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Abstract. Cracks in beams and shallow arches are modeled by massless rotational springs.

First, we introduce a specially designed linear operator that “absorbs” the boundary condi-

tions at the cracks. Then the equations of motion are derived from the first principles using

the Extended Hamilton’s Principle, accounting for non-conservative forces. The variational

formulation of the equations is stated in terms of the subdifferentials of the bending and axial

potential energies. The equations are given in their abstract (weak), as well as in classical

forms.

1. Introduction

Modeling dynamic behavior of cracked beams and arches has important
engineering applications. The main goal of this paper is to develop a rigorous
mathematical framework for such problems.

The theory of uniform beams and shallow arches is well developed. An early
exposition can be found in [1]. More general models in the multidimensional
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Figure 1. Crack parameters.

setting, and a literature survey are presented in [11]. A review for vibrating
beams is given in [16]. Motion of uniform arches and a related parameter
estimation problem are studied in [14]. These results are extended to point
loads in [12]. The existence of a compact, uniform attractor is established in
[13].

For a theory of cracked Bernoulli-Euler beams see [9]. A significant effort
has been directed at the vibration analysis of cracked beams. Representation
of a crack by a rotational spring has been proven to be accurate, and it is
often used, see [4, 5] and the extensive bibliography there. Determination of
the beam natural frequencies is discussed in [18, 19, 20]. S. Caddemi and
his colleagues have further developed the theory using energy functions in [5].
Substantial reviews of cracked elements are presented in [6, 8, 10].

The transverse motion of a beam or an arch is described by the function
y(x, t), x ∈ [0, π], t ≥ 0, which represents the deformation of the beam/arch
measured from the x-axis. For definiteness, the boundary conditions are of
the hinged type

y(0, t) = y′′(0, t) = 0, y(π, t) = y′′(π, t) = 0, t ∈ (0, T ). (1.1)

Other types of boundary conditions, can be treated similarly.

A crack is fully described by its position along the axis, and the crack
depth ratio µ̂, as shown in Figure 1. According to the common practice in the
field, see [7], a crack is modeled by a massless rotational spring. The spring
flexibility θ = θ(µ̂) depends on the crack depth ratio µ̂, and on whether the
crack is one-sided or two-sided, open or closed, and so on. The flexibility θ is
equal to 0 if there is no crack, and it increases with the crack depth. Explicit
expressions for the functions θ(µ̂) are provided in Section 4.

Remark 1.1. The following discussion is applicable to both arches and beams,
but to avoid repetitions we will refer just to arches.
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Suppose that there are m cracks along the length of the arch, located at
0 < x1 < · · · < xm < π. For convenience, we denote x0 = 0, and xm+1 = π.
Consequently, the cracked arch is modeled as a collection of m + 1 uniform
arches over the intervals li = (xi−1, xi), i = 1, . . . ,m + 1, as shown in Figure
2(b).

We consider only the transverse motion of the arch, so its position can be
described by the function y = y(x, t), 0 ≤ x ≤ π, t ≥ 0. The boundary
conditions at the cracks enforce the continuity of the displacement field y, the
bending moment y′′, and the shear force y′′′. Condition y′(x+i , t)− y′(x

−
i , t) =

θiy
′′(x+i , t) expresses the discontinuity of the arch slope at the i-th crack, where

θi = θ(µ̂i), see Figure 2(b).

To simplify the statement of the boundary conditions at the cracks, we
introduce the notion of the jump J [u](x) of a function u = u(x) at any x ∈
(0, π), as follows

J [u](x) = u(x+)− u(x−). (1.2)

With this notation the conditions at the cracks (joint conditions) are

J [y](xi, t) = 0, J [y′′](xi, t) = 0, J [y′′′](xi, t) = 0 (1.3)

and

J [y′](xi, t) = θiy
′′(x+i , t), (1.4)

where θi = θ(µ̂i), i = 1, 2, . . . ,m and t ≥ 0. Note that y′′(x+i , t) = y′′(x−i , t)
by (1.3).

In Section 2 we review our recent results from [15] on the variational set-
ting for cracked beams and arches. First, special Hilbert spaces V,H1

0 , H are
defined satisfying

V ⊂ H1
0 ⊂ H ⊂ (H1

0 )′ ⊂ V ′ (1.5)

with continuous and dense embeddings. These spaces are broad enough to
contain continuous functions with discontinuous derivatives at the joint points.
Then in Section 3 we introduce the operator A : V → V ′, by

Figure 2. Beam or shallow arch: (a) uniform, (b) with two cracks.
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〈Au, v〉V =

m+1∑
i=1

(u′′, v′′)i +

m∑
i=1

1

θ i
J [u′](xi)J [v′](xi), (1.6)

for any u, v ∈ V , where J [u′](x) = u′(x+)− u′(x−).

Our main result is that the solution u of the equation Au = f in H satis-
fies the joint conditions, including (1.4). Thus the operator A ”absorbs” the
boundary conditions, as expected of the weak formulation of the steady state
problem. This result allows us to mathematically justify the existence of the
eigenvalues and the eigenfunctions of A.

In Section 4 we consider relevant physical quantities, including the potential
energy Ub, due to bending, and the potential energy Ua, due to the axial force.
This is the only section in the paper, that contains physical variables. Their
non-dimensional equivalents are used in all the other sections.

Typically, equations of motion are derived from the Hamilton’s Principle
δI = 0, which seeks the stationary paths of the action I. A closer examination
of this statement in the framework of the Hilbert spaces reveals the importance
of the subdifferential ∂φ of a convex lower-semicontinuous function φ. The
potential energies Ub, and Ua are two examples of such functions.

Section 5 presents a brief review of these concepts. One can view the
subdifferential, which can be multi-valued, as a generalization of the deriv-
ative. The definition of the subdifferential is given in (5.2). For example, let
φ(x) = |x|, x ∈ R. Then ∂φ(x) = −1, for x < 0, and ∂φ(x) = 1, for x > 0,
since φ is differentiable for such x. To determine ∂φ(0), notice that φ(0) = 0.
Then the definition of ∂φ(0) can be interpreted geometrically as the set of all
the slopes of the lines that pass through the origin and lie below the graph of φ.
Thus ∂φ(0) = [−1, 1]. We conclude Section 5 by deriving various expressions
for the subdifferentials ∂Ub and ∂Ua. In particular, we show that ∂Ub = A.

Section 6 uses the Extended Hamilton’s Principle, which accommodates
non-conservative forces, to derive the equations of motion. It contains our
main result: the abstract equation of motion for cracked beams and arches is

ÿ + ∂Ub(y) + ∂Ua(y) + cdẏ = p, (1.7)

where ẏ, ÿ denote the time derivatives.

For beams, it is assumed that the influence of the axial force can be ne-
glected. This case is considered in Section 7. The abstract equation for cracked
beams is

ÿ +Ay + cdẏ = p. (1.8)

If the beam contains no cracks, then (1.8) becomes ÿ + y′′′′ + cdẏ = p, which
is consistent with the classical Euler-Bernoulli theory.
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Our main result in Section 8 is that the “classical” equation for a cracked
shallow arch is

ÿ + y′′′′ − 1

π

(
β +

1

2

∫ L

0
|y′(x, t)|2 dx

)(
y′′ +

m∑
i=1

θiy
′′(xi, t)δ(x− xi)

)
+ cdẏ

= p,

where δ = δ(x) is the delta function.

