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Abstract. The aim of this paper is to introduce the concept of generalized differential

dominated variational inequality problem of order λ > 0 (GDDV IP ;λ) and T -η-invex func-

tion of order λ and study them by using a function of proportionality. The problems such

as Minimization Problem with variational inequality condition (MPV IC), and generalized

differential inequality problem (GDIP ) are studied in the presence of T -η-invex function of

order λ by using the function of proportionality. The existence of the T -η-invex function of

order λ is studied in Hilbert space by using the variable step iterative method. The iterative

process considered in the paper admits the presence of variable iteration parameters, which

can be useful in numerical implementation to find T -η-invex function of order λ. Finally the

existence theorem of T -η-invex function of order λ is studied with a concrete example.

1. Introduction

In recent decades, the study of variational inequalities introduced by Stam-
pacchia [19] has become a part of development in the theory of optimization
theory because optimization problems can often be reduced to the solution of
variational inequalities. It is important to remark that these subjects pertant
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to more than just optimization problems and there in lies much of their attrac-
tiveness. Several authors have proved many fascinating results on variational
inequality problem. We list some of them, which are used frequently in this
paper. The existence of the solution to the problem is studied by many authors
such as, D. Kinderlehrer and G. Stampacchia [15], M. Chipot [6], J.L. Lions
and G. Stampacchia [16], R.W. Cottle, F. Giannessi and J.L. Lions [8], F.E.
Browder [5], Ky Fan [12], U. Mosco [18], A. Behera and G.K. Panda [1, 2], G.
Isac[14], to name only a few.

Let X be a reflexive real Banach space with its dual X∗. Let K be a
nonempty subset of X. Let T : K → X∗ be a nonlinear mapping. The pair
〈f, x〉 denotes the value of f ∈ X∗ at x ∈ K. The variational inequality prob-
lem is to: Find x0 ∈ K such that

(VIP) 〈T (x0), x− x0〉 ≥ 0 ∀x ∈ K.

The notion of invexity was introduced by M.A. Hanson [13] in 1981 as
a generalization of the concept of convexity. The concept of invexity of a
function brought a new edge to generalize the variational inequality problem
which is a general case of optimization problem, complementarity problem and
fixed point problem. Many authors have studied different types of convex and
invex functions in vector spaces with different assumptions. For the concept of
invexity, we refer to [4, 17]. For the generalization of the differentiable invex
function [13], Behera and Das [3] introduced the T -η-invex as an operator
invex function in ordered topological vector spaces and differentiable manifolds
to study various types of generalized vector variational inequality problems in
ordered topological vector spaces, H-differentiable manifolds, n-manifolds and
Sn. For our study, we refer to [9, 11].

In [11], the generalized differential dominated variational inequality prob-
lems(GDDV IP ) is defined as follows. Let F : K → R be a differentiable map
where ∇F is the derivative of F . Let η : K × K → X be a vector valued
mapping.

Find x0 ∈ K such that

(GDDVIP) 〈(∇F − T )(x0), η(x, x0)〉 ≥ 0, ∀x ∈ K.

In this paper, the generalized differential dominated variational inequality
problems (GDDV IP ) is extended as the generalized dominated differential
variational inequality problems of order λ (GDDV IP ;λ), λ > 0 given by
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(GDDV IP ;λ) for any λ > 0, find x0 ∈ K such that

(GDDVIP;λ) 〈(∇F − λT )(x0), η(x, x0)〉 ≥ 0 ∀x ∈ K.

We recall some known definitions and results for our need.

Definition 1.1. ([13]) The mapping F : M → Y ⊂ Rn is

(a) η-invex on M if

F (x)− F (u) ≥ 〈∇F (u), η(x, u)〉 for all x, u ∈M,

(b) η-pseudoinvex on M if

〈∇F (u), η(x, u)〉 ≥ 0 ⇒ F (x)− F (u) ≥ 0 for all x, u ∈M.

(b) η-quasiinvex on M if

F (x)− F (u) ≤ 0 ⇒ 〈∇F (u), η(x, u)〉 ≤ 0 for all x, u ∈M.

Definition 1.2. ([13], η-invex set) Let K be any subset of the vector space
X. Let η : K×K → X be continuous vector valued mapping. Then K is said
to be η-invex if for all x, u ∈ K and for all t ∈ (0, 1), we have

u+ tη(x, u) ∈ K.

Definition 1.3. ([10], weakly η-invex set) The set K is said to be weakly
η-invex set if for all x, u ∈ K, there exists a t ∈ (0, 1) such that

z + tη(x, u) ∈ K where z ∈ {u, x}.

The classical problems are defined as follows. Let X be a reflexive real
Banach space with its dual X∗. Let K be a nonempty subset of X. Let
T : K → X∗ be a nonlinear mapping. Let F : K → Rn be a differentiable
map where ∇F (u) is the differential of u ∈ K.

The generalized variational inequality problem is of: finding x0 ∈ K such
that

(GVIP) 〈T (x0), η(x, x0)〉 ≥ 0 ∀x ∈ K.

The generalized differential inequality problem is of: finding x0 ∈ K such
that

(GDIP) 〈∇F (x0), η(x, x0)〉 ≥ 0 ∀x ∈ K.

