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Abstract. In this paper, we study the following nonlinear problem:{
−∆3

p(x)u = λV1(x)|u|q(x)−2u in Ω,

u = ∆u = ∆2u = 0 on ∂Ω,

under adequate conditions on the exponent functions p, q and the weight function V1. We

prove the existence and nonexistence of eigenvalues for p(x)-triharmonic problem with Navier

boundary value conditions on a bounded domain in RN . Our technique is based on variational

approaches and the theory of variable exponent Lebesgue spaces.
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1. Introduction

We study the properties of the eigenvalue of the p(x)-triharmonic problem:{
−∆3

p(x)u = λV1(x)|u|q(x)−2u in Ω,

u = ∆u = ∆2u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, (N > 3), p, q ∈
C(Ω), 1 < p(x) < N

3 , 1 < q(x) < N
3 for all x ∈ Ω, λ is a nonnegative real

parameter, V1 is an indefinite weight function that can change the sign in Ω,
∆3
p(x)u := div

(
∆(|∇∆u|p(x)−2∇∆u)

)
is p(x)-triharmonic operator. Note that

p(x)-triharmonic operator which is not consistent and is related to the variable

exponent Lebesgue space Lp(x)(Ω) and the variable exponent Sobolev space

W 1,p(x)(Ω). It is also worth mentioning that the problems with the growth
conditions p(x)-triharmonic have more complicated nonlinearities than the
constant cases. Indeed, firstly the problem is not homogeneous, and secondly,
the Lagrange multiplier theorem is not be useful in such a case because p(x)
is variable. We find this kind of problem in the modeling of electrorheological
fluids [12, 13] and of elastic mechanics. For more details, we invite the reader
to an overview of references [3, 4, 9, 15].

In the literature, several authors treat the eigenvalues of biharmonic prob-
lems for example Ge et al. [8] considered the eigenvalues of the p(x)-biharmonic
problem with an indefinite weight:{

∆(|∆u|p(x)−2∆u) = λV (x)|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
(1.2)

where p, q are continuous functions and V is an indefinite weight function.
Under appropriate conditions on p and q, they showed the existence of a
continuous family of eigenvalues of the problem.

In [1] Ayoujil studied a class of p(·)-biharmonic of the form{
∆(|∆u|p(x)−2∆u) = λV (x)|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
(1.3)

and he established the existence and non-existence of eigenvalues for a p(x)-
biharmonic equation function of weight on a bounded domain in RN.

In this paper, if not otherwise stated, we will always suppose that exponent
p(x) is continuous on Ω with

p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) <
N

3
,
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and p∗(x) denotes the critical variable exponent related to p(x), defined for all

x ∈ Ω by the pointwise relation p∗3(x) = Np(x)
N−3p(x) .

Let us introduce some conditions for Problem (1.1) as follows:

(H1) p+ < q− ≤ q+ < p∗(x) , r1(x) >
p∗3(x)

p∗3(x)−p(x) ;

(H2) V1 ∈ Lr1(x)(Ω).

Based on the use of Mountain Pass lemma here, Problem (1.1) is stated in
the framework of the generalized Sobolev space:

X := W
1,p(·)
0 (Ω) ∩W 3,p(·)(Ω)

equipped with the norm:

‖u‖ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∇∆u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

X endowed with the above norm is a separable and reflexive Banach space.

The paper is structured as follows. In Section 2, we present a mathematical
background of variable exponent Lebesgue spaces and Sobolev spaces. In
Section 3, we give our main results and the proofs.

2. Preliminaries

As preliminaries, we need some results on the variable exponent spaces
Lp(·)(Ω) and W k,p(·)(Ω) and some properties. Let Ω be a bounded domain of
RN and denote

C+(Ω) =
{
h(x) : h(x) ∈ C(Ω), h(x) > 1, ∀x ∈ Ω

}
.

For any h ∈ C+(Ω), we define

h+ = max
{
h(x) : x ∈ Ω

}
, h− = min

{
h(x) : x ∈ Ω

}
.

