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Abstract. In this paper, we introduce new subclasses of analytic and bi-univalent functions

associated with the Mittag-Leffler-type Borel distribution by using the Legendre polynomi-

als. Furthermore, we find estimates on the first two Taylor-Maclaurin coefficients |a2| and

|a3| for functions in these subclasses and obtain Fekete-Szegő problem for these subclasses.

We also state certain new subclasses of Σ and initial coefficient estimates and Fekete-Szegő

inequalities.

1. Introduction, definitions and preliminaries

Let A denote the class of analytic functions of the form

f(z) = z +
∞∑
k=2

akz
k, z ∈ E := {z ∈ C : |z| < 1}, (1.1)

0Received November 11, 2021. Revised November 25, 2021. Accepted December 2, 2021.
02020 Mathematics Subject Classification: 30C50, 30C45, 11B65, 47B38.
0Keywords: Mittag-Leffler-type, Borel distribution, Legendre polynomials, q-derivative

operator, Bi-univalent, coefficients bounds.
0Corresponding author: G. Murugusundaramoorthy(gmsmoorthy@yahoo.com).



332 S. M. El-Deeb, G. Murugusundaramoorthy and A. Alburaikan

and S be the subclass of A which are univalent functions in E.
If G and F are analytic functions in E, we say that G is subordinate to F,

written G ≺ F, if there exists a Schwarz function ω, which is analytic in E,
with ω(0) = 0, and, |ω(z)| < 1 for all z ∈ E, such that G(z) = F(ω(z)), z ∈ E.
Furthermore, if the function F is univalent in E, then we have the following
equivalence (see [6] and [24]):

G(z) ≺ F(z) ⇔ G(0) = F(0) and G(E) ⊂ F(E).

1.1. Quantum calculus. Jackson in 1909-1910 [18, 19] developed quantum
calculus, popularly known as q− calculus. Since then it has found applica-
tions in physics, quantum mechanics, analytic number theory, Sobolev spaces,
representation theory of groups, theta functions, gamma functions, operator
theory, and more recently in geometric function theory. For the definitions
and properties of q−calculus one may refer to [17, 20]. In fact, q−calculus
methodology is centered on the idea of deriving q−analogues results without
the use of limits. Let us first recall certain notations and definitions of the
q−calculus.

Definition 1.1. Let q ∈ (0, 1). The q−derivative (or q−difference operator)
of a function f , defined on a subset Ω with 0 ∈ Ω of C, is given by

(Dqf)(z) =


f(z)−f(qz)

(1−q)z , z 6= 0,

f ′(0), z = 0.

We note that limq→1(Dqf)(z) = f ′(z) if f is differentiable at z.

For the function f(z) = zk, we observe that

Dqz
k =

1− qk

1− q
zk−1 = [n]qz

k−1.

For a function f analytic in the open unit disc E := {z : |z| < 1}, we have

Dqf(z) = 1 +
∞∑
k=2

[k]qakz
k−1,

where

[k]q :=
1− qk

1− q
= 1 +

k−1∑
j=1

qj , [0, q] := 0. (1.2)

Clearly, for q → 1−, [k]q → k. For the definitions and properties of q−derivative
and q−calculus, we may refer to [17, 18, 19, 20].
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1.2. Mittag-Leffler function and Borel distribution: The study of oper-
ators plays an important role in geometric function theory in complex analysis
and its related fields. Many derivative and integral operators can be written
in terms of convolution of certain analytic functions. It is observed that this
formalism brings an ease in further mathematical exploration and also helps
to better understand the geometric properties of such operators.

Let Eα(z) and Eα,β (z) be the function defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, (z ∈ C,< (α) > 0 ) (1.3)

and

Eα,β (z) =
1

Γ(β)
+

∞∑
k=1

zk

Γ (αk + β)
, (α, β ∈ C, < (α) > 0, < (β) > 0).

It can be written in other form:

Eα,β (z) =
1

Γ(β)
+

∞∑
k=2

zk−1

Γ (α(k − 1) + β)
, (α, β ∈ C, < (α) > 0, < (β) > 0).

