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1. INTRODUCTION

The main objective of this study is to examine the iterative methods em-
ployed to determine the solution to variational inequality problem (shortly,
VIP) [34] involving quasimonotone operators in any real Hilbert space. Con-
sider that Y is a real Hilbert space and A is a nonempty, closed and convex
subset of . Look at the operator I' : ¥ — 3. The variational inequality
problem for I on A is described in the subsequent fashion:

Find w* € A such that (T'(w*),y —w*) >0, Vy € A. (VIP)

The mathematical model of the variational inequality problem is a key prob-
lem in nonlinear analysis. It is a remarkable mathematical design that consol-
idates a lot of essential notions in applied mathematics, such as a nonlinear
system of equation, optimization conditions for problems with the optimiza-
tion process, the complementarity problems, network equilibrium problems
and finance (see for more details [8, 11, 12, 13, 14, 15, 23]). As a consequence,
this notion has various applications in the fields of mathematical program-
ming, engineering, transport analysis, network economics, game theory and
computer science. The regularized method and the projection method are
two prominent and general procedures for finding a solution to variational in-
equalities. It is also noted that the first approach is most commonly used to
deal with the variational inequalities accompanied by the class of monotone
operators. The regularized sub-problem in this method is strongly monotone,
and its unique solution is found more conveniently than the initial problem.

In this study, we discuss the projection methods that are well known for
their simpler numerical computing. Many authors have dedicated themselves
to studying not only the theory of existence and stability of solutions but
also iterative methods for solving variational inequality problems. In ad-
dition, projection methods are useful to approximate the numerical solu-
tion of variational inequalities. Many researchers have established different
variants of projection methods to solve such problems (see for more details
3, 5, 6, 7, 10, 16, 20, 22, 24, 33, 35, 38, 39, 41]) and others in [4, 9, 21, 25, 26,
27, 28, 29, 30, 31, 32, 36, 40, 42]. Almost all methods for solving the problem
(VIP) are based on the computation of a projection on the feasible set A. Ko-
rpelevich [16] and Antipin [1] introduced the following extragradient method.
Their method takes the following form:

uy € A,
Yn = Pafun — 2 (uy)], (1.1)
Un+1 = PA [un - %F(yn)]7
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where 0 < » < % In view of the above method, we have used two projections
on the underlying set A for each iteration. This, of course, can affect the com-
putational effectiveness of the method if the feasible set A has a complicated
structure.

Here, we present some methods which can remove this drawback. The first
is the following subgradient extragradient method introduced by Censor et al.
[6]. This method takes the following form:

ul € A,
Yn = Palun — 5T (uy)], (1.2)
Unp1 = PEn [Un - %F<yn)]7

where 0 < 2 < % and
Yo ={2z€3: (up — »(upn) — Yn, 2 — yn) < 0}.

In this article, our main focus on the Tseng’s extragradient method [35] that
uses only one projection for each iteration. This method takes the following
form:

Uy € A,
Yn = Palfun — I (uy)], (1.3)
Unt1 = Yn + [T (un) — T(yn)],

where 0 < s < % It is important to note that the above mentioned methods
have two major flaws: a fixed constant step size rule that is dependent on
the Lipschitz constant of mapping and generates a weakly convergent iterative
sequence. The Lipschitz constant is generally unknown or difficult to compute.
From a computational point of view, it can be difficult to consider a fixed step
size constraint that affects the method’s efficiency and rate of convergence. In
addition, the study of a strongly convergent iterative sequence is important in
the context of an infinite-dimensional Hilbert space.

The main objective of this paper is to introduce a new strongly convergent
method by using viscosity and Tseng’s extragradient-type method, including
a monotonic and non-monotonic variable step size rule to solve variational
inequalities involving the quasimonotone operator. Furthermore, to show that
the iterative sequences generated by all four subgradient extragradient algo-
rithms strongly converge to a solution. Both the monotone and non-monotone
variable step size rules are used in subgradient and extragradient algorithms.

