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Abstract. In this paper, we carried out a new numerical approach for solving integral alge-

braic equations with weakly singular kernels. The novel method is based on the construction

of B-spline tight framelets using the unitary and oblique extension principles. Some numer-

ical examples are given to provide further explanation and validation of our method. The

result of this study introduces a new technique for solving weakly singular integral alge-

braic equation and thus in turn will contribute to providing new insight into approximation

solutions for integral algebraic equation (IAE).

1. Introduction

A system consisting of two volterra integral equations of the first and sec-
ond kind is called IAE, which has been widely discussed and arises in numer-
ous mathematical modeling problems in applied science. Kernel identification
problems in heat conduction and viscoelasticity [20], as well as the evolution of
a chemical reaction within a small cell [16], are some natural examples. In this
paper, we introduce a new numerical method for solving a mixed system of
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first and second kind of volterra integral equations (VIE) with weakly singular
kernels. More precisely, we consider the following semi-explicit system of the
volterra integral equation:

y(t) = g1(t) + (v11y) (t) + (v12z) (t),

0 = g2(t) + (v21y) (t) + (v22z) (t),
(1.1)

where the singular Volterra integral operators vkl are given by:

(vklq) (t) =

∫ t

0
(t− s)−αKkl(t, s) q(s)ds, (1.2)

where t ∈ I = [0, T ](k, l = 1, 2), and 0 < α = n
m < 1 (n,m ∈ N, n < m),

the functions g1, g2 and Kkl(t, s) are given smooth functions on I and D =
{(t, s) : 0 ≤ s ≤ t ≤ T} respectively. Furthermore, we assume that g2(0) =
0, |K22(t, t)| ≥ k0 > 0, for all t ∈ I. The type of system in (1.1) that satisfies
these conditions is called the weakly singular integral algebraic equation of
index-1 (WS-IAE).

The semi-explicit system in (1.1) could be written in a matrix form as:

AX(t) = G(t) +

∫ t

0
(t− s)−αK(t, s)X(s)ds, t ∈ I, (1.3)

where
G(t) = (g1(t), g2(t))

t , X(t) = (x1(t), x2(t))
t ,

K(t, s) =

(
k11(t, s) k21(t, s)
k21(t, s) k22(t, s)

)
and A(t) is a singular matrix with continuous entries. Due to the algebraic
form of the matrix A(t), system in (1.2) can be represented in different forms.
In particular, for the semi-explicit system of volterra integral equations in

(1.1), notice that the matrix A should be in the form: A =

(
1 0
0 0

)
.

Many different definitions of the IAE index have been discussed in the lit-
erature, and they are often closely related. For example, Brunner in [4] inves-
tigates the “tractability index” that the algebraic constraints. Subsequently,
Chistyakov et al studied the left index [6], and Gear in [14] introduce the con-
cept of the differentiation index, that based on a reduction process for WS-IAE
to yield a regular system of IAE, and that plays a significant role in analysis
and the construction of numerical techniques for the integral algebraic equa-
tion. In general, solving integral algebraic equations with an index of more
than one is complicated. Various numerical methods have been developed for
solving integral algebraic equations. On the other hand, the numerical solu-
tion for IAE with weakly singular kernels is not widely investigating. Brunner
and Bulatov in 1998 examined the existence and uniqueness of WS-IAE [5].
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Bulatov et al [7] determined the sufficient conditions for the existence of a
unique continuous solution. Hadizadeh et al [18] provide a numerical method
for solving a system in (1.1) using the Chebyshev collocation method. They
investigated the approximate solution of WS-IAEs where the derivatives of its
solutions are unbounded at the lowest endpoint of the interval, so they have
used some suitable variable transformations to convert the original system to
a new one with more regular solutions.

Based on the unitary and oblique extension concepts, B-spline tight framelets
systems are generated. We developed a new numerical technique for solving
integral algebraic equations with weakly singular kernels (1.1). The organi-
zation of this paper is as follows: Section 2 is dedicated to presenting some
background information on frames and notations. Section 3 includes the fun-
damentals of creating B-spline tight framelet systems using unitary and oblique
extension principles. The numerical simulation method using the B-spline
tight framelet to solve equation (1.1) is introduced in section 4. Finally, some
numerical examples are presented to verify the accuracy of the result.

2. Preliminaries

Duffin and Schaeffer introduced frames in 1952 to help in the analysis of a
particular form of non-harmonic Fourier series. Frames for L2(R) were con-
structed by Daubechies and others. Integral equations have been solved using
wavelets. Beylkin was the first to apply the wavelet approach to solve integral
equations, in 1991. Many numerical techniques for solving different forms of
integral equations, such fredholm and volterra integral equations are discussed.