The function Eα(z) was introduced by Mittag-Leffler [25] and is, therefore,
known as the Mittag-Leffler function. A more general function Eα,β general-
izing Eα(z) was introduced by Wiman [30] and defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, (z, α, β ∈ C,< (α) > 0, < (β) > 0 ). (1.4)

Observe that the function Eα,β contains many well-known functions as its
special case, for example,

E1,1(z) = ez, E1,2(z) =
ez − 1

z
, E2,1

(
z2
)

= cosh z,

E2,1

(
−z2

)
= cos z, E2,2

(
z2
)

=
sinh z

z
, E2,2

(
−z2

)
=

sin z

z
,

E4(z) =
1

2

(
cos z1/4 + cosh z1/4

)
,

E3(z) =
1

2

[
ez

1/3
+ 2e−

1
2
z1/3 cos

(√
3

2
z1/3

)]
.

We recall the error function Erf given by Abramowitz and Stegun[1, p.
297],

Erf(z) :=
2√
π

∫ z

0
e−t

2
dt =

2√
π

∞∑
n=0

(−1)n

n!(2n+ 1)
z2n+1,
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the complement of the error function Erfc defined by

Erfc(z) := 1− Erf(z) = 1− 2√
π

∞∑
n=0

(−1)n

n!(2n+ 1)
z2n+1,

and the normalized form of the error function Erf denoted by ErF (normalized
with the condition Erf ′(0) = 1) is given by

ErF (z) :=

√
πz

2
Erf(

√
z) = z +

∞∑
n=2

(−1)n−1

(n− 1)!(2n− 1)
zn.

It is of interest to note that by fixing α = 1/2 and β = 1 we get

E 1
2
,1(z) = ez

2 · Erfc(−z),

that is

E 1
2
,1(z) = ez

2

(
1 +

2√
π

∞∑
n=0

(−1)n

n!(2n+ 1)
z2n+1

)
.

The Mittag-Leffler function arises naturally in the solution of fractional
order differential and integral equations, and especially in the investigations of
fractional generalization of kinetic equation, random walks, Lévy flights, super-
diffusive transport and in the study of complex systems. Several properties of
Mittag-Leffler function and generalized Mittag-Leffler function can be found
e.g. in [2, 3, 14, 15, 16, 21]. Observe that Mittag-Leffler function Eα,β(z)
does not belong to the family A. Thus, it is natural to consider the following
normalization of Mittag-Leffler functions as below:

Eα,β(z) = zΓ(β)Eα,β(z) = z +
∞∑
k=2

Γ(β)

Γ(α(k − 1) + β)
zk, (1.5)

it holds for complex parameters α, β and z ∈ C.
In this paper, we shall restrict our attention to the case of real-valued

α, β and z ∈ E.
A discrete random variable x is said to have a Borel distribution if it takes

the values 1, 2, 3, ... with the probabilities e−λ

1! ,
2λe−2λ

2! , 9λ2e−3λ

3! , ..., respectively,
where λ is called the parameter.

Very recently, Wanas and Khuttar [29] introduced the Borel distribution
(BD) whose probability mass function is

P (x = ρ) =
(ρλ)ρ−1 e−λρ

ρ!
, ρ = 1, 2, 3, · · · .
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Wanas and Khuttar introduced a seriesM(λ; z) whose coefficients are proba-
bilities of the Borel distribution (BD)

M(λ; z) = z +

∞∑
k=2

[λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!
zk, (0 < λ ≤ 1) . (1.6)

In [26], the authors defined the Mittag-Leffler-type Borel distribution as fol-
lows:

P (λ, α, β; ρ) =
(λρ)ρ−1

Eα,β (λρ) Γ (αρ+ β)
, ρ = 0, 1, 2, · · · ,

where Eα,β (z) =
∑∞

k=0
zk

Γ(αk+β) , (α, β ∈ C, < (α) > 0, < (β) > 0). Thus by

using(1.5) and (1.6) and by convolution operator, we define the Mittag-Leffler-
type Borel distribution series as below:

B (λ, α, β)(z)=z+

∞∑
k=2

(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
zk, (0<λ ≤ 1) .

Further, by the convolution operator we define

Mλ
α,βf(z) = B (λ, α, β) (z) ∗ f(z)

= z +
∞∑
k=2

(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
akz

k

= z +
∞∑
k=2

Υkakz
k, (1.7)

where α, β ∈ C; < (α) > 0, < (β) > 0, 0 < λ ≤ 1 and

Υk =
(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
. (1.8)

Thus we have

Dq(Mλ
α,βf(z)) = 1 +

∞∑
k=2

[k]q
(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
akz

k−1.

