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Abstract. In this paper, we investigate nonlinear second-order m-point boundary value
problem {

u′′(t) + λh(t)f(t, u) = 0, 0 < t < 1,

βu(0)− γu′(0) = 0, u(1) =
∑m−2

i=1 αiu(ξi),

where the nonlinear term f is allowed to change sign. The existence of an interval of pa-

rameters which ensures the problem has at least one positive solution is determined by con-

structing available operator and combining the method of lower solution with the method

of topology degree. Moreover, the associated Green’s function for the above problem is also

given.

1. Introduction

The study of multi-point boundary value problems for linear second-order
ordinary differential equations was initiated by Il’in and Moviseev [5, 6]. Mo-
tivated by the study of [5, 6], Gupta [1]studied certain three-point boundary
value problems for nonlinear ordinary differential equations. Since then, more
general nonlinear multi-point boundary value problems have been studied by
several authors. We refer the reader to [2, 9, 7] for some references along
this line. Multi-point boundary value problems describe many phenomena
in the applied mathematical sciences. For example, the vibrations of a guy
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wire composed of N parts with a uniform cross-section throughout but differ-
ent densities in different parts can be set up as a multi-point boundary value
problem (see [8]). Many problems in the theory of elastic stability can be
handle by the method of multi-point boundary value problems (see [11]).

In 1997, Henderson and Wang [4] studied the existence of positive solutions
for nonlinear eigenvalue problem

{
u′′(t) + λh(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) = 0,

where f ∈ C([0, +∞), [0,+∞)), h ∈ C([0, 1], [0, +∞)). Authors established
the existence of positive solutions theorems under the condition that f is
either superlinear or sublinear.

In[9], Ma investigated the following second-order three-point boundary value
problem(BVP)

{
u′′(t) + a(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) = αu(η),

where 0 < η < 1, 0 < αη < 1, f ∈ C([0, +∞), [0,+∞)), a ∈ C([0, 1], [0,+∞)).
The existence of at least one positive solution is obtained on the conditions
that f is either superlinear or sublinear by applying fixed point theorem.

Recently, Ma [10] studied the second-order m-point boundary value problem
{

u′′(t) + a(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) =
∑m−2

i=1 αiu(ξi),

where αi ≥ 0, i = 1, 2, · · · ,m − 3, αm−2 > 0, 0 < ξ1 < ξ2 < · · · < ξm−2 <
1, 0 < Σm−2

i=1 αiξi < 1, f ∈ C([0, +∞), [0, +∞)), a ∈ C([0, 1], [0, +∞)). The
author obtained the existence of at least one positive solution if f is either
superlinear or sublinear by applying a fixed-point theorem in cones.

All the above works were done under the assumption that the nonlinear
term is nonnegative due to applying the concavity of solutions in the proofs.
In this paper we study the following nonlinear second-order m-point boundary
value problem (BVP)

u′′(t) + λh(t)f(t, u) = 0, 0 < t < 1, (1.1)

βu(0)− γu′(0) = 0, u(1) =
m−2∑

i=1

αiu(ξi), (1.2)

where the nonlinear term f is allowed to change sign. Firstly we give the asso-
ciated Green’s function for the above problems which makes later discussions
more precise. Then by constructing available operator, we combine the method
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of lower solution with the method of topology degree and show (BVP)(1.1)-
(1.2) has at least one positive solution with certain growth conditions imposed
on f . In this way we removed the usual restriction on f ≥ 0.

2. Preliminaries and lemmas

In this section, we present some lemmas that are important to prove our
main results.

