lim sup
n→∞

∥∥T (PT )n−1(ω, ζn(ω))− ξ(ω)
∥∥ ≤ lim sup

n→∞
(1+kn(ω)) ‖ζn(ω)− ξ(ω)‖ ≤ a.

Next, we consider∥∥T (PT )n−1(ω, ζn(ω))− ξ(ω) + γ′n(f ′n(ω)− ξn(ω))
∥∥

≤ ∥∥T (PT )n−1(ω, ζn(ω))− ξ(ω)
∥∥ + γ′n

∥∥f ′n(ω)− ξn(ω)
∥∥ .

Taking lim supn→∞ on both sides, we have

lim sup
n→∞

∥∥T (PT )n−1(ω, ζn(ω))− ξ(ω) + γ′n(f ′n(ω)− ξn(ω))
∥∥ ≤ a.

Also,∥∥ξn(ω)− ξ(ω) + γ′n(f ′n(ω)− ξn(ω))
∥∥ ≤ ‖ξn(ω)− ξ(ω)‖+ γ′n

∥∥f ′n(ω)− ξn(ω)
∥∥

gives that
lim sup

n→∞

∥∥ξn(ω)− ξ(ω) + γ′n(f ′n(ω)− ξn(ω))
∥∥ ≤ a.

Since limn→∞ ‖ηn(ω)− ξ(ω)‖ = a, we obtain

a = lim
n→∞ ‖ηn(ω)− ξ(ω)‖

= lim
n→∞ ‖α

′
nTn(ω, ζn(ω)) + β′nξn(ω) + γ′nf ′n(ω)− ξ(ω)‖

= lim
n→∞ ‖α

′
n[T (PT )n−1(ω, ζn(ω))− ξ(ω) + γ′n(f ′n(ω)− ξn(ω))]

+ (1− α′n)[ξn(ω)− ξ(ω) + γ′n(f ′n(ω)− ξn(ω))]‖.
By Lemma 2 (Schu [14]), we have

lim
n→∞

∥∥T (PT )n−1(ω, ζn(ω))− ξn(ω)
∥∥ = 0.

Similarly, by using the same argument as in the proof above, we have

lim
n→∞

∥∥T (PT )n−1(ω, ξn(ω))− ξn(ω)
∥∥ = 0,

for all ω ∈ Ω. This completes the proof. ¤
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Lemma 3.3. Let E be a real uniformly convex separable Banach space, and
let K be a nonempty closed and convex subset which is also a nonexpansive
retract of E. Let T : Ω×K → K be non-self asymptotically nonexpansive ran-
dom mapping with sequence of measurable mapping kn : Ω → [0,∞) satisfying∑∞

n=1 kn(ω) < ∞, for each ω ∈ Ω. Assume that RF (T ) 6= φ and let {ξn} be
the sequence as defined by (2.5) with the following restrictions:

(i) αn + βn + γn = α′n + β′n + γ′n= α′′n + β′′n + γ′′n = 1.
(ii)

∑∞
n=1 γn < ∞,

∑∞
n=1 γ′n < ∞,

∑∞
n=1 γ′′n < ∞.

(iii) ∃n0 ∈ N such that 0 < α ≤ αn, α′n, α′′n < 1 − α, for some α ∈ (0, 1)
and for all n ≥ n0.
Then

lim
n→∞ ‖ξn(ω)− T (ω, ξn(ω))‖ = 0.

Proof. It follows from Lemma 3.2 that

lim
n→∞

∥∥T (PT )n−1(ω, ηn(ω))− ξn(ω)
∥∥ = lim

n→∞
∥∥T (PT )n−1(ω, ζn(ω))− ξn(ω)

∥∥

= lim
n→∞

∥∥T (PT )n−1(ω, ξn(ω))− ξn(ω)
∥∥

= 0,

and this implies that

‖ξn+1(ω)− ξn(ω)‖
≤ αn

∥∥T (PT )n−1(ω, ηn(ω))− ξn(ω)
∥∥ + γn ‖fn(ω)− ξn(ω)‖

→ 0

as n →∞ and for each ω ∈ Ω.
We now to show that limn→∞ ‖ξn(ω)− T (ω, ξn(ω))‖ = 0. Since T is a

non-self asymptotically nonexpansive random mapping, so it is uniformly L-
Lipschitzian for some constant L > 0. Hence observe that