The minimization problem is of: finding x0 ∈ K such that
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(MP) F (x) ≥ F (x0) ∀x ∈ K.

The concept of Minimization Problem given with Variational Inequality
Constraints is defined to: find u ∈M such that

(MPVIC) F (x)− F (u) ≥ 0

subject to

〈T (u), η(x, u)〉 ≥ 0 ∀ x ∈M.

Let there exist a multiplier vector λ > 0 such that

F (x)− F (u)− λ〈T (u), η(x, u)〉 ≥ 0

for all x ∈ M and fixed u ∈ M ; hence (MPV IC) problem is to find u ∈ M
such that F is T -η-invex of order λ > 0 at point u ∈M . In other words, if F
is T -η-invex of order λ > 0 at point u ∈ M and u satisfies the constraints of
(MPV IC), then u is a minimal solution of (MPV IC).

In this paper we deal with the above problems and prove their existence
theorems under certain conditions in the presence of T -η-invex function.

2. T -η-invex of order λ and Function of Proportionality

For our need, we recall the concept of T -η-invexity of any function F and η-
monotoneness of T . Let X be a topological vector space, M ⊂ X, (Y, P ) be an
ordered topological vector space equipped with a closed convex pointed cone P
such that intP 6= ∅, L(X,Y ) be the set of continuous linear functionals from
X to Y , η : M ×M → X be a vector-valued function, and T : M → L(X,Y )
be an operator.

Definition 2.1. ([3]) The mapping F : M → Y is

(a) T -η-invex on M if

F (x)− F (u)− 〈T (u), η(x, u)〉 ≥P 0 for all x, u ∈M,

(b) T -η-invex at point u ∈M if

F (x)− F (u)− 〈T (u), η(x, u)〉 ≥P 0 for all x ∈M.

Definition 2.2. ([3]) The mapping T : M → L(X,Y ) is η-monotone if

〈T (u), η(x, u)〉+ 〈T (x), η(u, x)〉 ≤P 0 for all x ∈M.

The definition of T -η-equiinvex and T -η-invex of order λ are defined as
follows.

Definition 2.3. The mapping F : M → Y is
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(a) T -η-equiinvex on M if

F (x)− F (u)− 〈T (u), η(x, u)〉 =P 0 for all x, u ∈M,

(b) T -η-invex of order λ on M if there exist some λ > 0 such that

F (x)− F (u)− λ〈T (u), η(x, u)〉 ≥P 0 for all x, u ∈M,

(c) T -η-invex of order λ at point u ∈ M if there exist some λ > 0 such
that

F (x)− F (u)− λ〈T (u), η(x, u)〉 ≥P 0 for all x ∈M.

Here the multiplier λ is called the bound of proportionality of the fraction
F (x)− F (u) by 〈T (u), η(x, u)〉 for all x, u ∈M .

Remark 2.4. If F is T -η-equiinvex on M , then F is T -η-invex on M but not
conversely.

If X is a reflexive real Banach space, Y = Rn and P = Rn+, the set of
nonnegative numbers in Rn, then in the Definition 2.3, the symbols ≥P , ≤P
will be replaced by ≥ and ≤ respectively.

Let X be a reflexive real Banach space and M ⊂ X. Let Y = Rn and
P = Rn+. Consider a function of proportionality Q : Y ×Y → R as a fractional
function in Y defined by the rule

Q(y1, y2) =
y1
y2

for all y1, y2 ∈ Y.

Thus

Q(y1, ty2) =
y1
ty2

= Q
(y1
t
, y2

)
for all y1, y2 ∈ Y.

Obviously Q is a homogeneous function of degree 0 as for any t ∈ R,

Q(ty1, ty2) = Q(y1, y2).

Proposition 2.5. Let X be a reflexive real Banach space and M ⊂ X. Let
T : M → L(X,Rn) ≡ Rn be a map and η : M ×M → X be a vector valued
map. If the mapping F : M → Rn is T -η-equiinvex on M , then F is T -η-invex
of order λ ∈ (0, 1) on M .

Proof. The mapping F : M → Rn is T -η-equiinvex on M , i.e.,

F (x)− F (u)− 〈T (u), η(x, u)〉 = 0

for all x, u ∈M , then

Q (F (x)− F (u), 〈T (u), η(x, u)〉) = 1.

Thus

Q (F (x)− F (u), 〈T (u), η(x, u)〉) ≥ λ
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for all λ ∈ (0, 1), i.e.,

F (x)− F (u)− λ〈T (u), η(x, u)〉 ≥ 0

for all x, u ∈M and λ ∈ (0, 1). Thus F is T -η-invex on M of order λ ∈ (0, 1).
This completes the proof. �

Remark 2.6. If λ = 1, then F is the T -η-invex function where bound of
proportionality is λ = 1 [3].

We consider the problem as follows.