Lemma 2.1. Suppose that d = β(1 − ∑m−2

i=1 aiξi) + γ(1 − ∑m−2

i=1 ai) 6= 0,
y(t) ∈ C[0, 1], then BVP

u′′(t) + y(t) = 0, 0 < t < 1, (2.1)

βu(0)− γu′(0) = 0, u(1) =
m−2∑

i=1

aiu(ξi) (2.2)

has a unique solution

u(t) = − ∫ t
0 (t− s)y(s)ds + βt+γ

d

∫ 1
0 (1− s)y(s)ds

−βt+γ
d

∑m−2
i=1 ai

∫ ξi

0 (ξi − s)y(s)ds.
(2.3)

Proof. Integrating both sides of (2.1) on [0, t], we have

u′(t) = −
∫ t

0
y(s)ds + u′(0). (2.4)

Again integrating (2.4) from 0 to t, we get

u(t) = −
∫ t

0
(t− s)y(s)ds + u′(0)t + u(0). (2.5)

In particular,

u(1) = −
∫ 1

0
(1− s)y(s)ds + u′(0) + u(0),

and

u(ξi) = −
∫ ξi

0
(ξi − s)y(s)ds + u′(0)ξi + u(0).

By (2.2) we get

u′(0) =
β

d

[∫ 1

0
(1− s)y(s)ds−

m−2∑

i=1

ai

∫ ξi

0
(ξi − s)y(s)ds

]
.

The Lemma 2.1 is proved. ¤
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Lemma 2.2. Let 0 <
∑m−2

i=1 aiξi < 1, d > 0. If y ∈ C[0, 1] and y ≥ 0, then
the unique solution u of (BVP)(2.1)-(2.2) satisfies

u(t) ≥ 0.

Proof. By u′′(t) = −y(t) ≤ 0, we can know that the graph of u(t) is concave
down on (0, 1). So we only prove u(0) ≥ 0, u(1) ≥ 0.

Firstly, we shall prove u(0) ≥ 0 by the following two perspectives.
(i) If 0 <

∑m−2
i=1 ai ≤ 1, by (2.3) we have

u(0) =
γ

d

[∫ 1
0 (1− s)y(s)ds−∑m−2

i=1 ai

∫ ξi

0 (ξi − s)y(s)ds
]

≥ γ

d

[∫ 1
0 (1− s)y(s)ds−∑m−2

i=1 ai

∫ 1
0 (1− s)y(s)ds

]

=
γ

d

(
1−∑m−2

i=1 ai

) ∫ 1
0 (1− s)y(s)ds

≥ 0.

(ii) If
∑m−2

i=1 ai > 1, by (2.3) we have

u(0) =
γ

d

[∫ 1
0 (1− s)y(s)ds−∑m−2

i=1 ai

∫ ξi

0 (ξi − s)y(s)ds
]

≥ γ

d

[∫ 1
0 (1− s)y(s)ds−∑m−2

i=1 ai

∫ 1
0 (ξi − s)y(s)ds

]

=
γ

d

∫ 1
0

[
(1−∑m−2

i=1 aiξi) + (
∑m−2

i=1 ai − 1)s
]
y(s)ds

≥ 0.

On the other hand, by (2.3) we have

u(1) = − ∫ 1
0 (1− s)y(s)ds +

β + γ

d

∫ 1
0 (1− s)y(s)ds

−β + γ

d

∑m−2
i=1 ai

∫ ξi

0 (ξi − s)y(s)ds

≥ β

d

[∑m−2
i=1 ai

∫ ξi

0 (ξi(1− s)− (ξi − s))y(s)ds

+
∑m−2

i=1 aiξi

∫ 1
ξi

(1− s)y(s)ds

]

+
γ

d

∑m−2
i=1 ai

[∫ 1
0 (1− s)y(s)ds− ∫ 1

0 (ξi − s)y(s)ds
]
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=
β

d

∑m−2
i=1 ai

[∫ ξi

0 (1− ξi)sy(s)ds + ξi

∫ 1
ξi

(1− s)y(s)ds
]

+
γ

d

∑m−2
i=1 ai

[∫ 1
0 (1− ξi)y(s)ds

]

≥ 0.