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(·)(Ω) =
{
u : Ω→ R measurable and

∫
Ω
|u(x)|p(x)dx <∞

}
,

endowed with the so-called Luxemburg norm

|u|p(·) = inf
{
µ > 0 :

∫
Ω
|u(x)

µ
|p(·)dx ≤ 1

}
.

Then (Lp(·)(Ω), | · |p(·)) becomes a Banach space.
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Proposition 2.1. ([14]) Let (Lp(·)(Ω), | · |p(·)) be separable, uniformly convex,

reflexive and its conjugate space be Lq(·)(Ω) where q(·) is the conjugate function
of p(·), i.e.,

1

p(·)
+

1

q(·)
= 1.

Then for u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), we have∣∣∣ ∫
Ω
uvdx

∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(·)|v|q(·) ≤ 2|u|p(·)|v|q(·).

A fundamental tool in the manipulation of generalized Lebesgue spaces
which is the mapping ρ : Lp(x)(Ω) → R, called the modular of the Lp(x)(Ω)
space, defined by:

ρp(x)(u) =

∫
Ω
|u|p(x) dx.

We remember the following, (see ([7, 11])) .

Proposition 2.2. For all u ∈ Lp(x)(Ω), we have

(1) |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) if |u|p(x) > 1;

(2) |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) if |u|p(x) ≤ 1.

The Sobolev space with variable exponent W k,p(·)(Ω) is defined as

W k,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ k

}
,

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, with α = (α1, · · · , αN ) is a multi-index and

|α| =
N∑
i=1

αi. The space W k,p(·)(Ω) equipped with the norm

‖u‖k,p(·) =
∑
|α|≤k

|Dαu|p(·),

also becomes a separable and reflexive Banach space. For more details, see to
([14]). Denote

p∗k(·) =

{
Np(·)

N−kp(·) if kp(·) < N,

+∞ if kp(·) ≥ N,
for any k ≥ 1.

Proposition 2.3. ([2]) For p, q ∈ C+(Ω) such that q(·) ≤ p∗k(·), there is a
continuous embedding

W k,p(·)(Ω) ↪→ Lq(·)(Ω).
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If we replace ≤ with <, the embedding is compact.

Similarly to Proposition 2.3, we have:

Proposition 2.4. ([6]) Let Ip(x)(u) =
∫

Ω |∇∆u(x)|p(x)dx. Then for u ∈ X,
we have

(1) for ‖u‖ ≤ 1, ‖u‖p+ ≤ Ip(x)(u) ≤ ‖u‖p−;

(2) for ‖u‖ ≥ 1, ‖u‖p− ≤ Ip(x)(u) ≤ ‖u‖p+.

The following result (see ([2]), Theorem 3.2), which will be used later, is an

embedding result between the spaces X and Lq(x)(Ω).

Theorem 2.5. Let p, q ∈ C+(Ω). Assume that

p(x) <
N

3
and q(x) < p∗3(x).

Then, there is a continuous and compact embedding X into Lq(x)(Ω).

We remember as well the next proposition, which will be needed later.

Proposition 2.6. ([5]) Let p(x) and q(x) be measurable functions such that

p(x) ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω),
u 6= 0. Then , we have

(1) for |u|p(x)q(x) ≤ 1, |u|p
+

p(x)q(x) ≤
∣∣|u|p(x)

∣∣
q(x)
≤ |u|p

−

p(x)q(x),

(2) for |u|p(x)q(x) >, 1 |u|p
−

p(x)q(x) ≤
∣∣|u|p(x)

∣∣
q(x)
≤ |u|p

+

p(x)q(x).

Let the functionals I, J : X → R defined as

I(u) =

∫
Ω

|∇∆u|p(x)

p(x)
dx, ∀u ∈ X (2.1)

and

J(u) =

∫
Ω

V1(x)|u|q(x)

q(x)
dx, ∀u ∈ X. (2.2)

Applying a standard argument, we can show the next lemma.