Problem 2.7. Let for each u ∈M , the set K(u) be defined by

K(u) = {x ∈M : F (x)− F (u) ≥ 0},
and the set C(u) be defined by

C(u) = {x ∈M : 〈T (u), η(x, u)〉 ≥ 0}.
Consider a problem as follows: find x0 ∈M such that

Q (F (x)− F (x0), 〈T (x0), η(x, x0)〉) ≥ λ
for all x ∈ K(x0)

⋂
C(x0) and λ > 0.

The following theorem shows the existence of T -η-invex function of order
λ through the function of proportionality Q on Y × Y where Q satisfies the
property:

y ≥ y∗ ∈ Y ⇒ Q(y, z) ≥ Q(y∗, z) for all z ∈ Y. (2.1)

Theorem 2.8. Let X be a reflexive real Banach space and M ⊂ X. Let X∗

be the dual of X. Let η : M × M → X be a vector valued function. Let
T : M → X∗ be a nonlinear map. Let F : M → Rn be a η-invex function
where ∇F (u) is the differential of F at u ∈ K. Let M be a η-invex cone. Let
〈T (u), η(x, u)〉 ≥ 0 for all x, u ∈ M . Then for all x, u ∈ M and λ > 0, the
following statements are equivalent:

(a) Q (F (x)− F (u), 〈T (u), η(x, u)〉) ≥ λ,
(b) Q (〈∇F (u), η(x, u)〉, 〈T (u), η(x, u)〉) ≥ λ.

Proof. Let for some λ > 0,

Q(F (x)− F (u), 〈T (u), η(x, u)〉) ≥ λ (2.2)

for all x, u ∈M . Since the set M is a η-invex cone, u+ tη(x, u) ∈M and

η(u+ tη(x, u), u) = tη(x, u)

for all x, u ∈M , and t ∈ (0, 1). Replacing x by u+ tη(x, u) in (2.2) and using
the property of η-invex cone, we get

Q(F (u+ tη(x, u))− F (u), 〈T (u), η(u+ tη(x, u), u)〉) ≥ λ,
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i.e.,

Q(F (u+ tη(x, u))− F (u), 〈T (u), tη(x, u)〉) ≥ λ.
Thus

Q(F (u+ tη(x, u))− F (u), t〈T (u), η(x, u)〉) ≥ λ,
i.e.,

Q

(
F (u+ tη(x, u))− F (u)

t
, 〈T (u), η(x, u)〉

)
≥ λ.

Taking limit as t→ 0 in the above inequality, we get

Q (〈∇F (u), η(x, u)〉, 〈T (u), η(x, u)〉) ≥ λ

for all x, u ∈M .
Conversely, let

Q (〈∇F (u), η(x, u)〉, 〈T (u), η(x, u)〉) ≥ λ

for all x, u ∈M . Given F is η-invex on M , i.e.,

F (x)− F (u) ≥ 〈∇F (u), η(x, u)〉

for all x, u ∈M . Thus by (2.1), we get

Q (F (x)− F (u), 〈T (u), η(x, u)〉) ≥ Q (〈∇F (u), η(x, u)〉, 〈T (u), η(x, u)〉)
≥ λ

for all x, u ∈M . This completes the proof of the theorem. �

For any λ > 0, the problem of finding u ∈M such that

Q (〈∇F (u), η(x, u)〉, 〈T (u), η(x, u)〉) ≥ λ for all x ∈M,

can be written as: for any λ > 0, find u ∈M such that

〈(∇F − λT )(u), η(x, u)〉 ≥ 0 for all x ∈M (2.3)

which is the generalized differential dominated variational inequality problem
of order λ > 0 and the problem stated in (2.3) coincides with the generalized
differential dominated variational inequality problem if λ = 1 [11].

Theorem 2.9. Let X be a reflexive real Banach space with its dual X∗ and
M ⊂ X. Let T : M → X∗ be a nonlinear map. Let η : M ×M → X be
a vector valued function. Let M be a η-invex cone. Let F : M → Rn be a
η-pseudoinvex function on M . Let the following conditions hold:

(a) 〈T (x), η(x, x)〉 = 0 for all x ∈M ,
(b) for each x ∈M , there exists a λ > 0 such that the set

Γ(u) = {u ∈M : Q(〈∇F (u), η(x, u)〉, 〈T (u), η(x, u)〉) ≥ λ}

is compact,
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(c) for each fixed x ∈ M and for all t ∈ (0, 1), the map 〈T (x), η(−, x)〉 :
M → Rn satisfies the condition
t〈T (x), η(v, x)〉+ (1− t)〈T (x), η(u, x)〉

−〈T (x), η(v + tη(u, v), x))〉 ≥ 0 for all u, v ∈M,

(d)
⋂
{Γ(u) : u ∈M} is contractible.

Then there exists x0 ∈ Γ(x0) such the x0 solves (GV IP ), (GDIP ) and (MP ),
i.e.,

(A) 〈T (x0), η(x, x0)〉 ≥ 0 for all x ∈M ,
(B) 〈∇F (x0), η(x, x0)〉 ≥ 0 for all x ∈M ,
(C) F (x) ≥ F (x0) for all x ∈M .

