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Abstract. In this paper, we study the multiplicity of positive solutions for the following
singular four point boundary value problem with p-Laplacian:

{
(φp(u′(t)))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,
αφp(u(0))− βφp(u′(ξ)) = 0, γφp(u(1)) + δφp(u′(η)) = 0,

where φp(s) = |s|p−2s, p > 1, α > 0, β ≥ 0, γ > 0, δ ≥ 0, ξ, η ∈ (0, 1) and ξ < η. By using

monotone iterative technique and fixed point theorem, we establish the existence of two

positive solutions for the above problem, one is an iterative positive solution, another is

an expansion and compression positive concave solution. In addition, we also give iterative

schemes for the first solution, which start off a known simple linear function.

1. Introduction

In this paper, we study the multiplicity of positive solutions for the following
quasi-linear equation with p-Laplacian:

(φp(u′(t)))′ + a(t)f(t, u(t)) = 0, 0 < t < 1, (1.1)

subject to four point boundary conditions

αφp(u(0))− βφp(u′(ξ)) = 0, γφp(u(1)) + δφp(u′(η)) = 0, (1.2)
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where φp(s) is p-Laplacian operator, i.e. φp(s) = |s|p−2s, p > 1, α > 0, β ≥
0, γ > 0, δ ≥ 0, ξ, η ∈ (0, 1) are given constants, and ξ < η, a ∈ L((0, 1), [0, +∞))
has countable many singularities on [0, 1], f(t, u) is a continuous function map-
ping [0, 1]× [0, +∞) to [0,+∞).

Equations of the above form occur in the study of the n-dimensional p-
Laplacian equation, non-Newtonian fluid theory and the turbulent flow of a gas
in porous medium, see [1],[2],[11] and [12]. By using the fixed point theorem in
cones due to Krasnoselskii, Wang [3], Kong and Wang [4] studied the equation
(1.1) subject to one of the following nonlinear boundary conditions:

u(0)− g1(u′(0)) = 0, u(1) + g2(u′(1)) = 0, (1.3)

u(0)− g1(u′(0)) = 0, u′(1) = 0, (1.4)
u′(0) = 0, u(1) + g2(u′(1)) = 0. (1.5)

By using of the fixed point theorem of three functionals, He and Ge [5] also
studied the multiplicity of positive solutions for the equation (1.1) subject to
(1.3)-(1.5). However, all the above mentioned references are not allowed to
possess countable many singularities on (0, 1) for a(t).

Recently, Liu [6] established the existence of positive solutions of the fol-
lowing singular three-point boundary value problems with one-dimensional
p-Laplacian: {

(φp(u′(t)))′ + a(t)f(u(t)) = 0, 0 < t < 1,
u′(0) = 0, u(1) = βu(η),

Under the conditions that f ∈ C([0,∞), [0,∞)), a ∈ L([0, 1], [0,∞)), and a(t)
can have countable many singularities on (0, 1

2). For the other works about
the equation with one-dimensional p-Laplacian, we refer the reader to [8]-[10]
and their references.

But for equation (1.1), there is few papers dealing with the existence of
positive solutions when a(t) possesses countable many singularities on [0, 1].
In recent papers [7], Su et al. studied the following equation

(φp(u′(t)))′ + a(t)f(u(t)) = 0, 0 < t < 1, (1.6)

subject to the four point boundary condition (1.2). In the corresponding local
condition, superlinear and sublinear conditions, Su obtained the existence of
the single solution and multiple solutions for the above problems by using the
fixed point index theory. It should point out that they didn’t give iterative
positive solutions and iterative schemes for approximating the solutions.

In this paper, we study the multiplicity of positive solutions for singular
nonlinear four point boundary value problem with p-Laplacian when a(t) pos-
sesses countable many singularities on (0, 1). By using monotone iterative
technique and fixed point theorem, we establish the existence of two positive
solutions for the BVP (1.1)-(1.2), one is an iterative positive solution, another
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is an expansion and compression positive concave solution. In addition, we
also give iterative schemes for the first solution, which start off a known simple
linear function.