The paper is arranged in the following way: In Sect. 2, preliminary results
were presented. Sect. 3 gives all new algorithms and their convergence anal-
ysis. Finally, Sect. 4 gives some numerical results to explain the practical
efficiency of the proposed methods.
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2. PRELIMINARIES

This section contains a number of important identities and relevant lemmas.
For any u,y € ¥, we have

lu+yl? = llul® + 2w, y) + Iyl

Lemma 2.1. ([2]) For any y1,y2 € ¥ and ¢ € R, Tthe following inequalities
are hold.

() [ty + (1 = Oa* = Llya|* + (1 = O)lly2]l* = €1 = Ollyr — 2>
(i) [l +w2l® < lonll® +2(y2, 11 + v2)-

A metric projection Pa(y1) of y1 € ¥ is defined by
Pa(y1) = argmin{lyr — o : y2 € A}.

First, we list some of the important features of projection mapping.

Lemma 2.2. ([2]) Let Pa : ¥ — A be a metric projection. Then, the following
conditions are satisfied.
(1) y3 = Pa(y1) if and only if (y1 — y3,y2 — y3) <0, Vy2 € A,
() 12— Pa(e) |2+ [Pa () — 2l < lsr — 9o, w1 € Ay € 3.
(iii) flyr = PaCy)ll < llyr —w2ll, y2 € Ayyn € 2.

Lemma 2.3. ([37]) Let {e,} C [0,400) be a sequence satisfies the following
condition

ent1 < (1 - fn)en + fngn; VneN.
In addition, two sequences {fn} C (0,1) and {gn} C R satisfies the following
conditions:

+oo
lim f, =0, Z fn =400 and limsupg, <0.
n—-+oo —r n—00

Then, limy, 4o €y = 0.

Lemma 2.4. ([19]) Let {e,} C R be a sequence and there exists a subsequence
{n;} of {n} such that
en; <€niq, ViEN

Then, there exists a nondecreasing sequence my C N such that mi — +0o as
k — 400 with

emy, < €myyy ond ep ey, Vk €N,

Indeed, my = max{j < k:e; <ejq1}.
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3. MAIN RESULTS

In this section, we propose a class of iterative algorithms for solving quasi-
monotone variational inequalities based on Tseng’s extragradient method. In
the following text, all methods are described in detail. The following condi-
tions are assumed to be met in order to verify the strong convergence:

(I'1) the solution set for problem (VIP) is denoted by VI(A,T') and it is

nonempty;
(I'2) an operator I' : ¥ — ¥ is said to be quasimonotone if
<F(u),y—u> >0 = <F(y),y—u> >0, Vu,y € A; (QM)

(I'3) an operator I' : ¥ — ¥ is said to be Lipschitz continuous if there exists
a constant L > 0 such that

IT(u) =TIl < Liu—yll, Vu,y € A; (LC)

(T'4) an operator I' : ¥ — ¥ is weakly sequentially continuous if {I"(uy,)}
weakly converges to I'(u) for every sequence {u,,} weakly converges to
u.

In this part, we present an iterative scheme for solving quasimonotone vari-
ational inequality problems that is based on Tseng’s extragradient method [35]
and viscosity scheme [20]. It is important to note that the proposed method
has a straightforward structure for achieving strong convergence. Suppose
that g : ¥ — ¥ is a strict contraction function with constant & € [0,1). The
main algorithm has been presented as follows:

Algorithm 3.1. (Viscosity Extragradient Method With Fixed Step Size Rule)

Step 0. Let uy € A, 0 < » < 1 and {¢,} C (0,1) meet the following
conditions:

400
Jim 9, =0 and ;ﬁn = +00.
Step 1. Compute
Yn = Pa(un — 2(uy)).

If up, = yn, Stop. Otherwise, go to Step 2.
Step 2. Compute

Zn = Yn + %[F(un) — F(yn)].
Step 3. Compute

Unt+1 = Ingun) + (1 — 9p)2p.
Set n:=n + 1 and go back to Step 1.
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Algorithm 3.2. (Monotonic Explicit Viscosity Extragradient Method)

Step 0. Let u; € A, 5 >0, x € (0,1) and {9,,} C (0,1) meet the following
conditions:

+oo
ngglooﬁn =0 and Z:lﬁn — +o0.