Proof. By (b), for each x ∈M , there exists a λ > 0 such that the set

Γ(u) = {u ∈M : Q(〈∇F (u), η(x, u)〉, 〈T (u), η(x, u)〉) ≥ λ}

is compact, i.e., the set (by (2.3))

Γ(u) = {u ∈M : 〈(∇F − λT )(u), η(x, u)〉 ≥ 0}

is compact for each x ∈M . Let

N = {(x, u) : x ∈M and u ∈ Γ(u)} ⊂M ×M.

To prove Γ(u) is nonempty, we show N is nonempty. By Theorem 2.8 and (b),

Γ(u) = {u ∈M : Q(F (x)− F (u), 〈T (u), η(x, u)〉) ≥ λ}
= {u ∈M : F (x)− F (u)− λ〈T (u), η(x, u)〉 ≥ 0}

is compact for each x ∈M . By condition (a), we have

〈T (x), η(x, x)〉 = 0

for all x ∈M . Therefore, at x = u, 〈T (u), η(u, u)〉 = 0, that is,

F (u)− F (u)− 〈T (u), η(u, u)〉 = 0.

Thus, by condition (b), N is nonempty.
Since

⋂
{Γ(u) : u ∈ M} is contractible, the set

⋂
{Γ(u) : u ∈ M} is homo-

topically equivalent to a point, say x0, then x0 ∈ Γ(x0). Thus we have

Q(F (x)− F (x0), 〈T (x0), η(x, x0)〉) ≥ λ

for all x ∈M , that is,

〈∇F (x0), η(x, x0)〉 − λ〈T (x0), η(x, x0)〉 ≥ 0 for all x ∈M.

Now we show, x0 solves (GV IP ), that is, to show

〈T (x0), η(x, x0)〉 ≥ 0 for all x ∈M.
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We have M is a η-invex cone, which means M is a η-invex set and for all
x, u ∈M and for all t ∈ (0, 1), we have

η(u+ tη(x, u), u) = tη(x, u) ∈M.

By (a), we get

〈T (x), η(x, x)〉 = 0 for all x ∈M. (2.4)

Since M is a η-invex set, so for all x, u ∈ M and for all t ∈ (0, 1), we have
u + tη(x, u) ∈ M . Therefore, for x0 ∈ Γ(x0) ⊂ M and for all x ∈ M , let
xt = x0 + tη(x, x0). Replacing x by xt in (2.4) and using (c), we have

0 = 〈T (xt), η(xt, xt)〉
= 〈T (xt), η(x0 + tη(x, x0), xt)〉
≤ t〈T (xt), η(x0, xt)〉+ (1− t)〈T (xt), η(x, xt)〉

for all x ∈ M (by (c)). Taking limit as t → 0+ in the above inequality and
using (2.4), we get

〈T (x0), η(x, x0)〉 ≥ 0 for all x ∈M,

that is, x0 solves (GV IP ). Finally for any λ > 0, we have

〈(∇F − λT )(x0), η(x, x0)〉 ≥ 0,

i.e.,

〈∇F (x0), η(x, x0)〉 ≥ λ〈T (x0), η(x, x0)〉 ≥ 0

for all x ∈ M . Thus x0 ∈ Γ(x0) solves (GDIP ). Since F is η-pseudoinvex on
M , we get

F (x)− F (x0) ≥ 0 for all x ∈M,

i.e.,

F (x) ≥ F (x0)

for all x ∈ M . Thus x0 ∈ Γ(x0) solves (MPV IC). This completes the proof
of the theorem. �

3. Iterative method for T -η-invex function of order λ

In [11], Das has introduced a variable step iterative method to find the
solution for the T -η-invex function. In this section, the result is extended.
For general purpose, we have obtained the numerical solution for the T -η-
invex function of order λ using the variable step iterative method with some
additional conditions.

Let V be a Hilbert space with the inner product 〈 , 〉 satisfies the Euclidean

norm ‖ . ‖ by the rule ‖v‖ =
√
〈v, v〉 and M be a nonempty subset of V . Let

V ∗ be the dual of V . Let η : M ×M → V be a vector valued function. Let
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T : M → V ∗ be a nonlinear map. Let F : M → R is a differentiable function
where ∇F (u) is the differential of F at u ∈M .

Definition 3.1. ([3]) Let F : M → R be a function. Then,
(a) F is T -η-invex on M if

F (x)− F (u)− 〈T (u), η(x, u)〉 ≥ 0 ∀x, u ∈M,

(b) F is T -η-invex at point u ∈M if

F (x)− F (u)− 〈T (u), η(x, u)〉 ≥ 0 ∀x ∈M.

For our aims, we define the generalized Lipschitz continuous function as
follows.

Definition 3.2. The mapping F : V → Y is η-Lipschitz continuous of rank
L > 0 if there exists a vector function η : V × V → X such that

‖F (x)− F (u)‖Y ≤ L‖η(x, u)‖V ∀ x, u ∈ V.
Remark 3.3. If η(x, u) = x− u, then the definition of η-Lipschitz continuity
coincides with the definition of Lipschitz continuity [7].

To study the iterative process of T -η-invex function of order λ, it can be
considered as a generalized vector F -λ-variational inequality problem (in short
(GV V IPF ;λ) given by:

(GV V IPF ;λ): for any given λ > 0, find u ∈M such that

F (v)− F (u)− λ〈T (u), η(v, u)〉 ≥ 0 ∀v ∈M. (3.1)

To analyze the convergence of the iterative process, we need the following
assertion.