2. Preliminaries and Lemmas

In the rest of the paper, we make the following assumptions:
(H1) f : [0, 1]×R → R+ is continuous and nondecreasing on u;
(H2) a(t) ∈ L(0, 1) is nonnegative on (0, 1), and a(t) does not vanish iden-

tical on any subinterval of (0, 1).
Let E = C[0, 1] be our Banach space with the maximum norm ‖u‖ =

supt∈[0,1] |u(t)|.
Definition 2.1. Let E be a real Banach space. A nonempty closed convex set
K ⊂ E is called a cone of E if it satisfies the following two conditions:

(1) x ∈ K,λ∗ ≥ 0 implies λ∗x ∈ K;
(2) x ∈ K,−x ∈ K implies x = 0.

Definition 2.2. A functional f ∈ E is said to be concave on [0, 1] provided
f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y), for all x, y ∈ [0, 1] and t ∈ [0, 1].

Definition 2.3. An operator is called completely continuous if it is continuous
and maps bounded sets into precompact sets.

Let

K = {u ∈ E : u(t) ≥ 0, u(t) is concave function on [0, 1]},
then K is a cone of E.

Lemma 2.4. [11] Suppose E is a Banach space, K ∈ E is a cone, let Ω1, Ω2

be two bounded open sets of E such that θ ∈ Ω1, Ω1 ⊂ Ω2. Let operator T : K∩
(Ω2\Ω1) → K be completely continuous. Suppose that one of two conditions
hold

(i) ‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω1, ‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω2;
(ii) ‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω1, ‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω2,

then T has at least one fixed point in K ∩ (Ω2\Ω1).

Lemma 2.5. Suppose condition (H2) holds, then

0 <

∫ η

ξ
a(s)ds < +∞.

Furthermore, the function

A(t) =
∫ t

ξ
φq

(∫ t

s
a(r)dr

)
ds +

∫ η

t
φq

(∫ s

t
a(r)dr

)
ds, t ∈ [ξ, η],
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is positive continuous function on [ξ, η], therefore A(t) has minimum value on
[ξ, η], thus we suppose that this minimum value is L > 0, then

A(t) ≥ L, t ∈ [ξ, η]. (2.1)

Proof. At first, it is easy to see that A(t) is continuous on [ξ, η]. Next, let

A1(t) =
∫ t

ξ
φq

(∫ t

s
a(r)dr

)
ds, A2(t) =

∫ η

t
φq

(∫ s

t
a(r)dr

)
ds.

Then, from the condition (H2), we have that the function A1(t) is strictly
monotone nondecreasing on [ξ, η] and A1(ξ) = 0, the function A2(t) is strictly
monotone non-increasing on [ξ, η] and A1(η) = 0, which implies

L = min
t∈[ξ,η]

A(t) > 0.

The proof is completed. ¤

Lemma 2.6. Let u ∈ K. Then

u(t) ≥ min{ξ, 1− η}‖u‖, t ∈ [ξ, η].

Proof. Suppose

τ = inf

{
µ ∈ [0, 1] : sup

t∈[0,1]
u(t) = u(µ)

}
.

we shall discuss it from three perspectives.

(i) Let τ ∈ [0, ξ]. It follows from the concavity of u(t) that each point on
chord between (τ, u(τ)) and (1, u(1)) is below the graph of u(t), thus

u(t) ≥ u(τ) +
u(1)− u(τ)

1− τ
(t− τ), t ∈ [ξ, η].

Then

u(t) ≥ min
t∈[ξ,η]

[
u(τ) + u(1)−u(τ)

1−τ (t− τ)
]

= u(τ) + u(1)−u(τ)
1−τ (η − τ)

= η−τ
1−τ u(1) + 1−η

1−τ u(τ) ≥ (1− η)u(τ),

this means u(t) ≥ min{ξ, 1− η}‖u‖, t ∈ [ξ, η].

(ii) Let τ ∈ [ξ, η]. If t ∈ [ξ, τ ], then we have

u(t) ≥ u(τ) +
u(τ)− u(0)

τ
(t− τ), t ∈ [ξ, τ ].

Then
u(t) ≥ min

t∈[ξ,τ ]

[
u(τ) + u(τ)−u(0)

τ (t− τ)
]

= ξ
τ u(τ) + τ−ξ

τ u(0) ≥ ξu(τ) ≥ min{ξ, 1− η}‖u‖.
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If t ∈ [τ, η], similarly, we have

u(t) ≥ u(τ) +
u(1)− u(τ)

1− τ
(t− τ), t ∈ [τ, η].