Step 1. Compute
Yn = PA(un - %nr(un»'
If up = yn, STOP. Otherwise, go to Step 2.

Step 2. Compute
Zn = Yn + 2p [F(un) - F(yn)] :
Step 3. Compute u,+1 = Ing(un) + (1 — 95) 2n.
Step 4. Compute
: Xllun—ynl } T -T 0
sy = D {70, sl b D) = D) #0, (3.1)
»p, otherwise.

Set n:=n + 1 and go back to Step 1.

Lemma 3.3. The sequence {s,} generated by (3.1) is decreasing monotoni-
cally and converges to » > 0.

Proof. 1t is given that I' is Lipschitz-continuous with constant L > 0. Let
I'(up) # I'(yyn) such that

Ml =gl xllm =yl - X

= > = 3.2
[T(n) ~ Tyl = Lllun —ynll = Z 32)
The above expression implies that lim, 4 56, = . O

Algorithm 3.4. (Non-Monotonic Explicit Viscosity Extragradient Method)

Step 0. Let uy € A, 53 > 0, x € (0,1) and sequence {¢,} satisfying
FC on < 400. Moreover, {9,,} C (0,1) satisfying the following conditions:

+o00

nll)r_i{loo ¥, =0 and Zﬁn = +o00.
n=1

Step 1. Compute

If uy, = yn, STOP. Otherwise, go to Step 2.

Step 2. Compute

Step 3. Compute up+1 = Fng(un) + (1 — 9p) 2.
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Step 4. Compute

sy + ©n otherwise.

(3.3)
Set n:=mn + 1 and go back to Step 1.

Lemma 3.5. A sequence {s,} generated by (3.3) is convergent to » and
satisfying the following inequality
X —
min{z,%l} <<+ P where P= Zcpn.
n=1
Proof. 1t is given that I' is Lipschitz-continuous with constant L > 0. Let
I'(up) # I'(yyn) such that

Xl[tn — yn|| Xllun —ynll _ X
> > = (3.4)
IT(un) = Tyn)ll — Lllun —ynl — L
By using mathematical induction on the definition of s,41, we have

min{z,m} <y <+ P

Let
[%n41 — 2,]"7 = max {O, Hpa1 — %n}
and
[n+1 — 76,]” = max {O, —(5tn41 — %n)}.

Then, from the definition of {sz,}, we have

+oo +oo
Z[%n+1 — )t = Zmax{o, i1 — %n} < P < +4o00. (3.5)
n=1 n=1
+oo
That means that the series Z[%n+1 — 52,]T is convergent.
=1
n +oo
Next, we need to prove the convergence of Z[%”H — ).
=1
+oo "
Let Z[}fn+1 — 2,]” = 400. Due to the reason that »,41 — 56, = (36041 —
n=1
30) T — (311 — 2)~, we have
k k k

S i Z(%n—‘rl - %n) = Z[%n—l—l - %n]Jr - Z[%n-i—l - %n]i' (36)

n=0 n=0 n=0
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By allowing k¥ — 400 in (3.6), we have s, — —oo as k — +oo. This is
k

a contradiction. Due to the convergence of the series Z[%"H — 2,]T and

n=0

k

Z[%”H — 2, taking k — 400 in (3.6), we obtain lim,,_, 4 3¢, = 5. This
n=0

completes the proof. O
Lemma 3.6. Suppose that I : ¥ — X satisfies the conditions (I'1)-(T'4) and
sequence {uy} generated by Algorithm 3.1. Then, we have
[unt1 — w1 < |Jun — W*HQ = (1= 5L ||un — y"H2

Proof. Since w* € VI(A,T'), we have
[P
= [Jyn + 5[0 (un) = D)) — "
= [l — & |* + 52T (tn) = D) || + 22¢(y — ", T (un) — Dga))
= [|yn + un — un — ||+ 52 [Dun) = Tyn)[|* + 2oe{ym — " Tun) — T ()
= [lvn = un]l” + [Jun = "|[* + 200 — un, un — ")

+ 5[ un) = Tm)|[* + 22l — " T(un) = T(ym))
= [ = [+ |y = wnl|” 4+ 20 — 0,y — %) + 2y — 0, e — )