Motion in viscous media results in the additional term µAẏ, µ > 0 in the
governing equations. Such a case is referred to as the strong damping motion.
If the viscous effects are neglected (µ = 0), we have the weak damping case.

This paper is an important a part of our research program on cracked beams
and shallow arches. The equations of motion derived here are further investi-
gated using Lions method. We will derive the existence, uniqueness, and con-
vergence of finite-dimensional approximation for these time-dependent prob-
lems. The Modified Shifrin’s method will be investigated for its efficiency,
as compared with the traditional Transition Matrices method for the eigen-
values and the eigenfunctions. Furthermore, a computational study will be
conducted, that may include experiments with real beams and arches.

2. Hilbert spaces

The goal of this section is to introduce Hilbert spaces H,V,H1
0 suitable for

working with cracked elements. See [15] for further details. Suppose that an
arch has m cracks at the joint points 0 < x1 < · · · < xm < π. This partition
of the interval [0, π] is associated with m + 1 subintervals li = (xi−1, xi), i =
1, . . . ,m+ 1.

Let H be the Hilbert space

H =
m+1⊕
i=1

L2(li). (2.1)

Let the inner product and the norm in L2(li), i = 1, · · · ,m+ 1, be denoted
by (·, ·)i and | · |i correspondingly. The inner product and the norm in H are
defined by

(u, v)H =

m+1∑
i=1

(u, v)i, |u|2H =

m+1∑
i=1

|u|2i . (2.2)

Consider the Sobolev space H2(a, b) on a bounded interval (a, b) ⊂ R, and
let u ∈ H2(a, b). Then u, u′ are continuous functions on [a, b], up to a set of
measure zero, and u′′ ∈ L2(a, b). Therefore, for such u, we will always assume
that u, u′ ∈ C[a, b].
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Define the linear space

V =

{
u ∈

m+1⊕
i=1

H2(li) : u(0) = u(π) = 0, J [u](xi) = 0, i = 1, · · · ,m

}
.

(2.3)
We interpret u ∈ V as a continuous function on [0, π], such that u(0) =
u(π) = 0, with u′ ∈ L2(0, π), i.e. u ∈ H1

0 (0, π). Furthermore, u|li ∈ H2(li),
and u′|li ∈ C[xi−1, xi] for i = 1, 2, · · · ,m+ 1.

Define the inner product on V by

((u, v))V =

m+1∑
i=1

(u′′, v′′)i +

m∑
i=1

J [u′](xi)J [v′](xi), for any u, v ∈ V, (2.4)

where (u′′, v′′)i =
∫
li
u′′(x)v′′(x) dx.

It is clear that ((·, ·))V is a symmetric, bilinear form on V . To see that
((u, u))V = 0 implies u = 0, notice that any function u with ((u, u))V = 0 is
piecewise linear and continuous on [0, π]. Furthermore, J [u′](xi) = 0 for any
i = 1, 2, · · · ,m. Therefore u′ is continuous on [0, π]. In fact, it is a constant
there, since u′′ = 0 a.e. on [0, π]. Thus u is a linear function on [0, π] satisfying
the zero boundary conditions at the ends of the interval. Therefore u = 0 on
[0, π], and ((·, ·))V is a well-defined inner product on V . The corresponding
norm in V is

‖u‖2V =
m+1∑
i=1

|u′′|2i +
m∑
i=1

|J [u′](xi)|2, for any u ∈ V, (2.5)

where | · |i is the norm in L2(li). It can be shown using the next lemma, that
V is a Hilbert space, see [15].

Let u ∈ V . We define the derivatives of u component-wise in the spaces
H2(li), that is u′(x) = (u|li)′(x), u′′(x) = (u|li)′′(x), and so on, for x ∈ li,
i = 1, · · · ,m + 1. For definiteness, we will assume that the derivative u′ is
continuous from the right on [0, π].

Lemma 2.1. Let c ≥ 0 denote various constants independent of u ∈ V . Then

(i) The second derivative u′′ is bounded in H, and

|u′′|H ≤ ‖u‖V . (2.6)

(ii) The derivative u′ is bounded on [0, π],

sup{|u′(x)|, x ∈ [0, π]} ≤ c
(
|u′|H + |u′′|H

)
. (2.7)

Moreover,

|u′|H ≤ c‖u‖V and sup{|u′(x)|, x ∈ [0, π]} ≤ ‖u‖V . (2.8)
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(iii) Function u is Lipschitz continuous, with the Lipschitz constant c‖u‖V .
Also, u is bounded on [0, π],

‖u‖∞ = max{|u(x)|, x ∈ [0, π]} ≤ c‖u‖V (2.9)

and
|u|H ≤ c‖u‖V . (2.10)

Proof. Part (i) follows from the definition (2.5). For part (ii), let u ∈ V . Then
its derivative u′ is continuous on any interval [xi−1, xi], i = 1, · · · ,m+ 1. By
the mean value theorem for integrals, there exists ci ∈ [xi−1, xi], such that

u′(ci) =
1

|li|

∫
li

u′(s) ds.

Thus |u′(ci)| ≤ c|u′|H . Also, for any x ∈ [xi−1, xi],

|u′(x)− u′(ci)| ≤
∫
li

|u′′(s)| ds ≤ c|u′′|H .

Therefore, |u′(x)| ≤ c (|u′|H + |u′′|H) for any x ∈ [0, π], giving (2.7). This
inequality implies |J [u′](x)| ≤ 2c (|u′|H + |u′′|H).

We have ∫ b

a
u′′(x) dx = u′|ba +

∑
a<xi≤b

(
u′(x−i )− u′(x+i )

)
(2.11)

= u′(b)− u′(a)−
∑

a<xi≤b
J [u′](xi).

Therefore,

|u′(b)− u′(a)| ≤
∫ π

0
|u′′(x)| dx+

m∑
i=1

|J [u′](xi)| ≤ c‖u‖V . (2.12)

First, choose a ∈ [0, π] be such that u′(a) ≤ 0, which is always possible, since
u(0) = u(π) = 0. Then, by (2.12), for any b ∈ [0, π] we have u′(b) ≤ c‖u‖V .
This establishes the upper bound for u′(x), x ∈ [0, π]. Similarly, choosing
a such that u′(a) ≥ 0, we establish the lower bound for u′(x), x ∈ [0, π].
Inequalities in (2.8) follow.

To show part (iii), recall that u ∈ V is continuous on [0, π], and by (2.8) its
derivative u′ is bounded by ‖u‖V . Therefore u is Lipschitz continuous there.
Furthermore, since u(0) = 0, u is bounded on [0, π] as claimed in (2.9). Then
inequality (2.10) follows. �

At this time we introduce the Hilbert space H1
0 = H1

0 (0, π), with the inner
product and the norm given by

(u, v)1 = (u′, v′)H , ‖u‖21 = |u′|2H , u, v ∈ H1
0 . (2.13)
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The norm in (H1
0 )′ will be denoted by ‖ · ‖−1. It can be shown that the

identity embedding i : V → H1
0 is linear, continuous, with a dense range in

H1
0 . Furthermore, it is compact.