Then
u(t) ≥ min

t∈[τ,η]

[
u(τ) + u(1)−u(τ)

1−τ (t− τ)
]

= 1−η
1−τ u(τ) + η−τ

1−τ u(1) ≥ (1− η)u(τ)

which means u(t) ≥ min{ξ, (1− η)}‖u‖, t ∈ [ξ, η].

(iii) τ ∈ [η, 1]. Similarly, we have

u(t) ≥ u(τ) +
u(τ)− u(0)

τ
(t− τ), t ∈ [ξ, η],

then
u(t) ≥ min

t∈[ξ,η]

[
u(τ) + u(τ)−u(0)

τ (t− τ)
]

= ξ
τ u(τ) + τ−ξ

τ u(0) ≥ ξu(τ),
this yields u(t) ≥ ξ‖u‖, t ∈ [ξ, η]. From the above discussion, we obtain u(t) ≥
min{ξ, 1− η}‖u‖, t ∈ [ξ, η]. The proof is complete. ¤

For any u ∈ K satisfying the BVP (1.1), it follows from the boundary
condition that we have u′(ξ) ≥ 0, u′(η) ≤ 0, then there exists a constant
σ ∈ [ξ, η] such that u′(σ) = 0.

Integrate (1.1) from σ to 1, we get

φp(u′(t)) = φp(u′(σ))−
∫ t

σ
a(s)f(s, u(s))ds, (2.2)

i.e.,

u′(t) = u′(σ)− φq

(∫ t

σ
a(s)f(s, u(s))ds

)
.

thus

u(t) = u(σ) + u′(σ)(t− σ)−
∫ t

σ
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds. (2.3)

Let t = η in (2.2), by u′(σ) = 0, we have

φp(u′(η)) =)−
∫ η

σ
a(s)f(s, u(s))ds.

It follows from the boundary condition φp(u(1)) = − δ
γ φp(u′(η)) that

u(1) = φq

(
δ

γ

∫ η

σ
a(s)f(s, u(s))ds

)
. (2.4)
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Letting t = 1 in (2.4), by (2.3), (2.4), we have

u(σ) = φq

(
δ

γ

∫ η

σ
a(s)f(s, u(s))ds

)
+

∫ η

σ
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds. (2.5)

So, by (2.5) and (2.3), for t ∈ (σ, 1), we know

u(t) = φq

(
δ

γ

∫ η

σ
a(s)f(s, u(s))ds

)
+

∫ 1

t
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds.

Similarly, for t ∈ (0, σ), by integrating the first equation of problems (1.1) on
(0, σ), we have

u(t) = φq

(
β

α

∫ σ

ξ
a(r)f(r, u(r))dr

)
+

∫ t

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds.

This implies that

u′(t) =





φq

(
β

α

∫ σ

ξ
a(r)f(r, u(r))dr

)

+
∫ t

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds, 0 ≤ t ≤ σ,

φq

(
δ

γ

∫ η

σ
a(r)f(r, u(r))dr

)

+
∫ 1

t
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds, σ ≤ t ≤ 1.

(2.6)

On the other hand, suppose (2.6) hold, then

u′(t) =





φq

(∫ σ

t
a(r)f(r, u(r))dr

)
≥ 0, 0 ≤ t ≤ σ,

−φq

(
−

∫ t

σ
a(r)f(r, u(r))dr

)
≤ 0, σ ≤ t ≤ 1.

(2.7)

It is easy from (2.7) to be obtained (φp(u′(t)))′ + a(t)f(t, u(t)) = 0, 0 < t < 1.
Moreover, letting t = 0 and t = 1 in (2.6) and (2.7), we can see the boundary
value conditions of (1.1) hold.
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Now, we define an operator T : K → E by

(Tu)(t) =





φq

(
β

α

∫ σ

ξ
a(r)f(r, u(r))dr

)

+
∫ t

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds, 0 ≤ t ≤ σ,

φq

(
δ

γ

∫ η

σ
a(r)f(r, u(r))dr

)

+
∫ 1

t
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds, σ ≤ t ≤ 1.

(2.8)

Then each fixed point of T is a positive solution of the BVP (1.1)-(1.2).

Lemma 2.7. T : K → K is continuous, compact and nondecreasing.

Proof. At first, since

(Tu)′(t) =





φq

(∫ σ

t
a(r)f(r, u(r))dr

)
≥ 0, 0 ≤ t ≤ σ,

−φq

(
−

∫ t

σ
a(r)f(r, u(r))dr

)
≤ 0, σ ≤ t ≤ 1.