Lemma 2.7. Assume that (H1) and (H2) hold. Then, the functionals I and
J are well defined, I is coercive, and J is weakly continuous. Moreover, I, J ∈
C1(X,R) with the derivatives are respectively given by

〈I ′(u), φ〉 =

∫
Ω
|∇∆u|p(x)−2∇∆u∇∆φdx (2.3)
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and

〈J ′(u), φ〉 =

∫
Ω
V1(x)|u|q(x)−2uφdx,

for all u, φ ∈ X, where 〈., .〉 denotes the duality between X and its dual space
X∗.

We give an auxiliary result which will help us further in the demonstration.

Proposition 2.8. (i) I is weakly lower semi-continuous, namely un ⇀ u
implies that I(u) ≤ lim inf I(un).

(ii) I is a weakly-strongly continuous functional, namely un ⇀ u implies
that I(un) −→ I(u).

Proof. (i) By coercivity, we get

0 ≤ 〈I(un − u), un − u〉
= 〈I(un), un〉 − 〈I(un), u〉 − 〈I(u), un〉+ 〈I(u), u〉.

Hence,
〈I(un), u〉+ 〈I(u), un〉 − 〈I(u), u〉 ≤ 〈I(un), un〉.

Now, I is continuous, so by un ⇀ u it follows that 〈I(un), u〉 → 〈I(u), u〉.
Then,

〈I(un), u〉+ 〈I(u), un〉 − 〈I(u), u〉 → 〈I(u), u〉 as n→∞.
As consequence, we have

〈I(u), u〉 = lim inf
n−→∞

(〈I(un), u〉+ 〈I(un), un〉 − 〈I(u), u〉)

≤ lim inf
n−→∞

〈I(un), un〉.

(ii) Let’s consider {un} a sequence in X such that un ⇀ u in X. Denote

by r
′
1(x) the conjugate exponent of the function r1(x) (i.e. r

′
1(x) = r1(x)

r1(x)−1).

Hence, as q(x)r
′
1(x) < p∗3(x), Theorem 2.5 involves un ⇀ u in Lq(x)r

′
(x)(Ω).

This, together with the continuity of Nemytski operator NV1,q defined by

NV1,q(u)(x) = V1(x)|u(x)|q(x) if u 6= 0 and NV1,q(u)(x) = 0 if not, give
I(un)→ I(u). �

3. Main results

Definition 3.1. We say that u ∈ X is a weak solution of Problem (1.1) if u
satisfies∫

Ω
|∇∆u|p(x)−2∇∆u∇∆vdx− λ

∫
Ω
V1(x)|u|q(x)−2uvdx = 0, (3.1)

for all v ∈ X.
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The energy functional corresponding to Problem (1.1) is defined by Lλ :
X → R,

Lλ(u) = I(u)− λJ(u).

We consider

F (u) =

∫
Ω
|∇∆u|p(x)dx

and

G(u) =

∫
Ω
V1(x)|u|q(x)dx,

for every (u, v) ∈ X. Define

λ∗ = inf
{ I(u)

J(u)
, u ∈ X and J(u) > 0

}
and

λ∗ = inf
{F (u)

G(u)
, u ∈ X and G(u) > 0

}
.

We begin with the next lemma, which plays a fundamental role in the proof
of Theorem 3.3.