This allows us to define the Gelfand triple V ⊂ H ⊂ V ′, with the pairing
〈·, ·〉V between V and V ′ extending the inner product in H. This means that
given f ∈ H = H ′ ⊂ V ′, and v ∈ V , we have 〈f, v〉V = (f, v)H .

Also, we have

V ⊂ H1
0 ⊂ H ⊂

(
H1

0

)′ ⊂ V ′, (2.14)

with dense embeddings. Furthermore, the embeddings V ⊂ H1
0 ⊂ H are

compact.

3. Variational setting and operator A

Now we introduce the operator A : V → V ′ that “absorbs” the junction
boundary conditions. This operator is central to the variational setting of
problems for cracked beams and arches. The existence of its eigenvalues and
the eigenfunctions is established as well.

Definition 3.1. Define the operator A on V by

〈Au, v〉V =

m+1∑
i=1

(u′′, v′′)i +

m∑
i=1

1

θ i
J [u′](xi)J [v′](xi), (3.1)

for any u, v ∈ V . We will also write 〈Au, v〉 for 〈Au, v〉V , if it does not cause
a confusion.

See Section 1 for the setup for the junction (crack) points xi, and the flexi-
bilities θi. Recall, that a linear operator A : V → V ′ is called coercive, if there
exists c > 0, such that 〈Au, u〉 ≥ c‖u‖2V for any u ∈ V .

Lemma 3.2. Let A be defined by (3.1). Then A is a symmetric, continuous,
linear, and coercive operator from V onto V ′.

Proof. Clearly, A is a symmetric linear operator. Since all θi > 0, we con-
clude that there exists a constant C > 0, such that |〈Au, v〉| ≤ C‖u‖V ‖v‖V .
Therefore A is defined on all of V , and it is bounded.

Similarly,

|〈Au, u〉| =
m+1∑
i=1

|u′′|2 +

m∑
i=1

1

θ i
|J [u′](xi)|2 ≥ c‖u‖2V .

Therefore A is coercive on V , and its range is V ′, see [21, Theorem 2.2.1]. �
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As was mentioned in Section 1, functions u = u(x) modeling an arch with
cracks are expected to satisfy certain boundary conditions. For convenience,
we restate them here:

u(0) = u(π) = 0, u′′(0) = u′′(π) = 0 (3.2)

and

J [u](xi) = 0, J [u′′](xi) = 0, J [u′′′](xi) = 0, J [u′](xi) = θiu
′′(x+i ), (3.3)

for i = 1, · · · ,m.

The next theorem is the main result of this section.

Theorem 3.3. Let the domain of A be D(A) = {v ∈ V : Av ∈ H}.

(i) If u ∈ D(A), then u|li ∈ H4(li), Au = u′′′′ a.e. on li, i = 1, · · · ,m + 1,
and u satisfies conditions (3.2)–(3.3).

(ii) Let f ∈ H. Then equation Au = f in V ′ has a unique solution u ∈ D(A).

Proof. By Lemma 3.2, the operator A is coercive, and its range is V ′. Since
H = H ′ ⊂ V ′, condition f ∈ H implies that f ∈ V ′. Therefore equation
Au = f in V ′ has a solution u ∈ D(A), which is unique since A is coercive.

To investigate the properties of functions in D(A), recall that l1 = (x0, x1).
Notice that C∞0 (l1) ⊂ V , where it is assumed that the functions from C∞0 (l1)
are extended by zero outside of l1. Thus v(x) = v′(x) = 0, for x = 0 and any
x ≥ x1, v ∈ C∞0 (l1).

Let u ∈ D(A), so Au = f for some f ∈ H. By the definition of V , we have
u|l1 ∈ H2(l1). For any v ∈ C∞0 (l1), by the definition of A, we have

〈Au, v〉 =

∫
l1

u′′(x)v′′(x) dx.

Integration by parts gives∫
l1

u′′(x)v′′(x) dx =

∫
l1

u(x)v′′′′(x) dx = (f, v)H =

∫
l1

f(x)v(x) dx.

Therefore, D(4)u = f in the sense of the weak derivatives on l1. Thus u|l1 ∈
H4(l1), and u′′′′ = f a.e. on l1. Repeating this argument for other intervals
li, we conclude that u|li ∈ H4(li), and u′′′′ = f a.e. on li, i = 1, · · · ,m+ 1.

It remains to show the satisfaction of the conditions (3.2)–(3.3). So, let
Au = f ∈ H. Since we have already established that u|li ∈ H4(li), i =
1, · · · ,m+1, we can do the Integration by Parts on every interval li, to obtain
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that for any v ∈ V

(f, v)H = 〈Au, v〉 =

m+1∑
i=1

(u′′, v′′)i +

m∑
i=1

1

θ i
J [u′](xi)J [v′](xi)

=

m+1∑
i=1

(u′′′′, v)i − u′′′v|π0 +

m∑
i=1

u′′′v|x
+
i

x−i
+ u′′v′|π0 −

m∑
i=1

u′′v′|x
+
i

x−i

+

m∑
i=1

1

θ i
J [u′](xi)J [v′](xi).

Since v ∈ V , we have v(0) = v(π) = 0, and v is continuous on [0, π]. Therefore
the above equality can be rewritten as

m+1∑
i=1

(u′′′′ − f, v)i +
m∑
i=1

J [u′′′](xi)v(xi) + u′′v′|π0 −
m∑
i=1

u′′v′|x
+
i

x−i
(3.4)

+
m∑
i=1

1

θ i
J [u′](xi)J [v′](xi) = 0.

The first sum is zero, since u′′′′ = f a.e. on li, i = 1, · · · ,m + 1. Next,
choose a continuously differentiable v ∈ V , which is not zero only in a small
neighborhood of x = 0, and v′(0) 6= 0. Conclude that u′′(0) = 0. Similarly,
u′′(π) = 0.

Choose a continuously differentiable v ∈ V , such that v′(xi) = 0, and
v(xi) = 0 for all i = 2, . . . ,m, but v(x1) 6= 0, v′(x1) = 0. Conclude that
J [u′′′](x1) = 0. Repeat this procedure for other points xi, one at a time. Thus
J [u′′′](xi) = 0, i = 1, · · · ,m. We are left with

m∑
i=1

[
1

θ i
J [u′](xi)J [v′](xi)− u′′v′|

x+i
x−i

]
= 0. (3.5)

Choose a continuously differentiable v ∈ V , which is not zero only in a small
neighborhood of x1, and such that v′(x1) 6= 0. This implies J [u′′](x1)v

′(x1) =
0. Therefore J [u′′](x1) = 0. Repeat for other points xi. Thus u′′(x+i ) = u′′(x−i )
for i = 1, · · · ,m. Now we can rewrite (3.5) as

m∑
i=1

[
1

θ i
J [u′](xi)− u′′(x+i )

]
J [v′](xi) = 0.

Choose a continuous, piecewise linear v ∈ V , such that v(x1) = 1, v is linear
on [0, x1], and on [x1, π]. Note that J [v′](xi) = 0 for i = 2, · · · ,m, and
J [v′](x1) 6= 0. Conclude that J [u′](x1) = θ1u

′′(x+1 ). Repeat for other points
xi, i = 2, · · · ,m. Thus u satisfies all the conditions (3.2)–(3.3). �
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Remark 3.4. The fact that u′′′′ = f a.e. on (0, π) in Theorem 3.3 does not
imply that u ∈ H4(0, π). This is similar to the fact that the strong derivative
p′ of a step function p on (0, π) is zero a.e. on (0, π). However, p 6∈ H1(0, π).