The proof is completed. ¤

Lemma 2.3. Let
∑m−2

i=1 aiξi > 1, d 6= 0. If y ∈ C[0, 1] and y ≥ 0, then the
(BVP)(2.1)-(2.2) has no positive solution.

Proof. If not, we suppose the (BVP)(2.1)-(2.2) has positive solution u, then
u(ξi) > 0, i = 1, 2, · · · ,m− 2 and

u(1) =
m−2∑

i=1

aiu(ξi) =
m−2∑

i=1

aiξi
u(ξi)

ξi
≥

m−2∑

i=1

aiξi
u(ξ)

ξ
>

u(ξ)
ξ

,

where ξ = min{ξ1, ξ2, · · · , ξm−2} satisfies u(ξ)

ξ
= min

{
u(ξ1)

ξ1
, u(ξ2)

ξ2
, · · · , u(ξm−2)

ξm−2

}
,

which contradicts to the concave of u(t). The proof is completed. ¤

Lemma 2.4. Let ai ≥ 0, i = 1, · · · ,m − 2, 0 <
∑m−2

i=1 aiξi < 1, d > 0. If
y ∈ C[0, 1] and y ≥ 0, then the unique positive solution u(t) of (BVP)(2.1)-
(2.2) satisfies

inf
t∈[ξm−2,1]

u(t) ≥ σ||u||,

where σ = min
{

am−2(1−ξm−2)
1−am−2ξm−2

, am−2ξm−2, ξm−2

}
, ||u|| = supt∈[0,1] |u(t)|.

Proof. Let u(t) = maxt∈[0,1] u(t) = ||u||, we shall discuss it from the following
two perspectives:
Case1: If 0 <

∑m−2
i=1 ai < 1.

Firstly, assume t < ξm−2 < 1, and so mint∈[ξm−2,1] u(t) = u(1). By u(1) =∑m−2
i=1 aiu(ξi) ≥ am−2u(ξm−2) we have

u(t) ≤ u(1) + u(1)−u(ξm−2)
1−ξm−2

(0− 1)
= u(1)− 1

1−ξm−2
u(1) + 1

1−ξm−2
u(ξm−2)

≤ u(1)
(
1− 1

1−ξm−2
+ 1

am−2(1−ξm−2)

)

= u(1) 1−am−2ξm−2

am−2(1−ξm−2) .

So

min
t∈[ξm−2,1]

u(t) ≥ am−2(1− ξm−2)
1− am−2ξm−2

||u||. (2.6)
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Secondly, assume ξm−2 < t < 1, then mint∈[ξm−2,1] u(t) = u(1). Otherwise,
we have mint∈[ξm−2,1] u(t) = u(ξm−2), then t ∈ [ξm−2, 1], u(ξm−2) ≥ u(ξm−1) ≥
· · · ≥ u(ξ2) ≥ u(ξ1). By 0 <

∑m−2
i=1 ai < 1 we have

u(1) =
m−2∑

i=1

aiu(ξi) ≤
m−2∑

i=1

aiu(ξm−2) < u(ξm−2) ≤ u(1)

a contradiction.
By concave of u(t) we get u(ξm−2)

ξm−2
≥ u(t)

t
≥ u(t). In fact, since u(1) ≥

am−2u(ξm−2), then u(1)
am−2ξm−2

≥ u(t), which implies

min
t∈[ξm−2,1]

u(t) ≥ am−2ξm−2||u||. (2.7)

Case2: If
∑m−2

i=1 ai > 1.
Firstly, assume u(ξm−2) ≤ u(1), then mint∈[ξm−2,1] u(t) = u(ξm−2). By

concave of u(t) we have t ∈ [ξm−2, 1], which implies u(ξm−2)
ξm−2

≥ u(t)

t
≥ u(t),

then
min

t∈[ξm−2,1]
u(t) ≥ ξm−2||u||. (2.8)