Lemma 3.4. ([20], pp. 93) Let {ak}∞k=0 be a numerical sequence such that

ak+1 ≤ ak + δk where δk ≥ 0, k = 0, 1, 2, · · · , and
∞∑
k=0

δk < ∞. Then there

exists a limit lim
k→∞

ak <∞. In addition, the sequence {ak}∞k=0 is bounded below

then the limit is finite.

Suppose that the following properties are satisfied for the problem given in
(3.1):

(P1) T satisfies the following properties:

(a) for all u, v ∈M , and t ∈ (0, 1),

〈T (tu), η(u, u)〉 − 〈T (tv), η(v, v)〉 = 〈T (v + tη(v, u)), η(v, u)〉,
(b) for all u, v ∈M ,

‖T (v + tη(v, u))‖ ≤ ‖T (u+ tη(v, u))‖,
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(c) for any z ∈M − {u, v}, there exists a λ > 0 such that

λ〈T (u), η(v, u)〉 ≤ λ〈T (u), η(v, z)〉+ λ〈T (u), η(u, z)〉

for all u, v ∈M .

(P2) η is a absolutely bounded function satisfying the condition

2

γ
c(ε) ≤ ‖η(v, u)‖ < 1 ∀u, v ∈M, (3.2)

where for each ε > 0, c(ε) is a continuous function.

(P3) T is Lipschitz continuous with constant L > 0, i.e., satisfies the condition

‖T (x)− T (u)‖ ≤ L‖x− u‖ ∀x, u ∈M. (3.3)

Furthermore, we assume that F : V → R is a convex(not necessarily dif-
ferentiable) functional such that for each ε > 0, there exists a functional Fε
satisfying the conditions:

|Fε(x)− F (x)| ≤ c(ε) ∀x ∈ V, (3.4)

|Fε(x)− Fε(u)| ≤ γ‖η(x, u)‖ ∀x, u ∈ V, (3.5)

where γ > 0(constant). Using (3.2), (3.4) and (3.5), we get

|F (x)− F (u)| = |F (x)− Fε(x) + Fε(x)− Fε(u) + Fε(u)− F (u)|
≤ |F (x)− Fε(x)|+ |Fε(x)− Fε(u)|+ |Fε(u)− F (u)|
≤ c(ε) + γ‖η(x, u)‖+ c(ε)

= 2c(ε) + γ‖η(x, u)‖

≤ 2γ‖η(x, u)‖ (since
2

γ
c(ε) ≤ ‖η(v, u)‖),

that is, F is η-Lipschitz continuous with constant 2γ.
Under the assumptions imposed on M , T and F , there exists a solution

u ∈M of the problem (GV V IPF ; λ) given in (3.1).
Introduce a functional Γ : V → R by the relation

Γ(u) = F (u)−Aη(u),

where

Aη(u) =

1∫
0

〈T (tu), η(u, u)〉 dt for all u ∈M.
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By property P1(a), we have

Aη(u)−Aη(v) =

1∫
0

〈T (tu), η(u, u)〉dt−
1∫

0

〈T (tv), η(v, v)〉 dt

=

1∫
0

{〈T (tu), η(u, u)〉 − 〈T (tv), η(v, v)〉} dt

=

1∫
0

〈T (v + tη(v, u)), η(v, u)〉 dt. (3.6)

Hence,

Γ(u)− Γ(v) = F (u)−Aη(u)− F (v) +Aη(v),

= F (u)− F (v)− (Aη(u)−Aη(v)) ,

= F (u)− F (v)−
1∫

0

〈T (v + tη(v, u)), η(v, u)〉 dt. (3.7)

To solve the problem (GV V IPF ; λ), we consider the following iterative pro-
cess.

Let u0 be an arbitrary element of M . For n = 0, 1, 2, · · · , we define un+1 ∈
M as the solution of the variational inequality problem

〈η(un, un+1), η(v, un+1)〉+ ρn (Fεn(un+1)− Fεn(v)) ≤ 0, ∀v ∈M, (3.8)

where the sequence {ρn}∞n=0 of the iteration parameters satisfies the conditions

0 ≤ ρ∗ ≤ ρn ≤ ρ∗ ≤
2

L
. (3.9)

For the sequence {εn}∞n=1, we assume that

∞∑
n=1

c(εn) = σ <∞. (3.10)

Theorem 3.5. Let M ⊂ V be a weakly η-invex set of V. Let the condition
given in (3.9) be satisfied. Then, the iterative sequence {un}∞n=0 given by (3.8)
is bounded in V, and all its weak limit points are solutions of the problem
(GV V IPF ; λ).

Proof. Let

S(u0) = {u ∈M : Γ(u) ≤ Γ(u0) + 2σ} ⊂M.
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Then, S(u0) is nonempty because by definition of S(u0), we have u0 ∈ S(u0)
and it is bounded. Next, we show that the iterative sequence defined by

{un}∞n=0 ⊂ S(u0)

is bounded, i.e, to show if un ∈ S(u0) then

un+1 ∈ S(u0).