Finally in this section we discuss the eigenvalues and the eigenfunctions of
the operator A. It was shown in Lemma 3.2 that A is a continuous, linear,
symmetric, and coercive operator from V onto V ′. Following [21, Section
2.2.1], A can also be considered as an unbounded operator in H. Using Lemma
2.1, the embedding V ⊂ H is compact. Therefore the standard spectral theory
for Sturm-Liouville boundary value problems is applicable. The eigenfunctions
belong to H. Therefore, by Theorem 3.3, they are in the domain D(A) ⊂ V ,
thus continuous on [0, π], and satisfy conditions (3.2)–(3.3).

We summarize these results in the following lemma.

Lemma 3.5. Let A be the operator defined in (3.1). Then

(i) there exists an increasing sequence of its real positive eigenvalues
λ41, λ

4
2, · · · with limk→∞ λ

4
k =∞;

(ii) the corresponding eigenfunctions ϕk ∈ D(A) ⊂ V , k ≥ 1, and they satisfy
the junction conditions (3.2)–(3.3);

(iii) the eigenfunctions ϕk satisfy Aϕk = λ4kϕk in H, k ≥ 1. That is, ϕ′′′′k (x) =
λ4kϕk(x) a.e. on every interval li, i = 1, · · · ,m+ 1;

(iv) the set {ϕk}∞k=1 is a complete orthonormal basis in H.

Algorithms for a computational determination of the eigenvalues and the
eigenfunctions of A are discussed in [15].

Remark 3.6. If the arch is uniform, i.e. it has no cracks, then the results
presented in this section are simplified. Specifically, the spaces V,H, and the
operator A take the following forms

V = H2(0, π) ∩H1
0 (0, π), H = L2(0, π), 〈Au, v〉V = (u′′, v′′)H , (3.6)

for any u, v ∈ V . See [14] for an investigation of this case.

An efficient method for a computational determination of the eigenvalues
and the eigenfunctions of A (Modified Shifrin’s method) is discussed in [15].

4. Physical parameters and their non-dimensional equivalents

This is the only section in the paper that uses physical variables. All the
other sections use their non-dimensional equivalents. Since both the physical
variables and their equivalents use the same notation, such an arrangement
helps to avoid confusing them. The physical variables are contained in Table
1 together with their units. Recall that the newton N = kg ·m · s−2 is the
unit of force.
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L Length of bar m
T Final time s
y Bar deflection m y = y(x, t)
p Transverse load/unit of length N ·m−1 p = p(x, t)
cd Damping coefficient kg ·m−1s−1
κ Bar curvature m−1

ρ Volume mass density kg ·m−3
E Young’s modulus N ·m−2
A Cross-sectional area m2

I Area moment of inertia m4

r Radius of gyration m r =
√
I/A

ω0 t-scale s−1

ω Natural frequency s−1

k Spring stiffness N ·m/rad
θ Flexibility m θ = EI/k
Tk Kinetic energy J = N ·m
Ua Potential energy for axial force J
Ub Potential energy due to bending J
M Bending moment magnitude N ·m
S0 Initial tensile axial force N
S1 Tensile force due to deflection N
N Total axial force N N = S0 + S1
L Lagrangian J L = Tk − Ub − Ua
Wext External work J
Wd Dissipative work J
Wnc Non-conservative work J Wnc =Wd +Wext

eI Energy normalization factor J
β Axial force renormalization 1
µ̂ Crack depth ratio 1
µ Normalized dynamic viscosity 1

Table 1. Nomenclature

To use the Extended Hamilton’s Principle we need to derive the Lagrangian
L = Tk − U = Tk − Ub − Ua, where Ub, Ua and Tk are the potential and the
kinetic energies. Also, we need the non-conservative external workWnc, which
is the sum of the external work Wext due to the load p, and the dissipative
work Wd due to the damping force Fd.

Let y(x, t), 0 ≤ x ≤ L, be the position of the arch at the time t ≥ 0. As
usual, the dots denote the time derivatives, and the primes denote the spatial



Equations of motion for cracked beams and shallow arches 417

ones. For the kinetic energy we have

Tk(y) =
ρA

2

∫ L

0
|ẏ(x, t)|2 dx. (4.1)

The external work Wext by the non-conservative load p(x, t) is

Wext(y) =

∫ L

0
p(x, t)y(x, t) dx. (4.2)

The dissipative force Fd(x, t) = −cdẏ(x, t), cd ≥ 0 is a uniformly distributed
viscous damping force acting only in the transverse direction. So, the dissipa-
tive work Wd done by the force is given by

Wd(y) =

∫ L

0
Fd(x, t)y(x, t) dx = −cd

∫ L

0
ẏ(x, t)y(x, t) dx. (4.3)

The potential energy is

U(y) = Ub(y) + Ua(y), (4.4)

where Ub is the potential energy due to the bending, and Ua is the potential
energy due to the axial force. The particular form of these terms depends on
the presence of cracks and other factors.

To simplify the notations the t-dependency of y is suppressed, if it does not
cause a confusion.

Beam. Suppose that we have a uniform beam with no cracks, as shown

in Figure 2(a). The magnitude M(x) of the bending moment vector ~M(x) of
the beam at any point x ∈ (0, L) is given by M(x) = EIκ(x), where κ(x) is
the curvature of the beam at x. Assuming |y′| � 1, we get κ(x) = y′′(x), and
M(x) = EIy′′(x). Accordingly, the bending potential energy of the beam is
given by

Ub(y) =
EI

2

∫ L

0
(y′′)2 dx. (4.5)

Now suppose that the beam has cracks as in Section 1, and in Figure 2(b).
The cracks are at 0 < x1 < · · · < xm < L. The standard approach to
modeling a crack is to represent it as a massless rotational spring with the
spring constant k, and the flexibility θ.

The spring constant k relates the torque (N ·m) to the angle of rotation. In
our case this relationship takes the form EIy′′(x) = kJ [y′](x), or J [y′](x) =
θy′′(x), where

θ =
EI

k
. (4.6)

Thus the unit of the flexibility θ is m.
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If the beam has a rectangular cross-section, as shown in Figure 1, then the
area moment of inertia I of the rectangle can be computed explicitly, and
(4.6) can be simplified further. If the crack is double-sided, then by [19, Eq.
(2.8)-(2.10)], the expression for the flexibility θ becomes

θ = 6πHµ̂2(0.535− 0.929µ̂+ 3.500µ̂2 − 3.181µ̂3 + 5.793µ̂4), (4.7)

where H is the half-height of the beam cross-section, and µ̂ = a/H.

If the crack is single-sided, then by [19, Eq. (2.8)-(2.10)]

θ = 6πHµ̂2(0.6384−1.035µ̂+3.7201µ̂2−5.1773µ̂3+7.553µ̂4−7.332µ̂5), (4.8)

where H is the entire height of the beam cross-section, and µ̂ = a/H.