Secondly, assume u(ξm−2) > u(1), and so mint∈[ξm−2,1] u(t) = u(1), and t ∈
[ξ1, 1]. If not, t ∈ [0, ξ1), then u(ξ1) ≥ · · · ≥ u(ξm−2) > u(1). So we have

u(1) =
m−2∑

i=1

aiu(ξi) > u(1)
m−2∑

i=1

ai ≥ u(1)

a contradiction. By
∑m−2

i=1 ai > 1 there exists ξ ∈ {ξ1, ξ2, · · · , ξm−2} such that
u(ξ) ≤ u(1), then u(ξ1) ≤ u(ξ2) ≤ · · · ≤ u(ξm−2) ≤ u(1). By concave of u(t)
we have u(1)

ξ1
≥ u(ξ1)

ξ1
≥ u(t)

t
≥ u(t), then

min
t∈[ξm−2,1]

u(t) ≥ ξ1||u||. (2.9)

Therefore, by (2.6)-(2.9) we have

inf
t∈[ξm−2,1]

u(t) ≥ σ||u||,

where σ = min
{

am−2(1−ξm−2)
1−am−2ξm−2

, am−2ξm−2, ξm−2

}
. The proof is completed.

¤
Lemma 2.5. Suppose that d 6= 0, then the Green’s function for the BVP

−u′′(t) = 0, 0 < t < 1,

βu(0)− γu′(0) = 0, u(1) =
m−2∑

i=1

aiu(ξi)
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is given by

G(t, s)

=





(βs + γ)
[
(1− t)−∑m−2

j=1 aj(ξj − t)
]

d
,

0 ≤ t ≤ 1, s ≤ ξ1, s ≤ t;

(βs + γ)(1− t)−∑m−2
j=i aj(ξj − t)(βs + γ) +

∑i−1
j=1 aj(βξj + γ)(t− s)

d
,

ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m− 1, ξi−1 ≤ t ≤ ξi, 2 ≤ i ≤ r, s ≤ t;

(βt + γ)
[
(1− s)−∑m−2

j=i aj(ξj − s)
]

d
,

ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m− 1, ξi−1 ≤ t ≤ ξi, 2 ≤ i ≤ r, t ≤ s;

(βt + γ)(1− s)
d

,

0 ≤ t ≤ 1, ξm−2 ≤ s ≤ 1, t ≤ s.
(2.10)

Here for the sake of convenience, we write ξ0 = 0, ξm−1 = 1.

Proof. If 0 ≤ t ≤ ξ1, the unique solution (2.3) given by Lemma 2.1 can be
rewritten as

u(t) =
∫ t
0

(βs+γ)[(1−t)−∑m−2
j=1 aj(ξj−t)]

d y(s)ds

+
∫ ξ1
t

(βt+γ)[(1−s)−∑m−2
j=1 aj(ξj−s)]

d y(s)ds

+
∑m−2

i=2

∫ ξi

ξi−1

(βt + γ)
[
(1− s)−∑m−2

j=i aj(ξj − s)
]

d
y(s)ds

+
∫ 1
ξm−2

(βt+γ)(1−s)
d y(s)ds.

Similarly, if ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m − 2, the unique solution (2.3) can be
expressed

u(t) =
∫ ξ1
0

(βs+γ)[(1−t)−∑m−2
j=1 aj(ξj−t)]

d y(s)ds

+
∑r−1

i=2

∫ ξi

ξi−1

(βs+γ)(1−t)−∑m−2
j=i aj(ξj−t)(βs+γ)+

∑i−1
j=1 aj(βξj+γ)(t−s)

d y(s)ds

+
∫ t
ξr−1

(βs+γ)(1−t)−∑m−2
j=r aj(ξj−t)(βs+γ)+

∑i−1
j=1 aj(βξj+γ)(t−s)

d y(s)ds

+
∫ ξr

t

(βt+γ)[(1−s)−∑m−2
j=r aj(ξj−s)]

d y(s)ds
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+
∑m−2

i=r+1

∫ ξi

ξi−1

(βt+γ)[(1−s)−∑m−2
j=i aj(ξj−s)]

d y(s)ds

+
∫ 1
ξm−2

(βt+γ)(1−s)
d y(s)ds.