(1.9)

1.3. Legendre polynomials: Legendre polynomials, which are exceptional
cases of Legendre functions, are familiarized in 1784 by the French mathe-
matician Legendre (1752-1833). Legendre functions are a vital and important
in problems including spherical coordinates. As well, the Legendre polynomi-
als, Pk(x), (|x| < 1), are designated via the following generating function(see
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[13, 10, 22])

G(x, z) =
1√

1− 2xz + z2
=
∞∑
k=0

Pk(x)zk. (1.10)

Legendre polynomials are the everywhere regular solutions of Legendrâe dif-
ferential equation that we can write as follows:

(1− x2)
d2

dx2
Pk(x)− 2x

d

dx
Pk(x) +mPk(x) = 0,

where m = k(k + 1) and k = 0, 1, 2, · · · . Taking x = 1 in (1.10) and by using
geometric series, we see that Pk(1) = 1, so that the Legendre polynomials are
normalized.Thus Let G(x, z) denote the class of analytic functions on ∆ which
are normalized by the conditions G(x, 0) = 0 and G′(x, 0) = 1.

Definition 1.2. Let Pk(x) is Legendre polynomials of the first kind of order
k = 0, 1, 2, ..., the recurrence formula is

Pk+1(x) =
2k + 1

k + 1
xPk(x)− k

k + 1
Pk−1(x) (1.11)

with

P0(x) = 1 and P1(x) = x.

The Koebe one quarter theorem (see [9]) proves that the image of E under
every univalent function f ∈ S contains a disk of radius 1

4 . Therefore, every

function f ∈ S has an inverse f−1 satisfied

f−1(f(z)) = z (z ∈ E)

and

f(f−1(w)) = w

(
|w| < r0 (f) ; r0 (f) ≥ 1

4

)
,

where

f−1(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (1.12)

A function f ∈ A is said to be bi-univalent in E if both f(z) and f−1(z)
are univalent in E. Let Σ denote the class of bi-univalent functions in E given
by (1.1). For instance, the functions z, z

1−z , − log(1 − z) and 1
2 log 1+z

1−z are
members of Σ. However, the Koebe function is not a member of Σ. For a
brief history and interesting examples in the class Σ (see [4]). Brannan and
Taha [5] (see also [7, 8, 11, 12, 28]) introduced certain subclasses of the bi-
univalent functions class Σ similar to the familiar subclasses S∗ (β) and K (β)
of starlike and convex functions of order β (0 ≤ β < 1), respectively (see [4]).
Thus, following Brannan and Taha [5] a function f ∈ A is said to be in the
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class S∗Σ (β) of strongly bi-starlike functions of order β (0 < β ≤ 1) if each of
the following conditions is satisfied:

f ∈ Σ and

∣∣∣∣∣arg

(
zf
′
(z)

f(z)

)∣∣∣∣∣ < βπ

2
(0 < β ≤ 1; z ∈ E) (1.13)

and ∣∣∣∣∣arg

(
zg
′
(w)

g(w)

)∣∣∣∣∣ < βπ

2
(0 < β ≤ 1; w ∈ E) , (1.14)

where g is the extension of f−1 to E is given by (1.12). The classes S∗Σ (β) and
KΣ (β) of bi-starlike functions of order β and bi-convex functions of order β
(0 < β ≤ 1) , corresponding to the function classes S∗ (β) and K (β) , were also
introduced analogously. For each of the function classes S∗Σ (β) and KΣ (β) ,
they found non-sharp estimates on the first two Taylor-Maclaurin coefficients
|a2| and |a3| (for details, see [5] and [28]).

The object of the present paper is to introduce new classes of the function
class Σ involving the q−analogue of convolution based upon the Legendre
polynomials previous defined as in Definition 1.3, and find estimates on the
coefficients |a2|, and |a3| for functions in these new subclasses of the function
class Σ and obtain Fekete-Szegő problem for these subclasses. Further by
specializing the parameters η, γ we define new subclasses of Σ (and not studied
so far in the literature) based on Mittag-Leffler functions associated with Borel
distribution and state the coefficient estimate as corollaries in the last section.