(2.9)

is continuous and nonincreasing in [0, 1] and (Tu)′(σ) = 0, which implies that
(Tu)′′(t) ≤ 0. At the same time, for any u ∈ K, we have

(φq(Tu)′(t))′ = −a(t)f(u(t)), t ∈ (0, 1)

and
(Tu)(σ) = ‖Tu‖. (2.10)

This implies that T (K) ⊂ K, and that each fixed point of T is a positive
solution of BVP (1.1).

Next, suppose D ⊂ K is a bounded set, then for any u ∈ D, there exists a
constant M > 0 such that ‖u‖ ≤ M. Thus for any u ∈ D, we have

‖Tu‖ = (Tu)(σ)

= φq

(
β

α

∫ σ

ξ
a(r)f(r, u(r))dr

)
+

∫ t

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds

≤
[
φq

(
β

α

∫ σ

ξ
a(r)dr

)
+

∫ t

0
φq

(∫ σ

s
a(r)dr

)
ds

]
φq

(
sup

[0,1]×[0,M ]
f(t, x)

)

which implies T (D) is bounded.
On the other hand, according to the Arezela-Ascoli theorem and Lebesgue

dominated convergence theorem, we easily see T : K → K is completely
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continuous. In the end, noticing the monotonicity of f on u and the definition
of T, we also have the operator T is nondecreasing. ¤

3. Main results

Theorem 3.1. Suppose conditions (H1) and (H2) hold. If there exist two
positive constants n < m such that

sup
t∈[0,1]

f(t,m) ≤ (mM)p−1, inf
t∈[ξ,η]

f (t,min{ξ, 1− η}n) ≥ (nN)p−1, (3.1)

where

M =
(

φq

(
β

α

∫ η

ξ
a(r)dr

)
+

∫ η

0
φq

(∫ η

s
a(r)dr

)
ds

)−1

, N =
2
L

,

then BVP (1.1)-(1.2) has at least two positive and concave solutions u∗, v∗
such that n ≤ ‖u∗‖ ≤ m,n ≤ ‖v∗‖ ≤ m. Moreover one positive and concave
solution u∗ can be obtained through iterative sequence {un},

un(t) = (Tun−1)(t) =





φq

(
β

α

∫ σ

ξ
a(r)f(r, un−1(r))dr

)

+
∫ t

0
φq

(∫ σ

s
a(r)f(r, un−1(r))dr

)
ds, 0 ≤ t ≤ σ,

φq

(
δ

γ

∫ η

σ
a(r)f(r, un−1(r))dr

)

+
∫ 1

t
φq

(∫ s

σ
a(r)f(r, un−1(r))dr

)
ds, σ ≤ t ≤ 1.

and
lim

n→+∞Tnu0 = u∗,

where the initial value u0 = m.

Proof. Let K[n,m] = {u ∈ K : n ≤ ‖u‖ ≤ m}, we firstly prove TKn, m ⊂
K[n,m].

In fact, for any u ∈ K[n,m], we have

0 ≤ u(t) ≤ max
t∈[0,1]

u(t) = ‖u‖ ≤ m. (3.2)

On the other hand, for any u ∈ K[n,m], it follows from Lemma 2.6 that

min
t∈[ξ,η]

u(t) ≥ min{ξ, 1− η}‖u‖ ≥ min{ξ, 1− η}n. (3.3)
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So by the assumptions (H1) and (3.1)-(3.2), we have

0 ≤ f(t, u(t)) ≤ f(t,m) ≤ sup
t∈[0,1]

f(t,m) ≤ (mM)p−1, (3.4)

and from (3.3), for any t ∈ [ξ, η], we also have

f(t, u(t)) ≥ f(t,min{ξ, 1− η}n)
≥ inf

t∈[ξ,η]
f(t,min{ξ, 1− η}n)

≥ (nN)−1, t ∈ [ξ, η].
(3.5)

It is easy to know by Lemma 2.7 that Tu ∈ K, and by (3.4) and Lemma 2.7,
we have
‖Tu‖ = (Tu)(σ)

= φq

(
β

α

∫ σ

ξ
a(r)f(r, u(r))dr

)
+

∫ σ

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds,

≤ φq

(
β

α

∫ η

ξ
a(r)f(r, u(r))dr

)
+

∫ η

0
φq

(∫ η

s
a(r)f(r, u(r))dr

)
ds,

≤ mM

(
φq

(
β

α

∫ η

ξ
a(r)dr

)
+

∫ η

0
φq

(∫ η

s
a(r)dr

)
ds

)

= m.