∥∥ξn(ω)− T (PT )n−2(ω, ξn(ω))
∥∥

≤ ‖ξn(ω)− ξn−1(ω)‖+
∥∥ξn−1(ω)− T (PT )n−2(ω, ξn−1(ω))

∥∥
+

∥∥T (PT )n−2(ω, ξn−1(ω))− T (PT )n−2(ω, ξn(ω))
∥∥

≤ ‖ξn(ω)− ξn−1(ω)‖+
∥∥ξn−1(ω)− T (PT )n−2(ω, ξn−1(ω))

∥∥
+ L ‖ξn−1(ω)− ξn(ω)‖ → 0

as n →∞ and for each ω ∈ Ω.
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Thus by the above inequality, we have

‖ξn(ω)− T (ω, ξn(ω))‖ ≤ ∥∥ξn(ω)− T (PT )n−1(ω, ξn(ω))
∥∥

+
∥∥T (PT )n−1(ω, ξn(ω))− T (ω, ξn(ω))

∥∥
≤ ∥∥ξn(ω)− T (PT )n−1(ω, ξn(ω))

∥∥
+L

∥∥T (PT )n−2(ω, ξn(ω))− ξn(ω)
∥∥

→ 0

as n →∞ and for each ω ∈ Ω.
It implies that

lim
n→∞ ‖ξn(ω)− T (ω, ξn(ω))‖ = 0.

This completes the proof. ¤

Theorem 3.4. Let E be a real uniformly convex separable Banach space, and
let K be a nonempty closed and convex subset which is also a nonexpansive
retract of E. Let T : Ω×K → K be non-self asymptotically nonexpansive ran-
dom mapping with sequence of measurable mapping kn : Ω → [0,∞) satisfying∑∞

n=1 kn(ω) < ∞, for each ω ∈ Ω. Assume that RF (T ) 6= φ and let {ξn} be
the sequence as defined by (2.5) with the following restrictions:

(i) αn + βn + γn = α′n + β′n + γ′n= α′′n + β′′n + γ′′n = 1.
(ii)

∑∞
n=1 γn < ∞,

∑∞
n=1 γ′n < ∞,

∑∞
n=1 γ′′n < ∞.

(iii) 0 < α ≤ αn, α′n, α′′n < 1 − α, for some α ∈ (0, 1) and for all n ≥ n0,
∃n0 ∈ N . If T is completely continuous, then sequences {ξn}, {ηn} and {ζn}
converges to a random fixed point of T .

Proof. From Lemma 3.3, we have

lim
n→∞ ‖ξn(ω)− T (ω, ξn(ω))‖ = 0. (3.6)

It follows from Lemma 3.1 that sequence {ξn} is bounded. By assumption T
is completely continuous there exists a subsequence {Tξnk

} of {Tξn} and a
measurable mapping p : Ω → K such that for each ω ∈ Ω, Tξnk

→ p ∈ RF (T )
as nk → ∞. Moreover, by (3.6), we have ‖T (ω, ξnk

(ω))− ξnk
(ω)‖ → 0 which

implies that ξnk
(ω) → p(ω) as nk →∞. By (3.6) again, we have

‖p(ω)− T (ω, p(ω))‖ = lim
nk→∞

‖ξnk
(ω)− T (ω, ξnk

(ω))‖ = 0.

It shows that p is a random fixed point of T i.e. p ∈ RF (T ). Furthermore,
since limn→∞ ‖ξn(ω)− p(ω)‖ exists. Therefore limn→∞ ‖ξn(ω)− p(ω)‖ = 0,
that is, {ξn} converges to a random fixed point of T .

Similarly, we can show that {ηn} and {ζn} converges to a random fixed
point of T .
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Since {ξn} converges to a random fixed point p of T , that is, p ∈ RF (T ),
so that it is also bounded. Thus by Lemma 3.2 and 3.3, we obtain that

‖ηn(ω)− ξn(ω)‖ ≤ α′n
∥∥T (PT )n−1(ω, ζn(ω))− ξn(ω)

∥∥ + γ′n
∥∥f ′n(ω)− ξn(ω)

∥∥
→ 0,

as n →∞ and for each ω ∈ Ω, and

‖ζn(ω)− ξn(ω)‖ ≤ α′′n
∥∥T (PT )n−1(ω, ξn(ω))− ξn(ω)

∥∥ + γ′′n
∥∥f ′′n(ω)− ξn(ω)

∥∥
→ 0,

as n →∞ and for each ω ∈ Ω. Therefore

lim
n→∞ ηn(ω) = p(ω) = lim

n→∞ ζn(ω).