If ξm−2 ≤ t ≤ 1, the unique solution (2.3) can be given in the form

u(t) =
∫ ξ1
0

(βs+γ)[(1−t)−∑m−2
j=1 aj(ξj−t)]

d y(s)ds

+
∑m−2

i=2

∫ ξi

ξi−1

(βs+γ)(1−t)−∑m−2
j=i aj(ξj−t)(βs+γ)+

∑i−1
j=1 aj(βξj+γ)(t−s)

d y(s)ds

+
∫ t
ξm−2

(βs+γ)(1−t)+
∑i−1

j=1 aj(βξj+γ)(t−s)

d y(s)ds

+
∫ 1
t

(βt+γ)(1−s)
d y(s)ds.

Lemma 2.5 is proved. ¤

By Lemma 2.5, the unique solution of (BVP)(2.1)-(2.2) is u(t) =
∫ 1
0 G(t, s)

y(s)ds. Let ω(t) =
∫ 1
0 G(t, s)h(s)ds. Obviously ω(t) is the unique solution of

(BVP)(2.1)-(2.2) for y(t) = h(t).

Lemma 2.6. Let X = C[0, 1],K = {u ∈ X : u ≥ 0}. Suppose T : X → X is
completely continuous. Define θ : TX → K by

(θy) = max{y(t), ω(t)}, for y ∈ TX,

where ω ∈ C1[0, 1], ω(t) ≥ 0 is given function. Then

θ ◦ T : X → K

is also a completely continuous operator.

Proof. The complete continuity of T implies that T is continuous and maps
each bounded subset in X to a relatively compact set. Denote θy by y.

Given a function h ∈ C[0, 1], for each ε > 0 there is δ > 0 such that

||Th− Tg|| < ε, for g ∈ X, ||g − h|| < δ.

Since

|(θTh)(t)− (θTg)(t)| = |max{(Th)(t), ω(t)} −max{(Tg)(t), ω(t)}|
≤ |(Th)(t)− (Tg)(t)|
< ε,

we have
||(θT )h− (θT )g|| < ε, for g ∈ X, ||g − h|| < δ,

and so θT is continuous.
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For any arbitrary bounded set D ⊂ X and ∀ε > 0, there are yi, i =
1, 2, · · · ,m such that

TD ⊂
m⋃

i=1

B(yi, ε),

where B(yi, ε) := {u ∈ X : ||u− yi|| < ε}. Then, for ∀y ∈ (θ ◦ T )D, there is a
y ∈ TD such that y(t) = max{y(t), ω(t)}. We choose i ∈ {1, 2, · · · ,m} such
that ||y − yi|| < ε. The fact

max
t∈[0,1]

|y(t)− yi(t)| ≤ max
t∈[0,1]

|y(t)− yi(t)|,

which implies y ∈ B(yi, ε). Hence (θ ◦ T )D has a finite ε− net and therefore
(θ ◦ T )D is relatively compact. ¤

3. The main results

Let X = C[0, 1], K = {u ∈ X : u ≥ 0}. Denote by ||.|| the supremum
norm on X.

In the rest of the paper, we make the following assumptions:

(H1) β, γ ≥ 0, β + γ > 0, αi ≥ 0, i = 1, 2, · · · ,m − 3, αm−2 > 0, 0 < ξ1 <

ξ2 < · · · < ξm−2 < 1, 0 <
∑m−2

i=1 αiξi < 1, d = β(1 − ∑m−2

i=1 αiξi) +
γ(1−∑m−2

i=1 αi) > 0 ;
(H2) f : [0, 1]× [0,+∞) → R is continuous ;
(H3) h(t) is a nonnegative measurable function on [0, 1] with 0 <

∫ 1
0 h(t)dt <

∞.