The potential energy of the rotational spring with the spring constant k is

Ucrack =
1

2
kα2,

where α is the angle of twist from its equilibrium position in radians. Since
J [y′](x) ≈ α for small jumps in the slope of the beam, we conclude that the
total bending potential energy of the cracked beam with m cracks is

Ub(y) =
EI

2

∫ L

0
(y′′)2 dx+

EI

2

m∑
i=1

1

θi
|J [y′](xi)|2. (4.9)

Shallow arch. First, consider the uniform case. Following [22], the axial
force N in the uniform arch shown in Figure 2(a) is represented as the sum of
two components N = S0 + S1, where S0 is the initial axial tensile force, and
S1 is the axial tensile force due to deflection. That is, the force is positive if it
is tensile, and negative if it is compressing. The value of S0 is assumed to be
given, and the unknown force S1 can be found through the deflection y = y(x)
as follows.

Let ∆L be the elongation of the arch due to the deflection. By the definition
of the Young’s modulus E

S1 = EA
∆L

L
. (4.10)

The elongation is

∆L =

∫ L

0

√
1 + |y′(x)|2 dx− L (4.11)

≈
∫ L

0

(
1 +

1

2
|y′(x)|2

)
dx− L =

1

2

∫ L

0
|y′(x)|2 dx.

Then

S1 =
EA

2L

∫ L

0
|y′(x)|2 dx. (4.12)
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The potential energy Ua due to the axial force N is

Ua(y) =
EA

2L
(∆L∗)2, (4.13)

where ∆L∗ = NL
EA is the elongation of the arch caused by the total axial force

N = S0 + S1. Therefore

Ua(y) =
L

2EA
(S0 + S1)

2 =
L

2EA

(
S0 +

EA

2L

∫ L

0
|y′(x)|2 dx

)2

. (4.14)

Now suppose that the arch has cracks as in Section 1, and in Figure 2(b).
To derive its axial potential energy Ua(y), note that there exists a sequence
of smooth functions un, such that un → y in H1

0 (0, L), as n → ∞. For such
functions, the potential energy Ua(un) is given by the expression in (4.14), i.e.

Ua(un) =
L

2EA

(
S0 +

EA

2L

∫ L

0
|u′n(x)|2 dx

)2

, n = 1, 2, · · · (4.15)

Because of the continuity of this functional on H1
0 (0, L), we conclude that we

can pass to the limit in (4.15), as n→∞, to get

Ua(y) =
L

2EA

(
S0 +

EA

2L

∫ L

0
|y′(x)|2 dx

)2

, (4.16)

that is, the same expression as (4.14), even for an arch with cracks.

Non-dimensional variables. Now we find the non-dimensional equiva-
lents for the above physical quantities. Define the t-scale ω0, and the radius
of gyration r by

ω0 =
(π
L

)2√EI

ρA
, r =

√
I

A
. (4.17)

Then make the change of variables

x← πx

L
, y ← y

r
, p← p

EIr

(
L

π

)4

, t← ω0t, cd ←
cd

ρAω0
. (4.18)

Temporarily distinguish the notation for the original physical variables by
assigning them the 0 subscript, and their non-dimensional equivalents by as-
signing them the n subscript. For example, (4.18) transformation for t says
that tn = ω0t0. Then

y0(x0, t0) = ryn(xn, tn) = ryn

(πx0
L
, ω0t0

)
. (4.19)

Therefore,

y′0(x0, t0) = r
π

L
y′n(xn, tn), y′′0(x0, t0) = r

(π
L

)2
y′′n(xn, tn) (4.20)
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and

ẏ0(x0, t0) = rω0ẏn(xn, tn), ÿ0(x0, t0) = rω2
0 ÿn(xn, tn). (4.21)

Let the energy normalization factor eI be defined by

eI =
L

π
ρAr2ω2

0 =
L

π
ρIω2

0 =
(π
L

)3
r2EI. (4.22)

Then the kinetic energy Tk,o from (4.1) is transformed according to

Tk,0(y0) =
ρA

2

∫ L

0
|ẏ0(x0, t0)|2 dx0 =

L

π
ρAr2ω2

0

1

2

∫ π

0
|ẏn(xn, tn)|2 dxn (4.23)

= eI
1

2
|ẏn|2H = eITk,n(yn).

Consistent with the definition of the flexibility θ in (4.6), we use the trans-
formation θ ← πθ/L. Therefore, for the bending potential energy (4.9) we
have

Ub,o(yo) =
EI

2

∫ L

0
|y′′o (xo)|2 dxo +

EI

2

m∑
i=1

1

θi,o
|J [y′o](xi,o)|2 (4.24)

=
(π
L

)3
r2EI

[
1

2

∫ π

0
|y′′n(xn)|2 dxn +

1

2

m∑
i=1

1

θi,n
|J [y′n](xi,n)|2

]
= eIUb,n(yn).

The potential energy Ua due to the axial force is given by (4.16). After the
substitution (4.18) we get

Ua,0(y0) =
L

2EA

(
S0 +

EA

2L
r2
π

L

∫ π

0
|y′n(xn)|2 dxn

)2

=
L

2EA

(EA)2π2r2r2

L4

(
L2S0
EAπr2

+
1

2

∫ π

0
|y′n(xn)|2 dxn

)2

=
eI
2π

(
β +

1

2

∫ π

0
|y′n(xn)|2 dxn

)2

,

where the non-dimensional β ∈ R is a renormalization of the axial force S0.

Similarly, we conclude that Wext, and Wd are transformed by (4.18) into
their non-dimensional equivalents in the same way:

Tk ←
Tk
eI
, Ua ←

Ua
eI
, Ub ←

Ub
eI
, Wext ←

Wext

eI
, Wd ←

Wd

eI
. (4.25)

Therefore, the expressions for the non-dimensional quantities are

Tk(y) =
1

2
|ẏ|2H , Wext(y) = (p, y)H , Wd(y) = −cd(ẏ, y)H , (4.26)
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Ub(y) =
1

2

(
|y′′|2H +

m∑
i=1

1

θ i
|J [y′](xi)|2

)
, (4.27)

Ua(y) =
1

2π

(
β +

1

2
|y′|2H

)2

, (4.28)

where β ∈ R.

Natural beam frequencies.
Equation of harmonic transverse oscillations v = v(x) of a uniform beam

defined on interval (0, L) is

EIv′′′′(x) = ω2ρAv(x), 0 < x < L. (4.29)

For a cracked beam, equation (4.29) is satisfied on every subinterval (xi−1, xi),
i = 1, · · · ,m+ 1.

Using the transformations to the non-dimensional variables (4.17)–(4.21),
we get

EIr
(π
L

)4
v′′′′n (xn, tn) = ω2ρArvn(xn, tn),

where vn(xn, tn) is v(x, t) in the new (non-dimensional) variables. Dropping
the subscript n, we obtain the equation for v in the non-dimensional quotients

v′′′′ = ω2

(
L

π

)4 ρA

EI
v.