Thus {ηn} and {ζn} also converges to a random fixed point of T . This com-
pletes the proof. ¤

Theorem 3.5. Let E be a real uniformly convex separable Banach space, and
let K be a nonempty closed and convex subset which is also a nonexpansive
retract of E. Let T : Ω×K → K be non-self asymptotically nonexpansive ran-
dom mapping with sequence of measurable mapping kn : Ω → [0,∞) satisfying∑∞

n=1 kn(ω) < ∞, for each ω ∈ Ω. Assume that RF (T ) 6= φ and let {ξn} be
the sequence as defined by (2.5) with the following restrictions:

(i) αn + βn + γn = α′n + β′n + γ′n= α′′n + β′′n + γ′′n = 1.
(ii)

∑∞
n=1 γn < ∞,

∑∞
n=1 γ′n < ∞,

∑∞
n=1 γ′′n < ∞.

(iii) ∃n0 ∈ N such that 0 < α ≤ αn, α′n, α′′n < 1 − α, for some α ∈ (0, 1)
and for all n ≥ n0. If T is semi-compact, then sequence {ξn} converges to a
random fixed point of T .

Proof. Since T is semi-compact random mapping and by Lemma 3.3,

lim
n→∞ ‖ξn(ω)− T (ω, ξn(ω))‖ = 0

for each ω ∈ Ω, then there exists a subsequence {ξnk
} of {ξn} and a mea-

surable mapping ξ0 : Ω → K such that ξnk
converges pointwisely to ξ0. The

mapping ξ0 : Ω → K, being a pointwise limit of measurable mappings, {ξnk
}

is measurable. Now,

lim
k→∞

‖ξnk
(ω)− T (ω, ξnk

(ω))‖ = ‖ξ0(ω)− T (ω, ξ0(ω))‖ = 0

for each ω ∈ Ω. Hence, ξ0(ω) is a random fixed point of T , that is, ξ0 ∈
RF (T ). Thus {ξn} converges to a random fixed point of T . This completes
the proof. ¤

Theorem 3.6. Let E be a real uniformly convex separable Banach space, and
let K be a nonempty closed and convex subset which is also a nonexpansive
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retract of E. Let T : Ω×K → K be non-self asymptotically nonexpansive ran-
dom mapping with sequence of measurable mapping kn : Ω → [0,∞) satisfying∑∞

n=1 kn(ω) < ∞, for each ω ∈ Ω. Assume that RF (T ) 6= φ and let {ξn} be
the sequence as defined by (2.5) with the following restrictions:

(i) αn + βn + γn = α′n + β′n + γ′n= α′′n + β′′n + γ′′n = 1.
(ii)

∑∞
n=1 γn < ∞,

∑∞
n=1 γ′n < ∞,

∑∞
n=1 γ′′n < ∞.

(iii) ∃n0 ∈ N such that 0 < α ≤ αn, α′n, α′′n < 1 − α, for some α ∈ (0, 1)
and for all n ≥ n0. If T is demicompact, then sequence {ξn} converges to a
random fixed point of T .

Proof. Since T is demicompact, by Lemma 3.1 and 3.3, {ξn(ω)} is bounded and
limn→∞ ‖ξn(ω)− T (ω, ξn(ω))‖ = 0, then there exists a subsequence {ξnk

} of
{ξn} such that {ξnk

(ω)} converges strongly to ξ∗(ω) for each ω ∈ Ω. It follows
from Lemma 2 that ξ∗(ω) = T (ω, ξ∗(ω)). Since {ξnk

} is a measurable mapping
sequence, ξ∗ is a measurable mapping too. Therefore, ξ∗(ω) ∈ RF (T ). Thus
limn→∞ ‖ξn(ω)− ξ∗(ω)‖ exists by Lemma 3.1. Since the subsequence {ξnk

(ω)}
of {ξn(ω)} such that {ξnk

(ω)} converges to ξ∗(ω), then {ξn(ω)} converges to
a random fixed point ξ∗(ω) ∈ RF (T ). This completes the proof. ¤

Remark 3.1. Theorem 3.4 and 3.6 extend the corresponding results of Zhou
and Wang [21] to the case of three step random iteration scheme with errors.

Remark 3.2. Theorem 3.4 also extends the corresponding result of Plubteing
et al. [13] to the case of non-self maps with Ti = T for i = 1, 2, 3.
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