Now, we will recall some concepts that essential for this article.

If a compactly supported function ϕ(x) ∈ L2(R) satisfies the equation:

ϕ(x) = 2
∑

h0[k]ϕ(2x− k), where k ∈ Z, (2.1)

then it is considered refinable for some finite supported sequence h0[k] ∈ l2(Z).
The sequence h0 is called the refinable mask or the low pass filter for ϕ.

A compactly supported wavelet ψ is called having an order of vanishing
moments m if ∫

xkψ(x)dx = 0, for all 0 ≤ k ≤ m− 1.

Definition 2.1. A sequence of elements {fk}∞k=1 in L
2(R) is a frame for L2(R)

if there exist constants A,B > 0 such that

A ∥f∥2 ≤
∞∑
k=1

|⟨f, fk⟩|2 ≤ B ∥f∥2 .
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The numbers A,B are the frame bounds. A frame is tight if A = B.

For a functionf ∈ L2(R), the Fourier transform of f is defined by

f̂ =

∫
R
f(x)e−iωxdx, ω ∈ R.

For a given sequence {hk, k ∈ Z}, the Fourier series is given by

ĥ(ω) =
∑
k∈Z

h(k)e−iωk.

3. Main theorems: B-spline tight framelets

In many fields, such as geometric modeling and applied mathematics, quasi-
affine tight framelets systems generated by the unitary extension principle and
oblique extension principle play a key role. For example, it has been used to
obtain approximate solution for integral equations such as VIE of first and
second kind [1], and other areas see for example [17]. In particular, we used
the B-spline function of various orders to obtain framelets from a compactly
supported refinable function.

The B-spline function of order n, is defined by using convolution as in [16].

Bn(x) = Bn−1(x) ∗B1(x) =

∫ 1/2

−1/2
Bn−1(x− t)dt n ≥ 2, x ∈ R, (3.1)

where B1(x) = χ[−1
2
, 1
2
](x) is the characteristic function of the interval [−1

2 ,
1
2 ].

The Fourier transform for the B-spline of order n is given by

B̂n(ω) = e
−ijω

2

(
sin
(
ω
2

)
ω
2

)n

,

where j = 1 when n is odd and zero otherwise, and its refinable mask is defined
as

ĥ0(ω) = exp

(
−ijω
2

)(
cos(

ω

2
)
)n
.

It is clear that Bn(x) is a polynomial of degree n-1, more details for the
B-spline can be found in references [2], [3], and [19] and some application in
[21]. According to Ron and Dyn, the periodic exponential B-splines, possess an
essential property of translation invariance and satisfy a generalized Hermite—
Genocchi formula [13]. Recently, the development of approximate approaches
using the B-spline function has a lot of interest. The graphs of the B-splines
for n = 2, 3, 4 are presented in Figure 1.
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Figure 1. The B-spline function of different orders.

3.1. B-spline tight framelet by unitary extension principle (B-UEP).
Dong and Shen’s introduce a theorem, which utilizes the unitary extension
principle (UEP) to generate a tight frame for L2(R) using a multiresolution
analysis provided by a refinable function.

Definition 3.1. ([11]) For the set of functions Ψ := {ψ1, ψ2, ..., ψn}. A
framelets system for L2(R) generated by Ψ is defined as

X(Ψ) = {ψl,j,k, 1 ≤ l ≤ n, j, k ∈ Z} , (3.2)

where

ψl,j,k = DjTkψl = 2
j
2ψl(2

j .− k), l = 1, ..., n,

ψl = 2
∑
k∈Z

hl[k]ϕ(2x− k).

The sequence {hl[k]}nl=1 is called the high pass filter of the system.

Framelets may be used to approximate a function, and to have a proper
estimate for a function, we need approximation schemes, one of which is the
quasi-interpolation scheme, which is defined as follows:

Pn : f →
∑
k∈Z

⟨ϕ, ϕn,k⟩ϕn,k. (3.3)

Now, we consider the following two lemmas before introduce the unitary
extension principle theorem [12].

Lemma 3.2. Let ϕ(x) ∈ L2(R) be a refinable function with a refinable mask
h0, and the sequence {hl}rl=1 satisfies the condition (3.3). Then

Pnf = Pn−1f +

r∑
l=1

∑
k∈Z

⟨f, ψl,n−1,k⟩ψl,n−1,k.
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Lemma 3.3. Let ϕ(x) ∈ L2(R) be a refinable function and the operator Pn be
defined in (3.3). Then, for all function g ∈ L2(R)

lim
n→∞

Png = g and lim
n→−∞

Png = 0.