Comparing this equation with the definition of the eigenvalues and the eigen-
functions ϕ′′′′k = λ4kϕk, we conclude that the natural beam frequencies are
given by

ωk = λ2k

(π
L

)2√EI

ρA
, k ≥ 1. (4.30)

5. Convex functions and subdifferentials

Subdifferentials provide the proper mathematical framework for the ab-
stract formulation of equations of motion. Following [3, Section 1.2], let X be
a Hilbert space. A function φ : X → (−∞,+∞] is called proper and convex
on X, if φ is not identically +∞, and

φ((1− λ)x+ λy) ≤ (1− λ)φ(x) + λφ(y), (5.1)

for any x, y ∈ X, and λ ∈ [0, 1]. The function φ is called lower-semicontinuous
on X, if every level set {x ∈ X : φ(x) ≤ c}, c > −∞, is closed in X.

Given a proper, convex, lower-semicontinuous function φ on X, the subdif-
ferential ∂φ : X → X ′ is defined by

∂φ(x) = {x∗ ∈ X ′ : φ(y) ≥ φ(x) + 〈x∗, y − x〉}, (5.2)
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for any y ∈ X. Thus ∂φ ⊂ X ×X ′.
In general, ∂φ does not have to be defined everywhere on X. Furthermore,

the mapping x→ ∂φ(x) ⊂ X ′ can be multi-valued. Geometrically, if ∂φ(x) is
single-valued at x ∈ X, then y → φ(x) + 〈∂φ(x), y − x〉 is the tangent plane
to the graph of φ at x.

Let D(φ) = {x ∈ X : φ(x) <∞}, and D(∂φ) = {x ∈ X : ∂φ(x) 6= ∅}. Note
that if x ∈ D(∂φ), then x ∈ D(φ). Indeed, φ is a proper function. Therefore
D(φ) 6= ∅. Choose y ∈ D(φ), and x∗ ∈ ∂φ(x). Then φ(x) ≤ φ(y)−〈x∗, y−x〉 <
∞, as claimed.

Let f : X → R. The directional derivative f ′(x; y) of f at x ∈ X in the
direction y ∈ X is defined by

f ′(x; y) = lim
α→0+

f(x+ αy)− f(x)

α
. (5.3)

A function f is said to be Gâteaux differentiable at x ∈ X, if there exists
(∇f)(x) ∈ X ′, such that

f ′(x; y) = 〈∇f(x), y〉, (5.4)

for any y ∈ X. The linear functional (∇f)(x) is called the Gâteaux derivative
of f at x ∈ X.

If the convergence in (5.3) is uniform in y on bounded subsets, then f is
said to be Fréchet differentiable.

The Gâteaux differentiability of f is a more restrictive condition, than f is
having a subdifferential. The following lemma is proved in [3, Section 1.2]:

Lemma 5.1. If φ is convex and Gâteaux differentiable at x ∈ X, then ∂φ(x) =
∇φ(x) and ∂φ(x) is a singleton.

Recall that an operator A : X → X ′ is called symmetric, if 〈Au, v〉 =
〈Av, u〉, for any u, v ∈ D(A).

Theorem 5.2. Let X be a Hilbert space, and A : X → X ′ be a linear, contin-
uous, and symmetric operator such that D(A) = X, and 〈Au, u〉 ≥ 0 for any
u ∈ X. Then function φ : X → R defined by

φ(u) =
1

2
〈Au, u〉, u ∈ X, (5.5)

is convex, proper and lower-semicontinuous on X. Moreover, it is Fréchet
differentiable on X with ∇φ(u) = ∂φ(u) = Au for any u ∈ X, and D(φ) =
D(∂φ) = X.
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Proof. To see that ϕ is convex, let 0 ≤ λ ≤ 1, and u, v ∈ X. Then

φ(λu+ (1− λ)v) =
1

2

[
λ2〈Au, u〉+ 2λ(1− λ)〈Au, v〉+ (1− λ)2〈Av, v〉

]
=

1

2
[λ〈Au, u〉+(1− λ)〈Av, v〉−λ(1− λ)〈A(u− v), (u− v)〉]

≤ λφ(u) + (1− λ)φ(v).

Since A is continuous, function φ is continuous on X. In particular, it is lower-
semicontinuous on X. From the continuity of A, we have ‖Av‖X′ ≤ C‖v‖X ,
for some C > 0. Since

φ(v)− φ(u)− 〈Au, v − u〉 =
1

2
〈A(v − u), v − u〉,

we conclude that

|φ(v)− φ(u)− 〈Au, v − u〉| ≤ C

2
‖v − u‖2X . (5.6)

Therefore Au = (∇φ)(u) is the Gâteaux (even Fréchet) derivative of φ at
u ∈ X, and ∂φ = A is its single-valued subdifferential, with D(∂φ) = D(ϕ) =
X. �

Theorem 5.3. Let V be the Hilbert space defined in (2.3), and A be the linear
operator defined in (3.1). Let

ϕ(u) =
1

2
〈Au, u〉, u ∈ V. (5.7)

(i) Then D(∂ϕ) = V , and ∂ϕ(u) = Au, for any u ∈ V .
(ii) If u ∈ D(A) ⊂ V , then ∂ϕ(u) = u′′′′ a.e. on every interval li, i =

1, · · · ,m+ 1.
(iii) If u ∈ H1

0 (0, π) ∩H4(0, π) ⊂ D(A), then ∂ϕ(u) = u′′′′ a.e. on [0, π].

Proof. By Theorem 5.2 with X = V , function ϕ : V → R is proper, convex,
and lower-semicontinuos on V , and (i) follows. For a general u ∈ V , the
expression for ∂ϕ(u) ∈ V ′ is complicated. However, if we assume that u is
somewhat more regular, then we can get a simpler expression for it.

Suppose that condition (ii) is satisfied. Then, by Theorem 3.3, we have
Au = u′′′′ a.e. on every interval li, i = 1, · · · ,m + 1. Thus, we can say that
∂ϕ(u) = u′′′′ a.e. on every such interval.

Suppose further, that u ∈ H1
0 (0, π)∩H4(0, π) ⊂ D(A). Then u′′′′ ∈ L2(0, π),

and u′ is smooth. Thus J [u′](xi) = 0 for any i = 1, · · · ,m, and we have

〈∂ϕ(u), v〉 = 〈Au, v〉 =

∫ π

0
u′′(x)v′′(x) dx =

∫ π

0
u′′′′(x)v(x) dx, (5.8)

for any v ∈ V . Therefore, in this case ∂ϕ(u) = u′′′′ a.e. on [0, π]. �
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Theorem 5.4. Let H1
0 = H1

0 (0, π) be the Hilbert space defined in (2.13) and
〈·, ·〉1 be the duality pairing between H1

0 and (H1
0 )′. Let B be the linear operator

defined by

〈Bu, v〉1 = (u′, v′)H , u, v ∈ H1
0 (5.9)

and

ψ(u) =
1

2
〈Bu, u〉, u ∈ H1

0 . (5.10)

(i) Then D(∂ψ) = H1
0 and ∂ψ(u) = Bu ∈ (H1

0 )′, for any u ∈ H1
0 .

(ii) If u ∈ V ⊂ H1
0 , then

∂ψ(u) = Bu = −
m∑
i=1

J [u′](xi)δ(x− xi)− u′′, (5.11)

where δ(x − a), a ∈ [0, π] is the element of (H1
0 )′, defined by 〈δ(x −

a), v〉1 = v(a), for any v ∈ H1
0 .

(iii) If u ∈ D(A) ⊂ V , then

∂ψ(u) = Bu = −
m∑
i=1

θiu
′′(xi)δ(x− xi)− u′′, (5.12)

which is still an element of (H1
0 )′.