Assume that

‖T (un)‖ ≥ 1

ρn
for all n.

Taking v = un in (3.8), we obtain

〈η(un, un+1), η(un, un+1)〉+ ρn (Fεn(un+1)− Fεn(un)) ≤ 0

⇒ ‖η(un, un+1)‖2 + ρn (Fεn(un+1)− Fεn(un)) ≤ 0

⇒ −‖η(un, un+1)‖2 − ρn (Fεn(un+1)− Fεn(un)) ≥ 0

⇒ −Fεn(un+1) + Fεn(un)− 1

ρn
‖η(un, un+1)‖2 ≥ 0

⇒ Fεn(un) ≥ Fεn(un+1) +
1

ρn
‖η(un, un+1)‖2

⇒ Fεn(un) ≥ Fεn(un+1)

⇒ −Fεn(un) ≤ −Fεn(un+1). (3.11)

Again, since M is a weakly η-invex set, for x, u ∈ M , there exists a t ∈ (0, 1)
such that x+ tη(x, u) ∈M . By property P3 given in (3.3), we get

‖T (x+ tη(x, u))− T (x)‖ ≤ Lt‖η(x, u)‖ (3.12)

for all x, u ∈ M and for each t ∈ (0, 1). Replacing x by un and u by un+1, in
(3.12), we get

‖T (un + tη(un, un+1))− T (un)‖ ≤ Lt‖η(un, un+1)‖.
Hence using the above equation, we have

‖〈T (un + tη(un, un+1))− T (un), η(un, un+1)〉‖
≤ ‖T (un + tη(un, un+1))− T (un)‖ ‖η(un, un+1)‖
= Lt‖η(un, un+1)‖2, (3.13)

for each t ∈ (0, 1). From (3.2), we have ‖η(un, un+1)‖ < 1, i.e.,

−‖η(un, un+1)‖ < −‖η(un, un+1)‖2. (3.14)

Therefore substituting v = un and u = un+1 in (3.7) and using (3.6) and
(3.11), it follows that
Γ(un+1)− Γ(un)
= F (un+1)−Aη(un+1)− F (un) +Aη(un)
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= F (un+1)− F (un)− (Aη(un+1)−Aη(un))

= F (un+1)− F (un)−
1∫
0

〈T (un + tη(un, un+1)), η(un, un+1)〉dt

= [F (un+1)− Fεn(un)] + [Fεn(un)− F (un)]

−
1∫
0

〈T (un + tη(un, un+1)), η(un, un+1)〉dt

≤ [F (un+1)− Fεn(un+1)] + [Fεn(un)− F (un)]

−
1∫
0

〈T (un + tη(un, un+1)), η(un, un+1)〉dt

= [F (un+1)− Fεn(un+1)] + [Fεn(un)− F (un)]

−
1∫
0

〈T (un + tη(un, un+1))− T (un), η(un, un+1)〉dt

−
1∫
0

〈T (un), η(un, un+1)〉dt

≤ |F (un+1)− Fεn(un+1)|+ |Fεn(un)− F (un)|

+
1∫
0

‖T (un + tη(un, un+1))− T (un)‖ ‖η(un, un+1)‖dt

−
1∫
0

‖T (un)‖ ‖η(un, un+1)‖ dt

≤ 2c(εn) +
1∫
0

Lt‖η(un, un+1)‖2 dt−
1∫
0

1
ρn
‖η(un, un+1)‖ dt

≤ 2c(εn) + L‖η(un, un+1)‖2
1∫
0

t dt− 1
ρn
‖η(un, un+1)‖

1∫
0

dt (by (3.13))

= 2c(εn) + L
2 ‖η(un, un+1)‖2 − 1

ρn
‖η(un, un+1)‖

≤ 2c(εn) + L
2 ‖η(un, un+1)‖2 − 1

ρn
‖η(un, un+1)‖2 (by (3.14))

= 2c(εn) +
(
L
2 −

1
ρn

)
‖η(un, un+1)‖2

= 2c(εn)− µ‖η(un, un+1)‖2,
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where µ = 1
ρn
− L

2 ≥ 0. Thus, we obtained the relation

Γ(un+1) + µ‖η(un, un+1)‖2 ≤ Γ(un) + 2c(εn) (3.15)

is valid for all n = 0, 1, 2, · · · . Putting n = 0, 1, 2, · · · , N in (3.15), we get

Γ(uN+1) + µ
N∑
n=0

‖η(un, un+1)‖2 ≤ Γ(u0) + 2
N∑
n=0

c(εn) ≤ Γ(u0) + 2σ,

⇒ Γ(uN+1) + µ

N∑
n=0

‖η(un, un+1)‖2 ≤ Γ(u0) + 2σ, (3.16)

⇒ Γ(uN+1) ≤ Γ(u0) + 2σ − µ
N∑
n=0

‖η(un, un+1)‖2 ≤ Γ(u0) + 2σ.

Thus, uN+1 ∈ S(u0) = {u ∈M : Γ(u) ≤ Γ(u0) + 2σ}. Since N is arbitrary, so
replacing N by n, we get un+1 ∈ S(u0) and hence,

{un}∞n=0 ⊂ S(u0).