Lemma 3.2. Assume that (H1) and (H2) are verified and

2q+ − p− < 2q− (3.2)

hold. Then

lim
‖u‖−→0

I(u)

J(u)
=∞ (3.3)

and

lim
‖u‖−→∞

I(u)

J(u)
=∞. (3.4)

Proof. Since J(u) =
∫

Ω
V1(x)|u|q(x)

q(x) dx,

|J(u)| =

∣∣∣∣∣
∫

Ω

V1(x)|u|q(x)

q(x)
dx

∣∣∣∣∣
≤

∫
Ω

∣∣∣∣∣V1(x)|u|q(x)

q(x)

∣∣∣∣∣ dx.
By applying the Hölder’s inequality, we get

|J(u)| ≤ 2

q−
|V1|r1(x)

∣∣∣|u|q(x)
∣∣∣
r
′
1(x)

.
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Thanks to Proposition 2.6, it follows

|J(u)| ≤ 2

q−
|V1|r1(x)|u|

qi

q(x)r
′
1(x)

, (3.5)

where i = + if |u|
q(x)r

′
1(x)

> 1 and i = − if |u|
q(x)r

′
1(x)

< 1.

On the one hand, using (H1), we have p(x) < q(x)r
′
1(x) < p∗(x). Hence,

from Proposition 2.2, X is continuously embedded in Lq(x)r
′
1(x)(Ω) . So, there

exists c1 > 0 such that

|J(u)| ≤ 2c1

q−
|V1|r1(x)|u|q

i
. (3.6)

Then, we proceed as follows

I(u) =

∫
Ω

|∇∆u|p(x)

p(x)
dx

≥ 1

p+

∫
Ω
|∇∆u|p(x)dx

≥ 1

p+
‖u‖p+

≥ 1

p+
‖u‖p+ .

For each u ∈ X small enough with ‖u‖ ≤ 1 , by using (3.5) and (3.6), we infer

I(u)

J(u)
≥

1
p+
‖u‖p+

2c1
q− |V1|r1(x)‖u‖q

i
. (3.7)

Since p+ < q− ≤ q+, passing to the limit as ‖u‖ −→ 0 in the above inequality,
we conclude that assertion (3.3) stay true.

Next, we prove that assertion (3.4) remains true. From (3.2), there exists a
positive constant δ such that 2q+ − p− < δ < 2q−. Hence we get

p− > 2(q+ − δ) > 2(q− − δ). (3.8)

Let s1(x) be a measurable function such that

p∗(x)

p∗(x) + δ − q(x)
≤ s1(x) ≤ p∗(x)r1(x)

p∗(x) + δr1(x)
, (3.9)

for almost all x ∈ Ω and

δ(
s+

1

s−1
+ 1) ≤ q−. (3.10)

It’s clear that s1 ∈ L∞(Ω), 1 < s1(x) < r1(x). In addition, we have

δt1(x) ≤ p∗(x) and (q(x)− δ)s′1(x) ≤ p∗(x), ∀x ∈ Ω, (3.11)
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where t1(x) := r1(x)s1(x)
r1(x)−s1(x) and s

′
1(x) = s1(x)

s1(x)−1 .

Let u ∈ X with ‖u‖ > 1. From Hölder’s inequality, we have

|J(u)| ≤ 2

q−

∣∣∣V1|u|δ
∣∣∣
s1(x)

∣∣∣|u|q(x)−δ
∣∣∣
s
′
1(x)

. (3.12)

Without loss of generality, we assume that
∣∣V1|u|δ

∣∣
s1(x)

> 1. So, from Propo-

sition 2.2 and from Hölder’s inequality, we obtain

|J(u)| ≤ 2

q−

(
(ρs1(x)|V1|u|δ)

) 1

s−1

∣∣∣|u|q(x)−δ
∣∣∣
s
′
1(x)

=
2

q−

(∫
Ω

∣∣∣|V1|s1(x)|u|δs1(x)
∣∣∣) 1

s−1
∣∣∣|u|q(x)−δ

∣∣∣
s
′
1(x)

≤ 4

q−

∣∣∣|V1|s1(x)
∣∣∣ 1

s−1
r1(x)
s1(x)

∣∣∣|u|δs1(x)
∣∣∣ r1(x)
r1(x)−s1(x)

∣∣∣|u|q(x)−δ
∣∣∣
s
′
1(x)

.