2 *
+ 52| (un) = T(yn) ||” + 25(yn — ", T(un) — T(yn))- (3.7)
It is given that y, = Palu, — »I'(u,)] and it gives that

Thus, we have
<un — Yn, w* — yn> < %<F(un)a(’~)* - yn>- (39)
Combining expressions (3.7) and (3.9), we have

s = ||
< Jun — w*||2 + ||yn — “nH2 + 25¢(T (), w* — Yn) — 2(tn — Yn, Un — Yn)
+ 56| D(un) = D(yn)||* = 25(T (un) — D), 0™ — yn)

= Hun — w*”2 - Hun — ynH2 + %2||F(un) - F(yn)H2 — 25¢(T(yn), Yyn — w™).
(3.10)
It is given that w* is the solution of the problem (VIP) implies that

(T'(w"),y —w") 20, Vy € A
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It implies that
L),y —w") 20, Vy € A.
By substituting y = y, € A, we have
(C(yn)s yn —w") = 0. (3.11)
From expressions (3.10) and (3.11), we obtain
Jam i1 = [ < [l = [ = fJun = ] |* + 2L —
= fJun = & * = (1 = L) Jun — | (3.12)
U

Lemma 3.7. Assume that ' : ¥ — X satisfies the conditions (I'1)-(I'4). Let

{un} be a sequence is generated by Algorithm 3.2 and 3.4. Then, for each
w* e VI(A,T), we have

2
ltn g1 — @[ < [Jun — w[|* — <1 B Xz}zfn) [
Zn+1
Proof. Let w* € VI(A,T') and by definition of u, 11, we have
[P
= {|yn + sl (un) = T(yn)] — w*|”
= Hyn - W*H2 + %%“F(un) - P(yn)H2 + 2560 (Yn — w*, T(un) — T'(yn))
= {[yn + tn — un — *||* + 522D (wn) = T(ya) ||

+ 2560 (yn — w*, T (un) — T(yn))

= flm = wnll” + fJum = || +2

+ 52||T(un) — T(yn)||” + 2500 (yn — 0¥, Tun) — T(yn))- (3.13)
It is given that y,, = Palu, — 56,1 (uy,)] and it further implies that
(up, — 20T (Up) — Yny ¥ — yn) <0, Yy € A (3.14)
or equivalently for some w* € VI(A,T'), we can write

(Un = Yn, 0" = Yn) < 560 (T (un), w™ = yn). (3.15)



390 N. Wairojjana, N. Pholasa and N. Pakkaranang
Combining expressions (3.13) and (3.15), we have
[
< Hun — w*”2 + Hyn - unH2 + 256, (T (un), w™ — yn) — 2(Upn, — Yn, Un — Yn)
+ [0 un) = D(wn) || = 2560 (T (tn) = Do), " — )

= |lun — w*||* = [Jun = ya|l* + 22D (wn) = D) ||” = 25T (yn), yn — *).
(3.16)

It is given that w* is the solution of the problem (VIP), implies that
(D(w"),y —w*) >0, Vy € A.
Due to the property of I' on A, we obtain
(T'(y),y—w) >0, Vy € A.
Substituting y = y, € A, we have
(T(yn), yn —w™) > 0. (3.17)

Combining expressions (3.16) and (3.17), we obtain

emer = |[* < flun = *[* = flun = g |* + 325" un =
n+1
2
= Hun—w*HQ— (1—)(2 Zn >Hun—ynH2 (3.18)
%n+1

Lemma 3.8. Let ' : X — X be an operator satisfies the conditions (I'1)—(T'4).
If there exists a weakly convergent subsequence {uy, } to 4 and limy_, 4 ||un, —
Ynill = 0. Then, 4 € VI(A,T).