On the other hand, noting that σ ∈ [ξ, η], by Lemma 2.5-2.7 and (3.5), for any
u ∈ K[n,m], we have

2‖Tu‖ = 2(Tu)(σ)

≥
∫ σ

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds +

∫ 1

σ
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds,

≥
∫ σ

ξ
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds +

∫ η

σ
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds,

≥ nN

[∫ σ

ξ
φq

(∫ σ

s
a(r)dr

)
ds +

∫ η

σ
φq

(∫ s

σ
a(r)dr

)
ds

]

= NnA(σ) ≥ nML = 2n.

Thus we have ‖Tu‖ ≥ n. From the above expressions, we obtain n ≤ ‖Tu‖ ≤ m
for u ∈ K[n,m], which implies TK[n,m] ⊂ K[n,m].

Let u0(t) = m, t ∈ [0, 1]. Then u0(t) ∈ K[n,m]. Let u1 = Tu0. Then
u1 ∈ K[n,m]. Thus we denote

un+1 = Tun = Tn+1u0, n = 1, 2, · · · .

It follows from TK[n,m] ⊂ K[n,m] that

un ∈ K[n,m], n = 0, 1, 2, · · · .
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Since T is compact by Lemma 2.7, we can assert that un is a sequentially
compact set.

Now, since u1 ∈ K[n,m], we have

0 ≤ u1(t) ≤ ‖u1‖ ≤ m = u0(t).

It follows from Lemma 2.7 that T : K → K is nondecreasing, so

u2 = Tu1 ≤ Tu0 = u1.

By the induction, we have

un+1 ≤ un, n = 0, 1, 2, · · · .

Consequently, there exists u∗ ∈ K[n,m] such that un → u∗. Letting n → +∞,
from the continuity of T and Tun = un−1, we obtain Tu∗ = u∗, which implies
that u∗ is a nonnegative solution of boundary value problem (1.1)-(1.2). Since
‖u∗‖ ≥ n > 0, we conclude u∗(t) > 0, t ∈ (0, 1), thus u∗ is a positive concave
solution of boundary value problem (1.1)-(1.2).

Next we define two open subsets Ω1 and Ω2 of E :

Ω1 = {u ∈ K : ‖u‖ < n}, Ω2 = {u ∈ K : ‖u‖ < m}.
For any u ∈ ∂Ω1, since σ ∈ [ξ, η], by Lemma 2.5-2.7 and (3.5), we have

2‖Tu‖ = 2(Tu)(σ)

≥
∫ σ

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds +

∫ 1

σ
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds,

≥
∫ σ

ξ
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds +

∫ η

σ
φq

(∫ s

σ
a(r)f(r, u(r))dr

)
ds,

≥ nN

[∫ σ

ξ
φq

(∫ σ

s
a(r)dr

)
ds +

∫ η

σ
φq

(∫ s

σ
a(r)dr

)
ds

]

= NnA(σ) ≥ nML = 2n.

Thus we have ‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ω1.
On the other hand, for any u ∈ ∂Ω2, by (3.4), we have

‖Tu‖ = (Tu)(σ)

= φq

(
β

α

∫ σ

ξ
a(r)f(r, u(r))dr

)
+

∫ σ

0
φq

(∫ σ

s
a(r)f(r, u(r))dr

)
ds,

≤ φq

(
β

α

∫ η

ξ
a(r)f(r, u(r))dr

)
+

∫ η

0
φq

(∫ η

s
a(r)f(r, u(r))dr

)
ds,

≤ mM

(
φq

(
β

α

∫ η

ξ
a(r)dr

)
+

∫ η

0
φq

(∫ η

s
a(r)dr

)
ds

)

= m = ‖u‖,
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which implies that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ω2.

It follows from Lemma 2.4 that T has a fixed point v∗ ∈ (Ω2)\Ω1. Obviously,
v∗ is a concave solution of problem (1.1)-(1.2) and n < ‖v‖ < m. Thus the
BVP (1.1)-(1.2) has two positive concave solutions.