Definition 1.3. Let η 6= 0 be a complex number and f(z) given by (1.1), and

f(z) ∈ Hq,λΣ (η, γ, α, β, x) if the following conditions are satisfied:

1 +
1

η

γz Dq

(
Dq

(
Mλ

α,βf(z)
))

+ γDq

(
Mλ

α,βf(z)
)

+ 1− γ

Dq

(
Mλ

α,βf(z)
) − 1

 ≺ G(x, z)

(1.15)
and

1+
1

η

γwDq

(
Dq

(
Mλ

α,βg(w)
))

+ γDq

(
Mλ

α,βg(w)
)

+ 1− γ

Dq

(
Mλ

α,βg(w)
) − 1

 ≺ G(x,w)

(1.16)
with γ > 0, α, β ∈ C, < (α) > 0, < (β) > 0, 0 < λ ≤ 1; 0 < q < 1; η ∈ C∗ =
C\ {0} , where the function g = f−1 is given by (1.12).

By specializing the parameters η, γ we define the following subclasses which
are new not studied so far in the literature based on Mittag-Leffler functions
associated with Borel distribution.
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Remark 1.4. (i) As q → 1−, we obtain that lim
q→1−

Hq,λΣ (η, γ, α, β, x) =:

IλΣ (η, γ, α, β, x), where IλΣ (η, γ, α, β, x) represents the functions f ∈ Σ that
satisfy the following conditions

1 +
1

η

γz
(
Mλ

α,βf(z)
)′′

+ γ
(
Mλ

α,βf(z)
)′

+ 1− γ(
Mλ

α,βf(z)
)′ − 1

 ≺ G(x, z) (1.17)

and

1 +
1

η

γw
(
Mλ

α,βg(w)
)′′

+ γ
(
Mλ

α,βg(w)
)′

+ 1− γ(
Mλ

α,βg(w)
)′ − 1

 ≺ G(x,w). (1.18)

(ii) Fixing γ = 1, we obtain that Hq,λΣ (η, 1, α, β, x) =: Kq,λΣ (η, α, β, x), where

Kq,λΣ (η, α, β, x) represents the functions f ∈ Σ that satisfy the following con-
ditions

1 +
1

η

z Dq

(
Dq

(
Mλ

α,βf(z)
))

Dq

(
Mλ

α,βf(z)
)

 ≺ G(x, z) (1.19)

and

1 +
1

η

wDq

(
Dq

(
Mλ

α,βg(w)
))

Dq

(
Mλ

α,βg(w)
)

 ≺ G(x,w). (1.20)

(iii) Taking γ = 1 and η = 1, we obtain thatHq,λΣ (1, 1, α, β, x) =: Kq,λΣ (α, β, x),

where Kq,λΣ (α, β, x) represents the functions f ∈ Σ that satisfy the following
conditions

1 +

z Dq

(
Dq

(
Mλ

α,βf(z)
))

Dq

(
Mλ

α,βf(z)
)

 ≺ G(x, z) (1.21)

and

1 +

wDq

(
Dq

(
Mλ

α,βg(w)
))

Dq

(
Mλ

α,βg(w)
)

 ≺ G(x,w). (1.22)

(iv) Assuming q → 1− and γ = η = 1, we obtain that lim
q→1−

Hq,λΣ (1, 1, α, β, x) =:

KλΣ (α, β, x), where KλΣ (α, β, x) represents the functions f ∈ Σ that satisfy the
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following conditions

1 +
1

η

z
(
Mλ

α,βf(z)
)′′

(
Mλ

α,βf(z)
)′
 ≺ G(x, z) (1.23)

and

1 +
1

η

w
(
Mλ

α,βg(w)
)′′

(
Mλ

α,βg(w)
)′
 ≺ G(x,w). (1.24)