Proof. Since {uy, } weakly convergent to @ and due to limy_, o0 ||tn, — Yn, || =
0, the sequence {yy, } also weakly convergent to 4. Next, we need to prove
that @ € VI(A,T'). By value of y,, we have

Ynp = PAltn, — 55, T (un, )],
that is equivalent to
(Uny — 260, T(Uny) — Yngs ¥ — Uny) <0, Vy € Al (3.19)
The above inequality implies that

<unk —Yny Y — ynk) < Hny, <F(unk)7y - ynk>a Vy € A. (3'20)
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Thus, we obtain

1
ng
(3.21)
By use of limy_, oo ||tn,, — Yn, || =0 and k — 400 in (3.21), we have
Lminf(I'(uy, ),y — un,) >0, Vy € A. (3.22)
k——+o0
Furthermore, it implies that
<F(ynk)a Yy— ynk> = <F(ynk) - F(unk)7 Yy - unk>
+ <F(unk)’ Y- unk> + <F(ynk)7 Uny, — ynk)’ (3'23)
Since limg— 400 |[tn, — Yn, || = 0, we have
i D) ~ Ty, =0, (324
which together with (3.23) and (3.24), we obtain
im i — > . .
lim inf(T'(yn, ),y = yn,) 2 0, ¥y € A (3.25)

Moreover, let us take a positive sequence {e} that is decreasing and con-
vergent to zero. For each {e} there exists a least positive integer denoted by
my, such that

(C(un,),y — un,) + €, >0, Vi > my. (3.26)
Since {ex} is decreasing sequence, it is easy to see that the sequence {my}

is increasing. If there exists a natural number Ny € N such that for all
F(unmk) # 07 nmk Z NO COnSideI‘ that

Ny, = M V' 1, > No. (3.27)
B (1S 72 |/

Due to the above definition, we have

(T(tnyn, )s Ry, ) =1, V12, > No. (3.28)
Moreover, from expressions (3.26) and (3.28) for all n,,, > Ny, we have

(C(unyn, ) Y+ €Rn,,, — tn,,, ) > 0. (3.29)
By the definition of quasimonotone, we have

(C(y + e, )y y+ ey, —un,, ) > 0. (3.30)

For all n,,, > Ny, we have

<F(y)7y_unmk> > <F(y)_r(y+€anmk)v y+€anmk _unmk>_6k<r(y)7Nnmk>'
(3.31)
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Due to {uy, } converges weakly to & € A with I' is weakly sequentially contin-
uous on the set A, we obtain {I'(uy, )} converges weakly to I'(a). Let I'(2) # 0.
Then

IT (@) < lim inf ||T (uy, )| (3.32)
—+o00
Since {un,,, } C {un,} and limy_, 4o € = 0, we have

€L 0

0l ot = 0 g, 1 =@y~ G
By letting k¥ — 400 in (3.31), we obtain
(I'(y),y —u) >0, Vy € A. (3.34)
Let u € A be arbitrary element and for 0 < s < 1, let
Uy = 2eu + (1 — 22)a. (3.35)
Then 4,, € A and from (3.34) we have
(T (), u — ) > 0. (3.36)
Hence
(T(ts),u — @)y > 0. (3.37)

Let 5 — 0. Then u,, — 4 along a line segment. By the continuity of an
operator, I'(1,,) converges to I'(1) as » — 0. It follows from (3.37) that

(D(@),u— ) > 0. (3.38)
Therefore 4 is a solution of problem (VIP). O
Theorem 3.9. Assume that an operator I' : A — X satisfies the conditions

(I'1)~(I'4) and w* belongs to the solution set VI(A,TI'). Moreover, sequence
{U,} C (0,1) satisfying the following conditions:

—+00
ngrfoo Y, =0 and z:lﬁn = +4o00.
n—

Then, the sequences {un}, {yn} and {z,} generated by Algorithm 3.4 converge
strongly to w* = Pyra ) o g(w*).

Proof. By using Lemma 3.7, we have

2
|2 — w*||? < Hun — w*H2 — (1 -2 %Zn ) Hun — ynH2 (3.39)

n+1

Given that s, — 7, so there exists a fixed number € € (0,1 — x?) such that

n—-+oo Vs

22
lim <1—X2 5 )Zl—X2>€>0.
n+1
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Thus, there exists a fixed number N; € N such that

2
(1—X2}2‘"> >e>0, Vo> Ny (3.40)
%n+1
Therefore, we obtain
2 — w*||? < ||lun — w*||?, V0 > Ny. (3.41)