Now, by (3.10), the assumptions of Lemma 3.4 are valid the sequence

{Γ(un)}∞n=1.

Next to show, the sequence {Γ(un)}∞n=1 is bounded above and has a finite
limit. Since ‖η(u, v)‖ < 1, so we have

‖η(un, un+1)‖ < 1 ⇒ lim
n→∞

‖η(un, un+1)‖ = 0.

Hence, the series
∞∑
n=0

‖η(un, un+1)‖2

is convergent. Now, taking limit N →∞ in (3.16), we get

lim
N→∞

Γ(uN+1) + µ
∞∑
n=0

‖η(un, un+1)‖2 ≤ Γ(u0) + 2σ,

i.e.,

lim
n→∞

Γ(un) ≤ Γ(u0) + 2σ − µ
∞∑
n=0

‖η(un, un+1)‖2.

Hence, the sequence {Γ(un)}∞n=1 is bounded above. Again, by the property
P1(c), for any z ∈M − {u, v}, there exists a λ > 0 such that

λ〈T (u), η(v, u)〉 ≤ λ〈T (u), η(v, z)〉+ λ〈T (u), η(u, z)〉
for all u, v ∈M . Taking u = un, z = un+1 in the above inequality, we get
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λ〈T (un), η(v, un)〉

≤ λ〈T (un), η(v, un+1)〉+ λ〈T (un), η(un, un+1)〉

≤ λ〈T (un), η(un, un+1)〉+ λ〈T (un), η(v, un+1)〉+ Fεn(v)− Fεn(un+1)

− 1

ρn
〈η(un, un+1), η(v, un+1)〉 ∀ v ∈M (from (3.8))

= λ〈T (un), η(un, un+1)〉+λ〈T (un), η(v, un+1)〉− 1
ρn
〈η(un, un+1), η(v, un+1)〉

+[Fεn(v)− Fεn(un)] + [Fεn(un)− Fεn(un+1)]

≤ λ‖T (un)‖ ‖η(un, un+1)‖+ λ‖T (un)‖ ‖η(v, un+1)‖

+
1

ρn
‖η(un, un+1)‖ ‖η(v, un+1)‖+ [Fεn(v)− Fεn(un)]

+[Fεn(un)− Fεn(un+1)] ∀ v ∈M

≤ (λ‖T (un)‖+ 1
ρn
‖η(v, un+1)‖) ‖η(un, un+1)‖

+λ‖T (un)‖ ‖η(v, un+1)‖+ F (v)− F (un) + 2c(εn)

for all v ∈M , that is,

λ〈T (un), η(v, un)〉 ≤ Cv‖η(un, un+1)‖+ Sv‖T (un)‖ ‖η(v, un+1)‖
+ [F (v)− F (un)] + 2c(εn) (3.17)

for all v ∈M , where

Cv = λ‖T (un)‖+
1

ρn
‖η(v, un+1)‖

and

Sv = λ‖η(v, un+1)‖
are the nonnegative constants limits to 0 as n → ∞ depending on v ∈ M .
Since the iterative sequence is bounded, it has a subsequence which is of finite
limit. We claim that, there exists a finite subsequence {unk

}∞k=1 of M which
converges weakly to u∗ in M , i.e.,

unk
w−→ u∗ as k →∞

in M and satisfying the inequality

lim
k→∞

sup 〈T (unk
), η(u∗, unk

)〉 ≤ 0.

Taking v = u∗ in (3.17), we have
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λ lim
k→∞

sup 〈T (unk
), η(u∗, unk

)〉

≤ lim
k→∞

sup Cu∗‖η(unk
, unk+1)‖+ lim

k→∞
supSu∗‖T (unk

)‖

+ lim
k→∞

sup [F (u∗)− F (unk
)] + 2 lim

k→∞
sup c(εnk

)

≤ F (u∗)− lim
k→∞

inf F (unk
)

≤ F (u∗)− F (u∗) = 0.

Next, we show that u∗ solves the problem (GV V IPF ;λ). From (3.17), we
have

Cv‖η(un, un+1)‖+ Sv‖T (un)‖+ 2c(εn)

≥ λ〈T (un), η(v, un)〉 − F (v) + F (un)

giving

Cv‖η(unk
, unk+1)‖+ Sv‖T (unk

)‖+ 2c(εnk
)

≥ λ〈T (unk
), η(v, unk

)〉 − F (v) + F (unk
).

Taking limit as k →∞, we get

lim
k→∞

inf [ Cv‖η(unk
, unk+1)‖+ Sv‖T (unk

)‖+ 2c(εnk
)]

≥ λ lim
k→∞

inf [〈T (unk
), η(v, unk

)〉 − F (v) + F (unk
)] ,

i.e.,

0 ≥ λ lim
k→∞

inf 〈T (unk
), η(v, unk

)〉+ lim
k→∞

inf [ −F (v) + F (unk
) ].