Theorem 3.4. Let ϕ ∈ L2(R) be a compactly supported refinable function with
its refinable mask h0, and let {hl}rl=1 be a set of finitely supported sequence.
Then the system X(Ψ) defined in (3.2) forms a tight frame for L2(R) provided
that

r∑
l=0

∣∣∣ĥl(ω)∣∣∣2 = 1 and
r∑

l=0

∣∣∣ĥl(ω) ĥl(ω + π)
∣∣∣2 = 0 (3.4)

hold for ω ∈ [−π, π].

Proof. Using Lemma 3.2, we have

Pnf = Pn−1f +
r∑

l=1

∑
k∈Z

⟨f, ψl,n−1,k⟩ψl,n−1,k.

By induction and consider m = n− 1, we obtain

Pnf = Pmf +

r∑
l=1

n−1∑
j=m

∑
k∈Z

⟨f, ψl,j,k⟩ψl,j,k.

Let m→ −∞ and applying Lemma 3.3, we have

Pnf =

r∑
l=1

∑
j<n

∑
k∈Z

⟨f, ψl,j,k⟩ψl,j,k.

Then, taking n→ ∞ on both sides and using lemma 3.3

f =

r∑
l=1

∑
n∈Z

∑
k∈Z

⟨f, ψl,n,k⟩ψl,n,k.

Therefore, X(Ψ) is a tight framelets for L2(R). □

For an arbitrary f ∈ L2(R), by using the truncated quasi-interpolation
operators on framelets, it can be represented as:

Pnf =

r∑
l=1

∑
j<n

∑
k∈Z

⟨f, ψl,j,k⟩ψl,j,k.

Numerical solutions to integral algebraic equations with weakly singular ker-
nels could be found by using this representation.
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Example 3.5. Let ϕ0(.) be the B-spline function of a second order, with

low pass filter ĥ0 = 1
4

(
1 + e−iω

)2
. Then the Fourier transform of the high

pass filter h1 = −1
4

(
1− e−iω

)2
and h2 = −

√
2

4

(
1− e−2iω

)
. The corresponding

system X(Ψ) = {ψ1, ψ2} is a framelets, where

2ψ1 =
−1

2
(|x− 2| − 2 |2x− 3|+ 6 |x− 1| − 2 |2x− 1|+ |x|) ,

ψ2 =
1

2
(|x− 2| − 2 |2x− 3|+ 2 |2x− 1| − |x|) .

Curves for B2-tight framelet functions produced by UEP ψ1 and ψ2 are
illustrated in Figure 2.

Figure 2. The framelets functions B2-UEP.

Example 3.6. For the compactly supported refinable function ϕ(x) = B4(x),
define

3ĥ1 =
1

4

(
1− e−iω

)4
, ĥ2 =

−1

4

(
1− e−iω

)3 (
1 + e−iω

)
,

ĥ3 =
−
√
6

16

(
1− e−iω

)2 (
1 + e−iω

)2
,

ĥ4 =
−1

4

(
1− e−iω

) (
1 + e−iω

)3
,

then, the system X(Ψ) = {ψ1, ψ2, ψ3, ψ4} is a framelets for L2(R),
where

2ψ1 =
1

3

(
|x− 4|3 − |2x− 1|3 + 28 |x− 3|3 − 7 |2x− 5|3 + 70 |x− 2|3

−7 |2x− 3|3 − 28 |x− 1|3 − |2x− 1|3 + |x|3
)
,

ψ2 =
−1

3

(
|x− 4|3 − 6 |x− 3.5|3 + 14 |x− 3|3 − 14 |x− 2.5|3 + 14 |x− 1.5|3

−14 |x− 1|3 + 6 |x− 0.5|3 − |x|3
)
,
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2ψ3 =
−1

2
√
6

(
|x− 4|3 − 4 |x− 3.5|3 + 4 |x− 3|3 + 4 |x− 2.5|3 − 10 |x− 2|3

+4 |x− 1.5|3 + 4 |x− 1|3 − 4 |x− 0.5|3 + |x|3
)
,

ψ4 =
1

3

(
|x− 4|3 − 2 |x− 3.5|3 − 2 |x− 3|3 + 6 |x− 2.5|3 − 6 |x− 1.5|3

+2 |x− 1|3 + 2 |x− 0.5|3 − |x|3
)
.