It is given that w* € VI(A,T). From sequence {u,;} and the reason that g
is a contraction with constant £ € [0,1) and n > Ny, we have

[uns1 = [ = [[Pngun) + (1 = Dn)zn — o
= Hﬁn[g(un) —w+ (1= In)[en — W*]H
= [[9nlg(un) + g(w") — g(w") —w’] + (1 = ) [z — ']
< B un) — )] + Oulls) — ]| + (1 = 92 — ]
< Bl — ]|+ D) — [+ (1= 00— "
(3.42)
Combining expressions (3.41) with (3.42) and ¥,, € (0,1), we deduce that

o1 — 0" < Dl — |+ Dulfe) — 0"+ (1 ) — |

- L o llew) — e
- [1 Un +€79n]Hun w H + ﬁn(l 5) (1 — 5)
max < ||uy — w* —Hg(w*) —w*H
= {H el Ty
< max{HuNl —w* ,W} (3.43)

Therefore, we deduce that {u,} is a bounded sequence. Due to the continuity
and monotonicity of the operator I" implies that the solution set VI(A,T") is
a closed and convex set (for more details see [17, 18]). Since the mapping is a
contraction and so does Pyjar)© g

Now, we are in position to use the Banach contraction theorem for the
existence of a fixed point of w* € VI(A,T') such that

w* = Pyran(gw?)).
By using Lemma 2.2 (ii), we have

(g(w") —w"y—w") <0, Vy e VI(A,T). (3.44)
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It is given that u,41 = Jpg(uy) + (1 — ¥y)2y,, and using Lemma 2.1 (i) and
Lemma 3.7, we have

ftns1 — ||
= Hﬁng(un) + (1 =)z — w*H2
= || Inlg(un) — @] + (1 = ) [z — ]|
= Dnllg(n) — w1 + (1= I)llzn — [ = 9 (1 = 00) 8(un) — 2a|?
< dalla(un) = ">+ (1= ) [ —"[* - (1 e )Hun ~ ]
n+1
— Dn(1 = 9) | g(tn) — 2

2
< 19n||g(un) —w ”2 + ”un —w ||2 - (1 - ﬁn) <1 - X2 2n >Hun - ynH .
Zn+1

The remainder of the proof shall be divided into the following two parts:
Case 1: Assume that there is a fixed number Ny € N (N3 > Njp) such that

luns1 — w*|| < |lun — w*||, YN > Na. (3.46)

Then, lim,,_, oo ||un, — w*|| exists and let lim, 400 ||un — w*|| = I. From ex-
pression (3.45), we have

2
(- m(l _ e )Hun —pal? < Oullg(un) — 2
%n+1

+ lun = WP = Jlunsr — w7 (3.47)

From the existence of lim,,_,{« ||u, — w*|| = [, and ¥,, — 0, we infer that
nLl\rfoo llun — ynl| = 0. (3.48)

It follows that

120 = ynll = lyn + 2 (U (un) = T(yn)] = ynll < 50 LlJun = ynll
This implies that
nEI-ll-loo |z, — ynl| = 0. (3.49)

It follows that

i =z <l [l =gl 4 T gz =0, (350)
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We can also obtain
1 = tn| = [[Png(un) + (1 = V)20 — un

= [l (tun) — tn] + (1 = 920 — ]|
< Onllgun) = un| + (1= 0n)[2n = ua|

— 0, as n — +oo. (3.51)
Hence we have
nll}gr_loo |tunt1 — unl| = 0. (3.52)

Since the sequence {u,} is bounded, the sequences {y,} and {z,} are also
bounded. Thus, we can take a subsequence {uy, } of {u,} such that {u,, }
weakly converges to some 4 € X. Moreover, from |u, — y,| — 0, we have

u e VI(A,T). It follows that

lim sup(g(w*) — w*, up, — w*) = limsup(g(w*) — w*, uy, — w*)

n——+00 k—+4o00
= (g(w") —w", 4 —w*)
< 0. (3.53)
Since limy,_ 4 HunH — unH = 0. It follows that