Thus
0 ≥ λ〈T (u∗), η(v, u∗)〉 − F (v) + F (u∗),

i.e.,
F (v)− F (u∗)− λ〈T (u∗), η(v, u∗)〉 ≥ 0

for all v ∈ M . Thus, u∗ ∈ M solves the problem (GV V IPF ;λ), that is, F is
T -η-invex of order λ at u∗ ∈M . This completes the proof of the theorem. �

4. The Existence Theorem and Example

In this section, we prove an existence theorem of T -η-invex function of order
λ followed by a concrete example.

Theorem 4.1. Let X be a real Banach space and K ⊂ X. Let η : K×K → X
be a vector valued function. Let K be a η-invex set. Let the mapping F : K →
Rn be η-invex on K, and T : K → L(X,Rn) ≡ Rn be a map. Assume that for
x, u ∈ K, there exists at least one λ ∈ (0, 1) such that
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(a) η(u+ λη(x, u), u) = λη(x, u),
(b) F satisfies

F (u+ λη(x, u)) ≤ F (x),

(b) F and T satisfies

〈∇F (u), η(x, u)〉 ≥ 〈T (u), η(x, u)〉.
Then F is T -η-invex of order λ on K.

Proof. The mapping F : K → Rn is η-invex on K, i.e.,

F (x)− F (u)− 〈∇F (u), η(x, u)〉 ≥ 0

for all x, u ∈ K. Since the set K is η-invex, we have

u+ tη(x, u) ∈ K
for all x, u ∈ K, and t ∈ (0, 1). By (c), we have

〈∇F (u), η(x, u)〉 ≥ 〈T (u), η(x, u)〉,
i.e.,

−〈T (u), η(x, u)〉 ≥ −〈∇F (u), η(x, u)〉
for all x, u ∈ K. Therefore,

F (x)− F (u)− 〈T (u), η(x, u)〉 ≥ F (x)− F (u)− 〈∇F (u), η(x, u)〉
≥ 0

for all x, u ∈ K. Replacing x by u+ tη(x, u) in the above inequality, we get

F (u+ tη(x, u))− F (u)− 〈T (u), η(u+ tη(x, u), u)〉 ≥ 0

for all x, u ∈ K, and t ∈ (0, 1). At t = λ, we have

F (u+ λη(x, u))− F (u)− 〈T (u), η(u+ λη(x, u), u)〉 ≥ 0

for all x, u ∈ K, i.e.,

〈T (u), η(u+ λη(x, u), u)〉 ≤ F (u+ λη(x, u))− F (u)

for all x, u ∈ K. By (a), we get

〈T (u), λη(x, u)〉 ≤ F (u+ λη(x, u))− F (u)

for all x, u ∈ K, i.e.,

λ〈T (u), η(x, u)〉 ≤ F (u+ λη(x, u))− F (u)

for all x, u ∈ K. Again by (b), we have

F (u+ λη(x, u)) ≤ F (x)

for all x, u ∈ K, i.e.,

F (u+ λη(x, u))− F (u) ≤ F (x)− F (u)
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for all x, u ∈ K. Hence

λ〈T (u), η(x, u)〉 ≤ F (u+ λη(x, u))− F (u)

≤ F (x)− F (u)

for all x, u ∈ K, i.e.,

F (x)− F (u)− λ〈T (u), η(x, u)〉 ≥ 0

for all x, u ∈ K. Thus F is T -η-invex of order λ on K. This completes the
proof of the theorem. �

Example 4.2. Let X = R. Then the dual of X is X∗ ≡ X. Let K ⊂ R. Let
F : K → R, η : K ×K → X, and T : K → X∗ be the functions defined by

F (x) = ex, η(x, u) = |x− u|

and

T (x) = x

for all x, u ∈ K. Let

〈f, z〉 = f · z
for all f ∈ X∗ and z ∈ X. Here K is a η-invex cone. Let F be η-invex on K,
i.e.,

F (x)− F (u)− 〈∇F (u), η(x, u)〉 = ex − eu − eu|x− u|
≥ 0

for all x, u ∈ K, implying x ≥ u. Let for each u ∈ K, Ku be the set defined
by

Ku = {x ∈ K : x ≥ u} 6= ∅.
For each x ∈ Ku, u ∈ K, we have eu ≥ u, so

〈∇F (u), η(x, u)〉 = eu|x− u|
≥ u|x− u| = 〈T (u), η(x, u)〉

for each x ∈ Ku and for all u ∈ K. Thus

0 ≤ F (x)− F (u)− 〈∇F (u), η(x, u)〉
= ex − eu − eu(x− u)

≤ ex − eu − u(x− u)

= F (x)− F (u)− 〈T (u), η(x, u)〉

for each u ∈ K and x ∈ Ku which means that F is T -η-invex at each x ∈ Ku

for all u ∈ K. Now we have

u ≤ u+ λη(x, u) ≤ x
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for at least one λ ∈ [0, 1]. Thus

F (u+ λη(x, u)− F (x) = eu+λη(x,u) − ex

≤ 0

for at least one λ ∈ (0, 1). Thus all the conditions of Theorem 4.1 are satisfied.
So by Theorem 4.1, F is T -η-invex of order λ at x ∈ Ku for all u ∈ K.
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