The framelets functions ψ1, ψ2, ψ3, and ψ4 generated based on using a fourth-
order B-spline function (B4) are represented in Figure 3.

Figure 3. The tight framelets functions B4-UEP.

3.2. B-spline tight framelet by oblique extension principle (B-OEP).
With a high approximation order truncated wavelet system and high order
vanishing moments in the generators, the oblique extension concept could be
utilized to construct a tight framelete. The unitary extension theory has been
generalized several times since 1997. The oblique extension principle of [9] and
[10] is the first generalization of the unitary extension principle. The aim of
generalizing the unitary extension principle is to obtain a spline tight wavelet
system with higher approximation power.

Theorem 3.7. Suppose that the refinable function φ with the mask ĥ0, and
there exists a 2π-periodic function Θ that is nonnegative, essentially bounded,
continuous at the origin with Θ(0) = 1. Also, if ξ ∈ [−π, π] and ξ+π ∈ [−π, π],
where Θ satisfying the following equalities



B-spline tight framelets for solving WS-IAE 371

2
∣∣∣ĥ0(ξ)∣∣∣2Θ(2ξ) +

n∑
l=1

∣∣∣ĥl(ξ)∣∣∣2 = Θ(ξ),

ĥ0(ξ)ĥ0(ξ + π)Θ(2ξ) +

n∑
l=1

ĥl(ξ) ĥl(ξ + π) = 0.

(3.5)

Then the wavelet system X(Ψ) defined by ĥ0, · · · , ĥn is a tight wavelet frame.

In order to construct the B-spline tight framelets produced by the OEP,
the appropriate approximation Θ(ξ) should be chosen at the origin to 1

|φ̂|2 =

O(|.|2l). For example, if φ is a B-spline of order m, we must choose Θ as a

2π-periodic function that approximates is
∣∣∣ ξ/
sin(ξ/)

∣∣∣2m at ξ = 0.

Example 3.8. Take

ĥ0(ω) =

(
1 + e−iω

)2
4

and

Θ(ω) =
4

3
− e−iω

6
− eiω

6
,

where φ is the linear B-spline function, B2(x). Define Ψ = {ψ1, ψ2}, where
the corresponding high pass filters are:

2ĥ1(ω) =
−1

4

(
1− e−iω

)2
and

2ĥ2(ω) =
−
√
6

24

(
1− e−iω

)2 (
e−iω + 4e−i(2ω) + e−i(3ω)

)
.

In particular,

2ψ̂1(ω) =
−1

ω2

(
1− e−iω/2

)4
,

ψ̂2(ω) =
−1√
6ω2

(
1− e−iω/2

)4 (
e−iω/2 + 4e−iω + e−i(3ω)/2

)
.

Then, the symmetric framelets are given by

2ψ1 =
−1

2
(|x− 2| − 2 |2x− 3|+ 6 |x− 1| − 2 |2x− 1|+ |x|)

and

2ψ2 =
−1

2
√
6
(|x− 3| − 9 |x− 2|+ 8 |2x− 3| − 9 |x− 1|+ |x|) .

The tight framelets functions ψ1 and ψ2 generated by OEP based on the
B-spline function B2, are given in Figure 4.
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Figure 4. The framelets functions B2-OEP.

Example 3.9. Consider the B-spline of order 3, B4, and take the periodic
function Θ defined by:

Θ(ω) =
2452

945
− 1657

840
cos(ω) +

44

105
cos(2ω)− 311

7560
cos(3ω).

Then, it is a quasi-affine tight framelet function are:

2ψ1 =ν1[|x− 5|3 − 35 |x− 4|3 + 20 |2x− 7|3 − 350 |x− 3|3 + 56 |2x− 5|3

− 350 |x− 2|3 + 20 |2x− 3|3 − 35 |x− 1|3 + |x|3],

2ψ2 =ν2[199658352 |x− 6|3 − 16955218889 |x− 5|3

+ 14161261961 |2x− 9|3 − 361590873308 |x− 4|3

+ 86356459199 |2x− 7|3 − 851590490870 |x− 3|3

+ 86356459199 |2x− 5|3 + 361590873308 |x− 2|3

+ 14161261961 |2x− 3|3 − 16955218889 |x− 1|3 + 99568352 |x|3]

and

2ψ3 =ν3[7775 |x− 7|3 − 76902 |x− 6|3 + 405720 |x− 5|3 − 14140 |2x− 9|3

− 1657425 |x− 4|3 + 358488 |2x− 7|3 − 1657425 |x− 3|3

− 14140 |2x− 5|3 + 405720 |x− 2|3 − 76902 |x− 1|3 + 7775 |x|3].

where ν1 ≈ 0.01105, ν2 ≈ −3.8× 10−11, and ν3 ≈ 1.54× 10−6.