lim sup(g(") — " tnpr — ) < limsuplg(@”) — ", gt — )
n—+o00 n—-+00

+ limsup(g(w*) — w*, up — w*)
n—-+00

<0. (3.54)
From Lemma 2.1 (ii) and Lemma 3.7 for all n > Ns, we obtain

st — w||* = [[Ongtn) + (1 = 90)z0 — |
= [[0nlg(un) — '] + (1 = D) [z — ]|
< (1= 0 zn — 7|
+ 20, (g(n) — w*, (1 = 9)[z0 — "] + Dnlg(n) — "))
= (1= 90z — o[
+ 20, (g(un) — 8(w") + w") — w0, U1 — )
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= (1= 9)?[| 20 — || + 20n (g (un) — 8(w"), tns1 — &)
+ 20n(g(w®) —w", ups1 — ")
< (1= 00— "I + 200l — s — ]
+ 20, (g(w*) — w*, Upt1 — W)
<1+ 19% — 219n)”un — OJ*H2 + ZﬁnﬁHun — w*H2
+ 29, (g(w*) — W, upt1 — w*)
=(1- 219n)Hun - w*||2 + zﬁﬂun — w*H2 + QﬁnéHun — w*H2
+ 29, (g(w*) — W, upt1 — w*)
= [1-20,(1 = O)][Jun — w*|?

O || — w*H2 (g(w*) — w* upy1 — w*)
+29,(1 ¢ + : : 3.55
( )[ 210 - (3:59)
It follows from expressions (3.54) and (3.55) that

Onllwn = | (") = w7, ungr — )
lim sup + - <0. 3.56
Mw[ 21-9) I—¢ (3:50)

Let choose n > N3 € N (N3 > N3) large enough such that

29,(1— &) < 1.

By using (3.55) and (3.56), and applying Lemma 2.3, we conclude that Hun —
w*H — 0, as n — 4o00.
Case 2: Assume there is a subsequence {n;} of {n} such that

|tn; —w*|| < [Jun,,, —w||, Vi €N.
Then, by Lemma 2.4, there is a sequence {my} C N as mj — +o0, such that
|

1ty — W || < [ty — w and  |lup —w*|| < [|um,, —w”|, for all k € N.

(3.57)

As similar to Case 1, from (3.45), we have

2 %72711@ 2
(1= Im){1=Xx"— [N
%mk+1

< Do [18(timy) = Wl + ey, — w2 = 41 — w1, (3.58)

Due to 9,,, — 0, we deduce the following:
kEr—i{loo Humk = Ymy, H = 0. (3'59)
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Similar to above case we can prove that

kgrfoo Humk — Zmy, H = k£r+noo Hymk — Zmy, H = 0. (3'60)
Also, we obtain
Humk—i-l - umkH = Hﬁmkg(umk) + (1 - ﬁmk)zmk - UmkH

= Hﬁmk [g(umk) - umk] + (1 - 0mk)[zmk — Umk]H
< ﬁmng(uﬂ%) - umk“ + (1= ﬁmk)HZMk - umkH
— 0. (3.61)

We have to use the same justification as in the Case 1 such that

lim sup(g(w*) — w*, U, +1 —w*) < 0. (3.62)

k——+o0

By the use of expressions (3.55) and (3.57), we have

[r——T
< 1= 205, (1 = E)] ||ty — 7|

A " L B
+ 20, (1 = ) L HQZ(LTIC—_S)M H - el) w1 ’_uglwl w")

< [1 - 2197"1@(1 - f)] Humk-H - W*H2

i |2 * * *
20 (1= )| T H;(LT’“_;)W G = ’_“?k“ —1 0 (363

It follows that

O [y = & |* | {(") = " 1 = )

2(1-¢) 1€

Since ¥,,, — 0, as k — 400 and H“mk — w*H is a bounded sequence, it follows
from (3.62) and (3.64) that

H“mk+1 — w*||2 < (3.64)

|ty 1 — w*||* = 0, as k — +oc. (3.65)
The above expression with (3.57) implies that

. * 12 . * (12
— < 1 — < 0. .
R L e e e i Y (3.66)

Consequently, we have u,, = w* as n — 400. This completes the proof of the
theorem. n
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4. NUMERICAL ILLUSTRATION

This section describes the numerical performance of the proposed algo-
rithms, in contrast to some related work in the literature, as well as the analysis
of how variations in control parameters affect the numerical effectiveness of
the proposed algorithms.