(3.13)

Taking into consideration Proposition 2.6, we write∣∣∣|u|δs1(x)
∣∣∣ 1

s−1
r1(x)

r1(x)−s1(x)
≤ |u|

δs+1

s−1
δt1(x) + |u|δδt1(x),∣∣∣|u|q(x)−δ

∣∣∣
s
′
1

≤ |u|q
+−δ

(q(x)−δ)s′1(x)
+ |u|q

−−δ
(q(x)−δ)s′1(x)

and ∣∣∣|V1|s1(x)
∣∣∣ 1

s−1
r1(x)
s1(x)

≤ |V1|ν1r1(x)

with

ν1 =


s+1
s−1

if |V1|r1(x) > 1,

1 if |V1|r1(x) ≤ 1.

Therefore, we replace the above inequalities into (3.12) and then by Young’s
inequality, it follows

|J(u)| ≤ 4

q−
|V1|ν1r1(x)

|u|δ s+1s−1δt1(x) + |u|δδt1(x)

(|u|q+−δ
(q(x)−δ)s′1(x)

+ |u|q
−−δ

(q(x)−δ)s′1(x)

)

≤ 4

q−
|V1|jr1(x)

|u|2δ s+1s−1δt1(x) + |u|2δδt1(x) + |u|2(q+−δ)
(q(x)−δ)s′1(x)

+ |u|2(q−−δ)
(q(x)−δ)s′1(x)

 .

(3.14)
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From (3.11), we infer by Theorem 2.5 that X is continuously embedded in

both L
δ
(
r1(x)
s1(x)

)′
(Ω) and L(q(x)−δ)s′1(x)(Ω). Then, there exists positive constant

c1 such that

|J(u)| ≤ 4c1

q−
|V1|νr1(x)

‖u‖2δ s+1s−1 + ‖u‖2δ+‖u‖2(q+−δ) + ‖u‖2(q−−δ)

 (3.15)

Therefore, we get

I(u)

J(u)
≥ q−‖u‖p−

4c1p+|V1|νr1(x)

‖u‖2δ s+1s−1 + ‖u‖2δ+‖u‖2(q+−δ) + ‖u‖2(q−−δ)

 .

Combining (3.8) and (3.10), we conclude p− > 2(q+ − δ) > 2(q− − δ) >

2δ
s+1
s−1

> 2δ. Hence, passing to the limit as ‖u‖ −→ ∞ in the above inequality,

we conclude that relation (3.4) remains valid. �

The main results of this work are presented as follows.

Theorem 3.3. Suppose V1 > 0 on Ω. Assume that (H1) and (H2) are verified
and satisfy (3.2). Then, we have

(i) 0 < λ∗ ≤ λ∗,
(ii) λ∗ is an eigenvalue of Problem (1.1),

(iii) For each λ > λ∗ is an eigenvalue of Problem (1.1) while any λ < λ∗ is
not an eigenvalue.

Proof. (i) We want to show that λ∗ ≥ 0 and q−

p+
λ∗ ≤ λ∗ ≤ q+

p−λ∗. Therefore,

λ∗ ≤ λ∗ since p+ < q−. We use reasoning by absurdity and we suppose that
λ∗ = 0, so λ∗ = 0. Let’s consider {un} a sequence in X\{0} such that

lim
n

I(un)

J(un)
= 0.

As in (3.7), we obtain
I(un)

J(un)
≥ C‖un‖p

+−q− ,

for some positive constant C. Since p+ < q−, we have ‖un‖ → ∞. And we
deduce from (3.3) that

lim
n

I(un)

J(vn)
=∞,

which is a contradiction with the hypothesis.
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(ii) Let {un} ⊂ X\{0} be a minimizing sequence for λ∗, that is,

lim
n

I(un)

J(un)
= λ∗. (3.16)

From (3.4), {un} is bounded in X which is reflexive. Therefore, there exists
u ∈ X such that un ⇀ u in X. This together with Proposition 2.8 gives that

I(un)→ I(u) (3.17)

and

lim inf I(un) ≥ I(u). (3.18)

Combining (3.16), (3.17) and (3.18), we get that if u 6= 0,

I(u)

J(u)
= λ∗.