Obviously, G(t, s) ≥ 0. By Hölder’s inequality, we have

∫ 1

0
|G(t, s)h(s)|ds ≤

(∫ 1

0
|G(t, s)|2ds

) 1
2
(∫ 1

0
|h(s)|2ds

) 1
2

< ∞, t ∈ [0, 1].

Let A = max0≤t≤1

∫ 1
0 G(t, s)h(s)ds.

Theorem 3.1. Suppose there exist r > M > 0 such that

0 <
M

min0≤t≤1 f(t,Mω(t))
= a ≤ b =

r

Amax0≤t≤1,Mω(t)≤u≤r f(t, u)
. (3.1)

Then, for each λ ∈ (a, b), the (BVP) (1.1)-(1.2) has at least one positive
solution u1(t) such that

0 < Mω(t) ≤ u1(t), and ||u1|| ≤ r.
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Proof. Let

f∗(t, u) =

{
f(t, u), u ≥ Mω(t),

f(t,Mω(t)), u ≤ Mω(t),
and define T : K → X by

(Tu)(t) = λ

∫ 1

0
G(t, s)h(s)f∗(s, u(s))dst ∈ [0, 1].

Then T is a completely continuous operator on K. For the operator θ : X → K
defined by

(θu)(t) = max{u(t), 0},
by Lemma 2.6 we can know that θ ◦T : K → K is also completely continuous.

Take Ω = {u ∈ K : ||u|| < r}. Given u ∈ ∂Ω, set I = {t ∈ [0, 1] :
f∗(t, u(t)) ≥ 0}. Then

(θ ◦ T )u(t) = max
{

λ
∫ 1
0 G(t, s)h(s)f∗(s, u(s))ds, 0

}

≤ λ
∫
I G(t, s)h(s)f∗(s, u(s))ds

≤ b max0≤t≤1,0≤u≤r f∗(t, u)
∫
I G(t, s)h(s)ds

≤ Abmax0≤t≤1,Mω(t)≤u≤r f(t, u)

≤ r.

If there is a u ∈ ∂Ω such that (θ ◦ T )u = u, then θ ◦ T has a fixed point in Ω.
Suppose for ∀ u ∈ ∂Ω such that (θ ◦ T )u 6= u, it follows that

degK{I − θ ◦ T, Ω, 0} = 1,

where degK stands for the degree on cone K. Then θ ◦ T has a fixed point in
Ω. So in both the cases θ ◦ T has a fixed point u1 in Ω.

We claim that
(Tu1)(t) ≥ Mω(t), t ∈ [0, 1]. (3.2)

Otherwise, there exists t0 ∈ [0, 1] such that

Mω(t0)− (Tu1)(t0) = max
t∈[0,1]

{Mω(t)− (Tu1)(t)} = L > 0. (3.3)

Now we prove t0 ∈ (0, 1). Suppose the contrary, if t0 = 0, then Mω′(0) −
(Tu1)′(0) ≤ 0. Since both Mω(t) and (Tu1)(t) satisfy the boundary condition
(1.2), we have

β[Mω(0)− (Tu1)(0)]− γ[Mω′(0)− (Tu1)′(0)] = 0,

which contradicts condition (H1). If t0 = 1, we have

L = Mω(1)− (Tu1)(1) =
m−2∑

i=1

αi[Mω(ξi)− (Tu1)(ξi)] ≤
m−2∑

i=1

αiL < L
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a contradiction. So t0 ∈ (0, 1), and Mω′(t0)− (Tu1)′(t0) = 0.
We prove

Mω(t) > Tu1(t), t ∈ [0, 1]. (3.4)

Otherwise, there exists t1 ∈ [0, t0) ∪ (t0, 1] such that

Mω(t1)−(Tu1)(t1) = 0, and Mω(t)−(Tu1)(t) > 0, t ∈ (t1, t0] or t ∈ [t0, t1).