(v) Putting η = (1− δ) cos θe−iθ
(
|θ| < π

2 ; 0 ≤ δ < 1
)
, we obtain that

Hq,λΣ

(
(1− δ) cos θe−iθ, γ, α, β, x

)
=: Rq,λΣ (δ, θ, γ, α, β, x) ,

where Rq,λΣ (δ, θ, γ, α, β, x) represents the functions f ∈ Σ that satisfy the fol-
lowing conditions

eiθ

γz
(
Mλ

α,βf(z)
)′′

+ γ
(
Mλ

α,βf(z)
)′

+ 1− γ(
Mλ

α,βf(z)
)′ − 1


≺ (G(x, z)− 1) (1− δ) cos θ (1.25)

and

eiθ

γw
(
Mλ

α,βg(w)
)′′

+ γ
(
Mλ

α,βg(w)
)′

+ 1− γ(
Mλ

α,βg(w)
)′ − 1


≺ (G(x,w)− 1) (1− δ) cos θ. (1.26)

2. Coefficient bounds for the function class Hq,λΣ (η, γ, α, β, x)

We recall the following lemma to prove our main results:

Lemma 2.1. ([27, p.172]) If w(z) =
∞∑
k=1

pkz
k is a Schwarz function for z ∈ E,

then

|p1| ≤ 1, |pk| ≤ 1− |p1|2, k ≥ 1. (2.1)

Unless otherwise mentioned, we shall assume in the reminder of this paper
that γ > 0, α, β ∈ C, < (α) > 0, < (β) > 0, 0 < λ ≤ 1; 0 < q < 1; η ∈
C∗ and x ∈ R, the powers are understood as principle values.



340 S. M. El-Deeb, G. Murugusundaramoorthy and A. Alburaikan

Theorem 2.2. Let f be given by (1.1) belongs to the class Hq,λΣ (η, γ, α, β, x).
Then

|a2|≤
|η| |x|

√
x√∣∣∣(γ(2 + q)−1)(1+ q + q2)ηx2

3Υ3−
[
ηx2+(2γ−1)

2 (3x2−1)
]
(2γ−1) (1 + q)2Υ2

2

∣∣∣
and

|a3| ≤
|η| |x|

(γ(2 + q)− 1) (1+q + q2) Υ3
+

|η|2 x2

(1 + q)2 (2γ − 1)2 Υ2
2

,

where Υk, k ∈ {2, 3}, are given by (1.8).

Proof. Since f ∈ Hq,λΣ (η, γ, α, β, x), there exist two analytic functions r and s
in E with r(0) = s(0) = 0, and |r(z)| < 1, |s(w)| < 1 for all z, w ∈ E given by

r(z) =

∞∑
k=1

rkz
k and s(w) =

∞∑
k=1

skw
k.

From Lemma 2.1 we have

|rk| ≤ 1 and |sk| ≤ 1, k ∈ N. (2.2)

In view of (1.15) and (1.16), we get

γz Dq

(
Dq

(
Mλ

α,βf(z)
))

+ γDq

(
Mλ

α,βf(z)
)

+ 1− γ

Dq

(
Mλ

α,βf(z)
) −1 = η (G(x, r(z))− 1)

(2.3)
and

γwDq

(
Dq

(
Mλ

α,βg(w)
))

+γDq

(
Mλ

α,βg(w)
)

+1−γ

Dq

(
Mλ

α,βg(w)
) − 1 = η (G(x, s(w))− 1) .

(2.4)
Since

γz Dq

(
Dq

(
Mλ

α,βf(z)
))

+ γDq

(
Mλ

α,βf(z)
)

+ 1− γ

Dq

(
Mλ

α,βf(z)
) − 1

= (1 + q) (2γ − 1) Υ2a2z

+
[
(γ(2 + q)− 1)

(
1 + q + q2

)
Υ3a3 − (2γ − 1) (1 + q)2Υ2

2a
2
2

]
z2 + · · · ,
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γwDq

(
Dq

(
Mλ

α,βg(w)
))

+ γDq

(
Mλ

α,βg(w)
)

+ 1− γ

Dq

(
Mλ

α,βg(w)
) − 1

= −(1 + q) (2γ − 1) Υ2a2w

+
[
(γ(2 + q)− 1)(1 + q + q2)Υ3(2a2

2)− a3)

− (2γ − 1)(1 + q)2Υ2
2a

2
2

]
w2 + · · ·

and

η (G(x, r(z))− 1) = ηP1(x)r1z +
(
P1(x)r2 + P2(x)r2

1

)
ηz2 + · · · ,

η (G(x, s(w))− 1) = ηP1(x)s1w +
(
P1(x)s2 + P2(x)s2

1

)
ηw2 + . . . .