Figure 5 shows the symmetric wavelet functions ψ1, ψ2, and ψ3 derived from
the OEP.
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Figure 5. The framelets functions B4-OEP: ψ1, ψ2,and ψ3

respectively.

4. Solving WSIAE by B-Spline Tight Framelets

In this section, we will obtain a numerical solution for the unknown func-
tions y(t) and z(t) of equation (1.1) by truncating the quasi-affine framelets.
The approximation solutions Pn(x1) and Pn(x2) for x1(t) and x2(t) are as
follows:

Pn(x1) =
r∑

l=1

∑
j,k

ζj,kl ψl,j,k (4.1)

and

Pn(x2) =

r∑
l=1

∑
j,k

ηj,kl ψl,j,k. (4.2)

Notice that j and k will be choosing to get a good accurate representing in
substituting equations (4.1) and (4.2) into the system in (1.1) yields:

2Pn(x1) = g1(t) +

∫ t

0
(t− s)−αK11(t, s)Pn(x1)ds

+

∫ t

0
(t− s)−αK12(t, s)Pn(x2)ds,

0 =g2(t) +

∫ t

0
(t− s)−αK21(t, s)Pn(x1)ds

+

∫ t

0
(t− s)−αK22(t, s)Pn(x2)ds.

(4.3)
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Using (4.1) and (4.2), we get

r∑
l=1

∑
j,k

ζj,kl ψl,j,k = g1(t) +

r∑
l=1

∑
j,k

ζj,kl

(∫ t

0
(t− s)−αK11(t, s)ψl,j,kds

)

+

r∑
l=1

∑
j,k

ηj,kl

(∫ t

0
(t− s)−αK12(t, s)ψl,j,kds

)
,

0 =g2(t) +
r∑

l=1

∑
j,k

ζj,kl

(∫ t

0
(t− s)−αK21(t, s)ψl,j,kds

)

+

r∑
l=1

∑
j,k

ηj,kl

(∫ t

0
(t− s)−αK22(t, s)ψl,j,kds

)
.

(4.4)

The system in (4.4) may be represented as:

g1(t) =
r∑

l=1

∑
j,k

ζj,kl

[
ψl,j,k(t)−

∫ t

0
(t− s)−αK11(t, s)ψl,j,kds

]

−
r∑

l=1

∑
j,k

ηj,kl

(∫ t

0
(t− s)−αK12(t, s)ψl,j,kds

)
,

g2(t) = −
r∑

l=1

∑
j,k

ζj,kl

(∫ t

0
(t− s)−αK21(t, s)ψl,j,kds

)

−
r∑

l=1

∑
j,k

ηj,kl

(∫ t

0
(t− s)−αK22(t, s)ψl,j,kds

)
.

(4.5)

Based on the framelets system {ψl,j,k}rl=1 j, k ∈ Z, where −n ≤ j ≤ n
and −2n ≤ k ≤ 2n, then the linear system (4.5) has 4nr(2n+1 − 1) of un-

knowns {ζj,kl } and {ηj,kl }. In interval [a, b], let the collocation points are
{ti, i = 1, ..., 2nr(2n − 1)}.
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Inserting the collocation point ti in the system (4.5), we obtain

g1(ti) =
r∑

l=1

∑
j,k

ζj,kl

[
ψl,j,k(ti)−

∫ ti

0
(ti − s)−αK11(ti, s)ψl,j,kds

]

−
r∑

l=1

∑
j,k

ηj,kl

(∫ ti

0
(ti − s)−αK12(ti, s)ψl,j,kds

)
,

g2(ti) = −
r∑

l=1

∑
j,k

ζj,kl

(∫ ti

0
(ti − s)−αK21(ti, s)ψl,j,kds

)

−
r∑

l=1

∑
j,k

ηj,kl

(∫ ti

0
(ti − s)−αK22(ti, s)ψl,j,kds

)
.

(4.6)

The unknown coefficient ζj,kl and ηj,kl will then be determined by solving this
system, which may be written as a matrix:

KG = C,

where

2G(t) = ([G1], [G2])
T , C = ([ζ], [η])T ,K(t, s) =

(
[K11] [K21]
[K21] [K22]

)
.