Without loss of generality, we suppose t1 ∈ [0, t0). Then for t ∈ (t1, t0],

Mω′(t)− (Tu1)′(t) = Mω′(t0)− (Tu1)′(t0)−
∫ t0
t [Mω′(s)− (Tu1)′(s)]′ds

=
∫ t0
t h(s)[M − λf∗(s, u(s))]ds

=
∫ t0
t h(s)[M − λf(s,Mω(t))]ds

≤ [M − amint∈[0,1] f(t,Mω(t))]
∫ t0
t h(s)ds

= 0,

i.e., Mω′(t)− (Tu1)′(t) ≤ 0, and then

Mω(t0)− (Tu1)(t0) ≤ Mω(t1)− (Tu1)(t1) = 0,

which contradicts to (3.3). So (3.4) holds.
However,

Mω(t0)− (Tu1)(t0) =
∫ 1

0
G(t0, s)h(s)Mds− λ

∫ 1

0
G(t0, s)h(s)f∗(s, u1(s))ds

=
∫ 1

0
G(t0, s)h(s)[M − λf∗(s, u1(s))]ds

≤ [M − a min
t∈[0,1]

f(t,Mω(t))]
∫ 1

0
G(t0, s)h(s)ds

= 0.

which contradicts to (3.3). So (3.2) holds. Then (θ ◦ T )u1 = Tu1 = u1 and
u1(t) is a solution of (BVP) (1.1)-(1.2). ¤

Corollary 3.1. Suppose there exists a constant M > 0 such that

a =
M

min0≤t≤1 f(t,Mω(t))
> 0 (3.5)

and

lim
u→∞

max0≤t≤1 f(t, u)
u

≤ 0. (3.6)
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Then, for each λ ≥ a, the (BVP) (1.1)-(1.2) has at least one positive solution
u1(t) such that

0 < Mω(t) ≤ u1(t), ||u1|| < ∞.

Proof. It suffices to show that for b > a, there exists r > 0 such that

b ≤ r

A max0≤t≤1,Mω(t)≤u≤r f(t, u)
. (3.7)

Fix b > a > 0. By condition (3.6), we can know there exists L > 0 such that

max0≤t≤1 f(t, u)
u

<
1

bA
, for u ≥ L,

and there exists r > L such that
max0≤t≤1,Mω(t)≤u≤L f(t, u)

r
<

1
bA

.

Hence
maxt∈0≤t≤1,Mω(t)≤u≤r f(t, u)

r

≤ max
{

max0≤t≤1,Mω(t)≤u≤L f(t, u)
r

,
max0≤t≤1,L≤u≤r f(t, u)

r

}

< max
{

1
bA

, max
L≤u≤r

[
max0≤t≤1 f(t, u)

u

]}

<
1

bA
,

and in turn (3.7) holds. Applying Theorem 3.1, we prove this theorem since
b > a is arbitrary. ¤
Theorem 3.2. Suppose f(t, 0) ≥ 0, h(t)f(t, 0) 6≡ 0, and there exists a constant
r > 0 such that

b =
r

A max0≤t≤1,0≤u≤r f(u)
> 0. (3.8)

Then, for each λ ≤ b, the (BVP)(1.1)-(1.2) has at least one positive solution
u1(t) satisfying

0 < ||u1|| < r.

Proof. Set

f∗(t, u) =

{
f(t, u), u ≥ 0,

f(t, 0)− u, u(t) < 0,

The rest proof is similar to Theorem 3.1, we omit it. ¤
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Corollary 3.2. Suppose condition (3.6) holds and

f(t, 0) ≥ 0, h(t)f(t, 0) 6≡ 0, t ∈ (0, 1).

Then, for each λ ∈ R, the (BVP)(1.1)-(1.2) has at least one positive solution
u1(t) satisfying

0 < ||u1|| < r.

Proof. Condition (3.8) can be deduced from (3.6) for any b > 0. Theorem 3.2
implies this corollary. ¤
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