Next, equating the corresponding coefficients of z and w in (2.3) and (2.4),
we get

(1 + q) (2γ − 1) Υ2a2 = ηP1(x)r1, (2.5)

(γ(2 + q)− 1)
(
1 + q + q2

)
Υ3a3 − (2γ − 1) (1 + q)2Υ2

2a
2
2

= ηP1(x)r2 + ηP2(x)r2
1, (2.6)

−(1 + q) (2γ − 1) Υ2a2 = ηP1(x)s1 (2.7)

and

(γ(2 + q)− 1)
(
1 + q + q2

)
Υ3

(
2a2

2 − a3

)
− (2γ − 1) (1 + q)2Υ2

2a
2
2

= ηP1(x)s2 + ηP2(x)s2
1. (2.8)

From (2.6) and (2.7), we have

r1 = −s1. (2.9)

By squaring (2.6) and (2.7), then adding the new relations we get

2(1 + q)2 (2γ − 1)2 a2
2Υ2

2 = η2P 2
1 (x)

(
r2

1 + s2
1

)
. (2.10)

If we add (2.5) and (2.8) we obtain

2
[
(γ(2 + q)− 1)

(
1 + q + q2

)
Υ3 − (2γ − 1) (1 + q)2Υ2

2

]
a2

2

= ηP1(x) (r2 + s2) + ηP2(x)
(
r2

1 + s2
1

)
.

We can rewrite (2.10) as

r2
1 + s2

1 =
2(1 + q)2 (2γ − 1)2

η2P 2
1 (x)

a2
2Υ2

2.
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From above equation, we get

2
[
(γ(2 + q)− 1)

(
1 + q + q2

)
ηP 2

1 (x)Υ3

−
[
ηP 2

1 (x) + (2γ − 1)P2(x)
]

(2γ − 1) (1 + q)2Υ2
2

]
a2

2

= η2P 3
1 (x) (r2 + s2) ,

it follows that

a2
2 =

η2P 3
1 (x)(r2+s2)

2[(γ(2+q)−1)(1+q+q2)ηP 2
1 (x)Υ3−(ηP 2

1 (x)+(2γ−1)P2(x))(2γ−1)(1+q)2Υ2
2]
. (2.11)

Then taking the absolute value to the above equation and from (1.11) and
(2.2), we obtain

|a2| ≤ |η||x|
√
x√∣∣∣(γ(2+q)−1)(1+q+q2)ηx2Υ3−

[
ηP 2

1 (x)+
(2γ−1)

2
(3x2−1)

]
(2γ−1)(1+q)2Υ2

2

∣∣∣ ,
which gives the bound for |a2| as we asserted in our theorem.

To find the bound for |a3|. Using (2.5) from (2.8), we have

2 (γ(2 + q)− 1)
(
1 + q + q2

)
Υ3

(
a3 − a2

2

)
= η

[
P1(x) (r2 − s2) + P2(x)

(
r2

1 − s2
1

)]
. (2.12)

Form (2.9), (2.10) and (2.12), we obtain

a3 =
ηP1(x) (r2 − s2)

2 (γ(2 + q)− 1) (1 + q + q2) Υ3
+

η2P 2
1 (x)

(
r2

1 + s2
1

)
2(1 + q)2 (2γ − 1)2 Υ2

2

. (2.13)

Using (1.11) and (2.2), we get

|a3| ≤
|η| |x|

(γ(2 + q)− 1) (1 + q + q2) Υ3
+

|η|2 x2

(1 + q)2 (2γ − 1)2 Υ2
2

.