Proof. By the definition, the operator B : H1
0 → (H1

0 )′ is continuous, symmet-
ric and coercive on H1

0 . In particular, B is positive, and its range is (H1
0 )′.

Theorem 5.2 is applicable with X = H1
0 , and A = B. We conclude that the

function ψ : H1
0 → R is proper, convex, and lower-semicontinuos on H1

0 . Fur-
thermore, D(∂ψ) = H1

0 , and ∂ψ(u) = Bu ∈ (H1
0 )′, for any u ∈ H1

0 , as claimed
in (i).

As in Theorem 5.3, a simpler expression for the subdifferential ∂ψ(u) can
be obtained assuming an additional regularity of u ∈ H1

0 . Suppose that u ∈
V ⊂ H1

0 . Then we have

〈Bu, v〉1 = (u′, v′)H =

∫ π

0
u′(x)v′(x) dx (5.13)

= −
m∑
i=1

J [u′(xi)]v(xi)−
m+1∑
i=1

(u′′, v)i,

for any v ∈ H1
0 . Therefore, in this case, we have (5.11).

Suppose further, that u ∈ D(A) ⊂ V . Then, by Theorem 3.3, u satisfies
conditions (3.2)–(3.3). In particular, J [u′](xi) = θiu

′′(xi). Thus, with this
additional assumption on u, we have (5.12). �
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6. Extended Hamilton’s principle

To derive the governing equations for beams and arches, we use the Ex-
tended Hamilton’s Principle, which accommodates non-conservative forces,
see [17].

The Principle states that the motion y = y(x, t) of the system gives a
stationary value to the action of the system, that is, to the integral

I(y) =

∫ t2

t1

(L+Wnc) dt, (6.1)

where the Lagrangian L = Tk−U is the difference between the kinetic energy
Tk and the potential energy U = Ub + Ua. The term Wnc = Wd +Wext for
the non-conservative external work Wnc is the sum of the external work Wext,
due to the load p, and the dissipative work Wd, due to a damping force Fd.
Thus (6.1) becomes

I(y) =

∫ t2

t1

(Tk(y)− Ub(y)− Ua(y) +Wd(y, ẏ) +Wext(y)) dt, (6.2)

where the components of the action are given in (4.26)–(4.28).

The traditional way of expressing the fact that the motion of the system
gives a stationary value to the functional I defined in (6.2), is to say that its
variation δI = 0. Let us examine this statement in more detail within the
framework of the Hilbert spaces.

Recall that the Hilbert spaces V,H1
0 , and H were defined in Section 2.

Define

W = {y : y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;H), ÿ ∈ L2(0, T ;V ′)},

where the derivatives are taken in the sense of distributions, [21, Chapter 2].
This is a Hilbert space with the standard inner product and the norm.

Given η ∈W , the directional derivative I ′(y; η) is defined by

I ′(y; η) = lim
α→0+

I(y + αη)− I(y)

α
, (6.3)

which is consistent with (5.3).

The Gâteaux derivative ∇I(y) (if exists) is an element of the dual W ′ such
that

I ′(y; η) = 〈∇I(y), η〉W , (6.4)

for any η ∈W , see Section 5, and [3, Section 1.2].

Functional I has a stationary value at y means that ∇I(y) = 0, which gives
the meaning to the infinitesimal variation equation δI = 0.
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To derive the governing equation, one has to transform the stationary value
equation ∇I(y) = 0 into a more explicit form by computing the directional
derivatives of I along the specially chosen η ∈ W . Doing so, we arrive at the
following main result.

Theorem 6.1. Equation

ÿ + ∂Ub(y) + ∂Ua(y) + cdẏ = p, (6.5)

is the abstract governing equation for beams and arches in V ′, a.e. for t ∈
[0, T ]. Note: ∂Ub : V → V ′, and ∂Ua : H1

0 → (H1
0 )′.

Proof. Let η(x, t) = ζ(t)v(x), where ζ : [t1, t2] → R is a smooth function
satisfying ζ(t1) = ζ(t2) = 0, and v ∈ V .

To obtain ∇I(y), we compute the corresponding directional derivatives for
every term in (6.2) for the same η = ζv. First, notice that

Tk(y + αη)− Tk(y) = α(ẏ, v)H ζ̇ +
α2

2
|ζ̇|2 |v|2H . (6.6)

By the definition of the directional derivative,∫ t2

t1

T ′k(y; η) dt =

∫ t2

t1

(ẏ, v)H ζ̇ dt.

Integrating by parts in t, and using ζ(t1) = ζ(t2) = 0, we get∫ t2

t1

T ′k(y; η) dt =

∫ t2

t1

(ẏ(t), v)H ζ̇(t) dt = −
∫ t2

t1

〈ÿ(t), v〉V ζ(t) dt. (6.7)

Similarly, we have ∫ t2

t1

W ′ext(y; η) dt =

∫ t2

t1

(p(t), v)Hζ(t) dt, (6.8)

where the dependency of p = p(x, t) on x is suppressed.
The work Wd done by the non-conservative force Fd is not covered by the

classical Hamilton’s Principle. To accommodate such a case, the Principle is
extended by introducing the Rayleigh’s dissipation functional, for which the
action is defined in a non-variational manner, see [17] for details. In our case
it implies that ∫ t2

t1

W ′d(y; η) dt = −cd
∫ t2

t1

(ẏ(t), v)Hζ(t) dt. (6.9)

The expressions for the potential energies Ub and Ua depend on whether the
system is a beam or an arch, and on the presence of cracks. They are given in
(4.27)–(4.28). In every case, Ub(u) is a convex, lower-semicontinuous function
on V , and Ua(u) is a convex, lower-semicontinuous function on H1

0 . Therefore
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they admit subdifferentials ∂Ub and ∂Ua, on V and H1
0 correspondingly, see

Section 5.
If Ub and Ua are Gateaux differentiable, then the subdifferentials are equal

to their Gateaux derivatives. Thus, we have for η = ζv∫ t2

t1

U ′b(y; η) dt =

∫ t2

t1

〈∂Ub(y(t)), v〉V ζ(t) dt, (6.10)∫ t2

t1

U ′a(y; η) dt =

∫ t2

t1

〈∂Ua(y(t)), v〉1ζ(t) dt. (6.11)

The stationary value equation ∇I(y) = 0, for I(y) given by (6.2), implies

0 = (∇I(y), η)W = I ′(y; η)

=

∫ t2

t1

[(−cdẏ + p(t), v)H − 〈ÿ + ∂Ub(y(t)), v〉V − 〈∂Ua(y(t)), v〉1] ζ(t) dt.

(6.12)

Since ζ is an arbitrary smooth function on [t1, t2], we get

(−cdẏ + p(t), v)H − 〈ÿ + ∂Ub(y(t)), v〉V − 〈∂Ua(y(t)), v〉1 = 0,

for any v ∈ V , and almost any t ∈ [0, T ]. This can further be written as

〈−ÿ − ∂Ub(y(t))− ∂Ua(y(t))− cdẏ + p(t), v〉V = 0. (6.13)

Thus (6.13) implies equation (6.5). �

7. Beam equation

In this section we use Theorem 6.1 to derive the governing equations for
uniform and cracked beams. The strong damping case is also considered.