Then, the column vectors C and G are 2n+1(2n+1)×1, and the block [Kij ]
for i, j = 1, 2 in matrix K is given by

[Kij ] =

 ki,j(1,−n,−2n) ··· ki,j(1,n,2
n−1)

...
. . .

...
ki,j(2nr(2

n+1−1),−n,−2n) ··· ki,j(2nr(2
n+1−1),n,2n−1)

 , (4.7)

where

k1,1 = ψl,j,k(ti)−
∫ ti

0
(ti − s)−αK11(ti, s)ψl,j,kds,

k1,2 =

∫ ti

0
(ti − s)−αK12(ti, s)ψl,j,kds,

k2,1 = −
∫ ti

0
(ti − s)−αK21(ti, s)ψl,j,kds,

k2,2 = −
∫ ti

0
(ti − s)−αK22(ti, s)ψl,j,kds.
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5. Numerical Experiments

We apply the B-spline tight framelets method constructed in the previous
section to solve equations in (1.3). The following numerical examples are
discussed to demonstrate the validity and efficiency of our method.

Example 5.1. Consider the weakly singular integral algebraic equations sys-
tem defined by

AX(t) = G(t) +

∫ t

0
(t− s)−

1
3K(t, s)X(s)ds, t ∈ [0, 1],

with
2k11(t, s) = t+ s+ 2, k12(t, s) = ts,

k21(t, s) = (t+ s)2, k22(t, s) = 1 + st2.

Let g1(t), and g2(t) are chosen such that the exact solutions are x1(t) =
t, x2(t) = t. Applying the B-spline tight framelets method generated by the
unitary extension principle, then the error at different points t is presented in
Table 1.

Table 1. The errors of Example 5.1 using B2-UEP

t |x1 − Pn(x1)| |x2 − Pn(x2)|
0.2 2.7× 10−5 1.18× 10−4

0.4 5× 10−5 1.27× 10−4

0.6 3.6× 10−5 3× 10−5

0.8 5.9× 10−5 7.1× 10−5

Table 2 shows the absolute error of the computed solution using the B-spline
tight framelets method generated by the oblique extension principle.

Table 2. The errors of Example 5.1 using B2-OEP

t |x1 − Pn(x1)| |x2 − Pn(x2)|
0.2 8× 10−5 7.8× 10−5

0.4 7.2× 10−5 1.1× 10−4

0.6 6.6× 10−5 4.3× 10−5

0.8 7.7× 10−5 5.7× 10−5

Example 5.2. Consider the weakly singular integral algebraic equations sys-
tem defined by:

AX(t) = G(t) +

∫ t

0
(t− s)−

1
4K(t, s)X(s)ds, t ∈ [0, 1],
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where

2k11(t, s) = e(
√
s+t)(t2 + s4 + 3), k12(t, s) = cos s

1
4 (t+ s)

k21(t, s) = e(
√
s+t2+1)(t+ s), k22(t, s) = sin(s

1
4 + 1)(1 + st)

G(t) = (g1(t), g2(t))
T , X(t) = (x1(t), x2(t))

T .

Let g1(t), g2(t) are chosen such that the exact solution is x1(t) = exp(t
1
2 ),

x2(t) = sin(t
1
4 ).

Applying the B-spline tight framelets method generated by the unitary ex-
tension principle, then the error at different points t is presented in Table 3
with the results of the method in [8].

Table 3. The errors of Example 5.2 using B2-UEP

t |x1 − Pn(x1)| |x2 − Pn(x2)|
0.1 5.05× 10−5 3.3× 10−3

0.3 4.7× 10−3 1.46× 10−2

0.5 1× 10−3 5.3× 10−2

Result in
[8] with
N=4

5× 10−3 1.94× 10−2

For the case of B2−UEP , Figure 6 shows a comparison and good agreement
between the approximate solution and the exact solution.

Figure 6. Comparison of exact solution to approximation so-
lution for x1 in Example 6.
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6. Conclusion

We introduce a new, efficient numerical scheme for solving integral algebraic
equations of index 1 with weakly singular kernels based on B-spline tight
framelets generated by using UEP and OEP. Moreover, numerical examples
have been carried out to test the efficiency of the proposed method. The
results demonstrate that the presented technique is accurate, consistent, and
converges to the exact solution. In future work, we will further improve our
numerical approach to solve various types of equations, such as fractional
differential equations and an integro-differential equations.

Acknowledgments: The authors would like to thank the reviewers for their
valuable comments.
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