All computations are done in MATLAB R2018b and run on HP i-5 Core(TM)
i5-6200 8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Let ¥ =[5 be a real Hilbert space with the sequences of real
numbers satisfying the following condition:

lurl? + fluz]|? + - 4 Jun | + -+ < +oc. (4.1)
Assume that a mapping I' : A — A is defined by
[(u) = (5= |lul)u, Vu e X,

where A = {u € ¥ : ||u|| < 3}. Then, we can easily seen that I' is weakly
sequentially continuous on ¥ and the solution set is VI(A,T') = {0}.
For any u,y € 3, we have

D) = D) = |6 — lullyu — (5~ lyl)y]
= |I5(u— y) — lull(w = 9) = (lull = Iy
< 5llu—yl + llullu =yl + |lul — lyl]ly]
< 5llu—yll + 3w -yl + 3llu -y
< 11fu—y]. (4.2)

Hence I' is L-Lipschitz continuous with L = 11.
And, for any u,y € ¥ and let <F(u),y — u> > 0, such that

(5 lfull) .y — u) > 0.
Since |lu|| < 3 and it implies that
<u, Yy — u> > 0.
Consider that
Ty —u)=6-llyl){y.y—u)
> (5= ly{y,y —u) — 6=yl {w,y — )
> 2|lu—y[* > 0. (4.3)
Hence a mapping I" is quasimonotone on A.
Let u = (%,0,0,--- ,0,---)and y = (3,0,0,---,0,---) such that

5

(P - T, u-y) = (5-3) <o,
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Let considered the following projection formula:

u if ul| <3,

PA <U) - 3u

=% otherwise.
flll

Figure 1-2 and Table 1 show numerical results. The control conditions are
taken in the following way:

(i) Algorithm 3.1 (shortly, Algll): s = %7 ¢, = (nig),g(u) =7,
Dy, = |lun — uyll;
(ii) Algorithm 3.2 (shortly, Alg22): »; = 0.22, x = 0.44,9,, = m

g(u) = %7Dn = Hun - yn“v
(iii) Algorithm 3.4 (shortly, Alg33): s = 0.22, x = 0.44, ,, = %

(n+1)2?
Un = Gy 8(w) = 5, D = [[un = vl

102 E T T T T T T E
Fo ——Algl1]
A - - —Alg22| ]

101 £

10°F
Q 10t

107 ¢

10° £

1 1 1 1 1

0 5 10 15 20 25 30 35
Number of iterations

F1cURE 1. Numerical illustration of Algorithm 3.1 and Algo—
rithm 3.2  with  Algorithm 3.4 while w3 =

(le"' 71500070707" )
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102 F T T T T
10t ¢
10°

Q: 101

10-4 L L L L
0 0.5 1 15 2 2.5

Elapsed time [sec]

F1cURE 2. Numerical illustration of Algorithm 3.1 and Algo-
rithm 3.2  with  Algorithm 3.4 while w3 =

(1717"' 71500070707"')-

TABLE 1. Numerical explanation for Example 4.1.

Number of iterations Execution time in seconds
U1 Algll Alg22 Alg33 Algll Alg22 Alg33
(1,1,--+,15000,0,0,--+) 35 33 27 2.0040884  2.2295634 1.8277622
(1,2,---,10000,0,0,---) 37 34 27 2.2736534  2.5582612 1.9910394
(10,10, -+ ,1010000,0,0,---) 43 39 34 3.2163693 2.9575764 2.2758355
(20,20, -+ ,2010000,0,0,---) 49 43 38 4.5876948  3.8674743 3.1847685
CONCLUSION

We developed various modified extragradient type methods to provide a
numerical solution to quasimonotone variational inequality problems in real
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Hilbert space. Despite the fact that each sequence is generated by a different
step size rule, all sequences generated by the proposed method are strongly
convergent to the solution.The numerical results are given to demonstrate the
numerical effectiveness of our algorithm. These numerical investigations have
demonstrated that the variable step size impacts the efficiency of the iterative
sequence in this context.
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