Uniform beam. Suppose that we have a uniform beam with no cracks, as
shown in Figure 2(a). The classical Euler-Bernoulli beam theory [16] assumes
that the beam motion is due mainly to its bending, while the influence of the
axial force is negligible. Thus we let Ua = 0.

By (4.27) the bending potential energy of the uniform beam is given by

Ub(y) =
1

2
|y′′|2H . (7.1)

Define operator A : V → V ′ by

〈Au, v〉 = (u′′, v′′)H , (7.2)

for any u, v ∈ V . The operator A is linear, symmetric, and coercive on V .
Then

Ub(u) =
1

2
〈Au, u〉, (7.3)
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for any u ∈ V . By Theorem 5.2, Ub is a convex, lower-semicontinuous function
on V . Furthermore, ∂Ub(u) = Au. From (6.5), the abstract Uniform Beam
equation in V ′ is

ÿ +Ay + cdẏ = p. (7.4)

Assume that u ∈ D(A). By Theorem 5.3, Au = u′′′′ for such u. Therefore,
with this assumption, equation (7.4) can be written as

ÿ + y′′′′ + cdẏ = p, (7.5)

which is the classical Euler-Bernoulli form of the Beam equation for beams
without cracks. To obtain this equation in physical variables, reverse the
substitutions in Section 4.

Beam with cracks. Now suppose that the beam has cracks as in Section
1, and in Figure 2(b). Continuing with the classical Euler-Bernoulli beam
theory we disregard the axial force, and let Ua = 0.

By (4.27), the bending potential energy of the cracked beam with m cracks
is

Ub(y) =
1

2

(
|y′′|2H +

m∑
i=1

1

θ i
|J [y′](xi)|2

)
. (7.6)

Arguing as in Theorem 5.3, we get that Ub is a convex, lower-semicontinuous
function on V .

Define operator A : V → V ′ as in equation (3.1), that is,

〈Au, v〉 =

m+1∑
i=1

(u′′, v′′)i +

m∑
i=1

1

θ i
J [u′](xi)J [v′](xi), (7.7)

for any u, v ∈ V . By Lemma 3.2, the operator A is linear, symmetric, and
coercive on V . Then

Ub(u) =
1

2
〈Au, u〉, (7.8)

for any u ∈ V .

By Theorem 5.2, ∂Ub(u) = Au. Therefore the abstract equation for the
beam with cracks is

ÿ +Ay + cdẏ = p, (7.9)

which is satisfied in V ′, a.e. for t ∈ [0, T ].

Furthermore, using Theorem 5.3, if u ∈ D(A), then u satisfies the boundary
conditions of the problem, i.e. (3.2) and (3.3), as well as Au = u′′′′ a.e. on
every interval li, i = 1, · · · ,m+ 1. Then equation (7.9) can be written as

ÿ + y′′′′ + cdẏ = p. (7.10)
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We can call it the classical Beam equation for beams with cracks. While this
equation looks the same as the Beam equation for beams with no cracks (7.5),
its abstract formulation (7.9) uses the operator A defined by (7.7), rather than
by (7.2). In particular, y(·, t) ∈ V , a.e. t ∈ [0, T ].

Strong damping. Viscous effects on the beam and arch motion are dis-
cussed in [2, 11]. Considerations based on the Voigt model for viscoelasticity
result in the additional term µAẏ in the governing equations. Here µ > 0 is a
non-dimensional normalized dynamic viscosity coefficient.

If such a term is present, we refer to the model as having the strong damp-
ing. Otherwise, if µ = 0, the model is for the weak damping. In particular,
equations (7.9) and (7.10) describe the weak beam damping motion case. The
corresponding non-dimensional abstract and classical equations in the presence
of the strong damping µ > 0 are

ÿ +Ay + µAẏ + cdẏ = p (7.11)

and

ÿ + y′′′′ + µẏ′′′′ + cdẏ = p. (7.12)

8. Arch equation

In this section Theorem 6.1 is used to derive the governing equations for
uniform and cracked arches.

Uniform shallow arch. The potential energy for the arch contains the
term Ua, due to the axial force. By (4.28),

Ua(y) =
1

2π

(
β +

1

2
|y′|2H

)2

. (8.1)

To compute the subdifferential of Ua, note that for u ∈ V ,

∂Ua(u) =
1

π

(
β +

1

2
|y′|2H

)
∂ψ(u), (8.2)

where ψ is

ψ(u) =
1

2
|u′|2H =

1

2
〈Bu, u〉, u ∈ V, (8.3)

see Theorem 5.4. Since there are no cracks in the arch, we have ∂ψ(u) = −u′′,
per (5.11).

Using the subdifferential ∂Ub(u) = Au, for A defined by (7.2), the abstract
form of the uniform shallow arch equation is

ÿ +Ay − 1

π

(
β +

1

2
|y′|2H

)
y′′ + cdẏ = p, (8.4)
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in V ′, a.e. on [0, T ].

Its classical form is

ÿ + y′′′′ − 1

π

(
β +

1

2

∫ π

0
|y′(x, t)|2 dx

)
y′′ + cdẏ = p, (8.5)

cf. [22, eq. (6)].

Arch with cracks. Now suppose that the arch has cracks as in Section 1,
and in Figure 2(b). Its axial potential energy Ua(y) has the same expression
as (8.1), even if the arch has cracks.

However, the subdifferential ∂Ua(u) is different from the one in the smooth
case. It has been computed in Theorem 5.4 as

∂ψ(u) = Bu = −
m∑
i=1

J [u′](xi)δ(x− xi)− u′′, (8.6)

for u ∈ V . The bending potential Ub is given by (7.6). Then its subdifferential
∂Ub(u) = Au, and we get from (6.5) that

ÿ +Ay − 1

π

(
β +

1

2
|y′|2H

)( m∑
i=1

J [y′](xi)δ(x− xi)− y′′
)

+ cdẏ = p, (8.7)

is the abstract equation for a shallow arch with cracks in V ′, a.e. t ∈ [0, T ].

Then, assuming that the function y is smooth as discussed in Theorem 5.4,
we can use (5.12) for the subdifferential ∂Ua(u), and ∂Ub(u) = Au = u′′′′.
This results in

ÿ + y′′′′ − 1

π

(
β +

1

2
|y′|2H

)( m∑
i=1

θiy
′′(xi, t)δ(x− xi)− y′′

)
+ cdẏ = p, (8.8)

which can be called the “classical” form of the shallow arch equation with
cracks. These equations are also referred to as describing the weak arch damp-
ing motion.

Strong damping. Equations (8.7) and (8.8) describe the weak arch damp-
ing µ = 0 motion case. The corresponding non-dimensional abstract and
“classical” equations in the presence of the strong damping µ > 0 are

ÿ+Ay+µAẏ− 1

π

(
β +

1

2
|y′|2H

)( m∑
i=1

J [y′](xi)δ(x− xi)− y′′
)

+cdẏ = p (8.9)
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and

ÿ + y′′′′ + µẏ′′′′ − 1

π

(
β +

1

2
|y′|2H

)( m∑
i=1

θiy
′′(xi, t)δ(x− xi)− y′′

)
+ cdẏ = p,

(8.10)

see Section 7.
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