�

3. Fekete-Szegő problem for the function class Hq,λΣ (η, γ, α, β, x)

Theorem 3.1. Let f be given by (1.1) and if f ∈ Hq,λΣ (η, γ, α, β, x), then∣∣a3 − µa2
2

∣∣ ≤ |η||x| (|M +N |+ |M −N |) , (3.1)

where

M = (1−µ)ηx2

2
[
(γ(2+q)−1)(1+q+q2)ηx2Υ3−

[
ηx2+

(2γ−1)
2

(3x2−1)
]
(2γ−1)(1+q)2Υ2

2

] ,
N =

1

2 (γ(2 + q)− 1) (1 + q + q2) Υ3
, (3.2)

µ ∈ C, and Υk, k ∈ {2, 3}, are given by (1.8).
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Proof. Let f ∈ Hq,λΣ (η, γ, α, β, x). As in the proof of Theorem 2.2, from (2.9)
and (2.12), we have

a3 − a2
2 =

ηP1(x) (r2 − s2)

2 (γ(2 + q)− 1) (1 + q + q2) Υ3
, (3.3)

and multiplying (2.11) by (1− µ) we get

(1− µ) a2
2

=
(1−µ)η2P 3

1 (x)(r2+s2)

2[(γ(2+q)−1)(1+q+q2)ηP 2
1 (x)Υ3−[ηP 2

1 (x)+(2γ−1)P2(x)](2γ−1)(1+q)2Υ2
2]
. (3.4)

Adding (3.3) and (3.4) leads to

a3 − µa2
2 = ηh2 [(M +N) r2 + (M −N) s2] , (3.5)

where M and N are given by (3.2), and taking the absolute value of (3.5),
from (2.2) we obtain the desired inequality (3.1). �

Remark 3.2. A simple computation shows that the inequality |M | ≤ N is
equivalent to

|µ− 1| ≤

∣∣∣∣∣∣1−
[
ηx2 + (2γ−1)

2 (3x2 − 1)
]

(2γ − 1) (1 + q)2Υ2
2

ηx2 (γ(2 + q)− 1) (1 + q + q2) Υ3

∣∣∣∣∣∣ . (3.6)

Thus, from Theorem 3.1 we get the next result:

If the function f given by (1.1) belongs to the class Hq,λΣ (η, γ, α, β, x), and
η ∈ C∗, then ∣∣a3 − µa2

2

∣∣ ≤ ηx

(γ(2 + q)− 1) (1 + q + q2) Υ3
,

where µ ∈ C, with (3.6) and Υk, k ∈ {2, 3}, are given by (1.8).

4. Corollaries and its consequences

Allowing q → 1−, in view of Theorem 2.2 and Theorem 3.1, we obtain the
following result:

Corollary 4.1. Let the function f given by (1.1) belongs to the class
IλΣ(η, γ, α, β, x). Then

|a2| ≤
|η| |x|

√
x√∣∣∣3 (3γ − 1) ηx2

3Υ3 − 4
[
ηx2 + (2γ−1)

2 (3x2 − 1)
]

(2γ − 1) Υ2
2

∣∣∣
and

|a3| ≤
|η| |x|

3 (3γ − 1) Υ3
+

|η|2 x2

4 (2γ − 1)2 Υ2
2

.



344 S. M. El-Deeb, G. Murugusundaramoorthy and A. Alburaikan

Also for µ ∈ C, ∣∣a3 − µa2
2

∣∣ ≤ |η||x| (|M +N |+ |M −N |) , (4.1)

where

M = (1−µ)ηx2

2
[
3(3γ−1)ηx2Υ3−4

[
ηx2+

(2γ−1)
2

(3x2−1)
]
(2γ−1)Υ2

2

] ,
N =

1

2 (γ(2 + q)− 1) (1 + q + q2) Υ3

and Υk, k ∈ {2, 3}, are given by (1.8).

Fixing γ = 1, from Theorem 2.2 and Theorem 3.1 we get the following :

Corollary 4.2. Let f given by (1.1) belongs to the class Kq,λΣ (η, α, β, x). Then

|a2| ≤
|η| |x|

√
x√∣∣(1 + q) (1 + q + q2) ηx2

3Υ3 −
[
ηx2 + 1

2(3x2 − 1)
]

(1 + q)2Υ2
2

∣∣
and

|a3| ≤
|η| |x|

(q + 1) (1 + q + q2) Υ3
+

|η|2 x2

(1 + q)2Υ2
2

.

Also for µ ∈ C, ∣∣a3 − µa2
2

∣∣ ≤ |η||x| (|M +N |+ |M −N |) , (4.2)

where

M = (1−µ)ηx2

2[(q+1)(1+q+q2)ηx2Υ3−[ηx2+ 1
2

(3x2−1)](1+q)2Υ2
2]
,

N =
1

2 (q + 1) (1 + q + q2) Υ3

and Υk, k ∈ {2, 3}, are given by (1.8).