Remark 3.2. In Theorem 3.1, although we obtain two positive concave solu-
tions of the BVP (1.1)-(1.2), it is a pity that we dont know whether the two
solutions may coincide, if they coincide, then the BVP has only one solution
in K[n,m].

Remark 3.3. In Theorem 3.1, we establish iterative sequence of one of solu-
tion, which start off with known simple linear function. It is more important
that the figure of iterative sequence of solution is explicit, which is helpful to
compute for us.

Corollary 3.4. Assume that (H1) and (H2) hold. Further

limx→+∞ sup
0≤t≤1

f(t,x)
xp−1 ≤ Mp−1,

(particularly, limx→+∞ sup
0≤t≤1

f(t, x)
xp−1

= 0),
(3.6)

limx→0 inf
ξ≤t≤η

f(t, x)
xp−1

≥ Np−1

min{ξ, 1− η} ,

(particularly, limx→0 inf
ξ≤t≤η

f(t, x)
xp−1

= +∞),
(3.7)

where

M =
(

φq

(
β

α

∫ η

ξ
a(r)dr

)
+

∫ η

0
φq

(∫ η

s
a(r)dr

)
ds

)−1

, N =
2
L

.

Then there exist two constants m > n such that the BVP (1.1)-(1.2) has two
positive concave solutions u∗, v∗ such that n < ‖u∗‖ ≤ m, n < ‖v∗‖ ≤ m.
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Moreover one concave positive solution u∗ can be obtained through iterative
sequence {un},

un(t) = (Tun−1)(t) =





φq

(
β

α

∫ σ

ξ
a(r)f(r, un−1(r))dr

)

+
∫ t

0
φq

(∫ σ

s
a(r)f(r, un−1(r))dr

)
ds, 0 ≤ t ≤ σ,

φq

(
δ

γ

∫ η

σ
a(r)f(r, un−1(r))dr

)

+
∫ 1

t
φq

(∫ s

σ
a(r)f(r, un−1(r))dr

)
ds, σ ≤ t ≤ 1.

and

lim
n→+∞Tnu0 = u∗,

where the initial value u0 = m.

Proof. It follows from (3.6) and (3.7) that (3.1) in Theorem 3.1 holds, copy
the proof of Theorem 3.1, we know the conclusion of corollary 3.5 is true. ¤

Corollary 3.5. Suppose conditions (H1) and (H2) hold. If there exists 2k
constants 0 < n1 < m1 < n2 < m2 < · · · < nk < mk such that

sup
t∈[0,1]

f(t,mi) ≤ (miM)p−1,

inf
t∈[ξ,η]

f(t, min{ξ, 1− η}ni) ≥ (niN)p−1,

i = 1, 2, · · · , k,

(3.8)

where

M =
(

φq

(
β

α

∫ η

ξ
a(r)dr

)
+

∫ η

0
φq

(∫ η

s
a(r)dr

)
ds

)−1

, N =
2
L

,

then BVP (1.1)-(1.2) has at least 2k positive and concave solutions u∗i , v
∗
i such

that n < ‖u∗i ‖ ≤ m,n < ‖v∗i ‖ ≤ m.
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Moreover k concave positive solution u∗i (i = 1, 2, · · · , k) can be obtained
through iterative sequence {uin}, which is defined by

uij (t) = (Tuij−1)(t) =





φq

(
β

α

∫ σ

ξ
a(r)f(r, uij−1(r))dr

)

+
∫ t

0
φq

(∫ σ

s
a(r)f(r, uij−1(r))dr

)
ds, 0 ≤ t ≤ σ,

φq

(
δ

γ

∫ η

σ
a(r)f(r, uij−1(r))dr

)

+
∫ 1

t
φq

(∫ s

σ
a(r)f(r, uij−1(r))dr

)
ds, σ ≤ t ≤ 1.

and
lim

j→+∞
T jui0 = u∗i , i = 1, 2, · · · , k,

where the initial value ui0 = m, i = 1, 2, · · · , k.

Remark 3.6. In Corollary 3.5, although there exist 2k positive, concave so-
lutions for the BVP (1.1)-(1.2), but these solutions may coincide in K[ni,mi],
in this case the BVP has only k solutions.

Remark 3.7. In our main results, since we only require a ∈ L(0, 1), which
implies that a(t) can be singular in some countable subset t ∈ D of (0, 1), for
example, a(t) can be singular in all of rational number points of (0, 1). Thus
we allow a(t) to possess countable many singularities on (0, 1).
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