We try to show that u is non-trivial. Through using the reasoning by absurd
and suppose that u = 0. Hence, lim I(un) = 0 and so, by (3.16), we deduce

lim I(un) = lim
I(un)

J(un)
J(un) = 0.

From the above equation and Proposition 2.4 involves that ‖un‖ → 0. Ac-
cording to (3.4), we get

lim
I(un)

J(un)
=∞,

which is a contradiction. As a consequence, u 6= 0.

(iii) Assume that λ > λ∗ is fixed and let u ∈ X with ‖u‖ > 1. It follows from
inequality (3.15) that

Lλ(u) ≥ 1

p+
‖u‖p− − λK1

(
‖u‖2δ

s+

s− + ‖u‖2δ + ‖u‖2(q+−δ) + ‖u‖2(q−−δ)
)
,

where K1 = 4c1
q− |V |

ν
r1(x). As p− > 2(q+−δ) > 2(q−−δ) > 2δ

s+1
s−1

, the inequality

above involves that Lλ(u)→∞ as ‖u‖ → ∞, that is, Lλ is coercive. Moreover,
it results from Proposition 2.8 that the functional Lλ is weakly lower semi-
continuous. As result we conclude from [[10], Proposition 1.2, Chapter 32],
that there exists a global minimizer u0 of Lλ in X. Since λ > λ∗, by definition

of λ∗ we verify that there is an element v ∈ X\{0} such that I(u)
J(u) < λ. Hence,

Lλ(v) < 0 which ensures that

Lλ(u0) = inf
u∈X\{0}

Lλ(u) < 0.

Therefore, we deduce that u0 6= 0.
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Now, suppose by contradiction that there exists λ ∈ (0, λ∗) an eigenvalue
of Problem (1.1). Therefore, there exists uλ ∈ X\{0} such that

〈I ′(uλ), v〉 = λ〈J ′(uλ), v〉, ∀v ∈ X.

In particular, for v = uλ, we have

I(uλ) = λJ(uλ).

As uλ 6= 0, we have J(uλ) > 0. This, together with the fact λ < λ∗ gives

I(uλ) > λ∗J(uλ) > λJ(uλ) = I(uλ),

which is a contradiction. The proof has been completed. �

In the situation when V1 is a sign-changing function, we define

X+
1 =

{
u ∈ X :

∫
Ω
V1(x)|u|q(x)dx > 0

}
and

X−1 =
{
u ∈ X :

∫
Ω
V1(x)|u|q(x) < 0

}
.

And also, we define

α∗ = inf
u∈X+

I(u)

J(u)
, α∗ = inf

u∈X+

F (u)

G(u)
, (3.19)

β∗ = inf
u∈X−

I(u)

J(u)
, β∗ = inf

u∈X−
F (u)

G(u)
. (3.20)

Theorem 3.4. Suppose that (H1) and (H2) are verified and∣∣{x ∈ Ω : V1(x) > 0
}∣∣ 6= 0 (3.21)

are hold. Then, we get

(i) β∗ ≤ β∗ < 0 < α∗ ≤ α∗,
(ii) α∗(resp. β∗) is a positive (resp. negative) eigenvalue of Problem (1.1),

(iii) any λ ∈ (−∞, β∗) ∪ (α∗,∞) is an eigenvalue of Problem (1.1) while
λ ∈ (β∗, α

∗) is not an eigenvalue.

Proof. Precise that if λ > 0 is an eigenvalue of Problem 1.1 with weight V1,
hence, −λ is an eigenvalue of Problem 1.1 with weight V1. Then, it is enough
to show Theorem 3.3 only for λ > 0. Then, the Problem 1.1 has only to be
considered in X+ and in this situation, the same demonstration to that of
Theorem 3.3 and thus it will be neglected here. �
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