Taking η = γ = 1, from Theorem 2.2 and Theorem 3.1, we state the follow-
ing:

Corollary 4.3. Let f be given by (1.1) belongs to the class Kq,λΣ (γ, α, β, x).
Then

|a2| ≤
|x|
√
x√∣∣(1 + q) (1 + q + q2)x2

3Υ3 −
[
x2 + 1

2(3x2 − 1)
]

(1 + q)2Υ2
2

∣∣
and

|a3| ≤
|x|

(1 + q) (1 + q + q2) Υ3
+

x2

(1 + q)2Υ2
2

.
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Also, for µ ∈ C ∣∣a3 − µa2
2

∣∣ ≤ |x| (|M +N |+ |M −N |) ,

where

M = (1−µ)x2

2[(1+q)(1+q+q2)x2Υ3−[x2+ 1
2

(3x2−1)](1+q)2Υ2
2]
,

N =
1

2(1 + q) (1 + q + q2) Υ3

and Υk, k ∈ {2, 3} are given by (1.8).

Taking η = (1 − δ) cos θe−iθ
(
|θ| < π

2 ; 0 ≤ δ < 1
)
, from Theorem 2.2 and

Theorem 3.1, we state the following:

Corollary 4.4. Let f given by (1.1) belongs to the class Rq,λΣ (δ, θ, γ, α, β, x).
Then

|a2|

≤ (1−δ) cos θ|x|
√
x√

|(γ(2+q)−1)(1+q+q2)(1−δ) cos θe−iθx2
3Υ3−[(1−δ) cos θe−iθx2+

(2γ−1)
2 (3x2−1)](2γ−1)(1+q)2Υ2

2|

and

|a3| ≤
(1− δ) cos θ|x|

(γ(2 + q)− 1) (1 + q + q2) Υ3
+

(1− δ)2 cos2 θx2

(1 + q)2 (2γ − 1)
2

Υ2
2

.

Also, for µ ∈ C ∣∣a3 − µa2
2

∣∣ ≤ (1− δ) cos θ|x| (|M +N |+ |M −N |) , (4.3)

where

M

= (1−µ)(1−δ) cos θe−iθx2

2[(γ(2+q)−1)(1+q+q2)(1−δ) cos θe−iθx2Υ3−{(1−δ) cos θe−iθx2+
(2γ−1)

2 (3x2−1)}(2γ−1)(1+q)2Υ2
2]
,

N =
1

2 (γ(2 + q)− 1) (1 + q + q2) Υ3

and Υk, k ∈ {2, 3} are given by (1.8).

Remark 4.5. We emphasize that general classes Hq,λΣ (η, γ, α, β, x) are com-
pletely new and not studied based on Mittag-Leffler-Type Borel Distribution
involving the Legendre Polynomials. Suitably specializing the parameter γ, η
and in Corollary 4.1, one can easily deduce the results for the new subclasses
stated in Remark 1.4 based on Mittag-Leffler functions which are new and not
studied so far.
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Remark 4.6. We mention that all the above estimations for the coefficients
|a2|, |a3|, and Fekete-Szegő problem for the function classHq,λΣ (η, γ, α, β, x) are
not sharp. To find the sharp upper bounds for the above functionals remains
an interesting open problem, as well as those for |an|, n ≥ 4.

Acknowledgments The authors are grateful to the reviewers for their valu-
able remarks and advices that help us to improve the quality of the paper in
present form.
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[7] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-
univalent functions, Filomat, 27 (2013), 1165–1171.

[8] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions,
J. Classical Anal., 2(1) (2013), 49–60.

[9] P.L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften,
Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[10] A. Ebadian, N.E. Cho, E.A. Adegani, S. Bulut and T. Bulboaca, Radii problems for
some classes of analytic functions associated with Legendre polynomials of odd degree,
JIA (2020). 178,https://doi.org/10.1186/s13660-020-02443-4.

[11] S.M. El-Deeb, Maclaurin coefficient estimates for new subclasses of bi-univalent func-
tions connected with a q-analogue of Bessel function, Abstract Appl. Anal., Article ID
8368951, (2020), 1–7, https://doi.org/10.1155/2020/8368951.
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