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Abstract. In this paper, we study a system of nonlinear wave equations associated with
the helical flows of Maxwell fluid. By constructing a N-order iterative scheme, we prove the
local existence and uniqueness of a weak solution. Furthermore, we show that the sequence
associated with N-order iterative scheme converges to the unique weak solution at a rate of
N-order.

1. INTRODUCTION

In this paper, we consider the following initial-boundary value problem for
the system of nonlinear wave equations
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1 1
Ut — ai (uxm + —Uuy — 2“) = f(l',t,U,U),
x x
reQ=(LR),0<t<T,
1
Vg — a9 (Um + —ug ) =gz, t,u,v), z€Q0<t <T, (1.1)
x

ug(1,t) — bu(l,t) = v (1,t) = u(R,t) = v(R,t) =0,
(u(z,0),v(x,0)) = (do(x), o(x)) ,
L (ut(,0),ve(x,0)) = (@1 (x), 01(x)),

where a1 > 0, as > 0, by > 0, R > 1 are given constants and g, 1, Uy, U1, [,
g are given functions.

Problem (1.1) here is studied in literature for Maxwell fluid between two
infinite coaxial circular cylinders. It is well known that there is a great interest
of theoretical and applied scientists relating to the fluid flows in the neighbor-
hood of translating or oscillating bodies, in which, Maxwell fluid has received
special attention, see for [3]-[6], [13], [19], [21]-[24] and the references therein.
In [5], Jamil and Fetecau studied the following problem:

1 1
AU + U = v uxz+uw—2u),1<x<R,t>0,
T T

1
AW+ Vi=v me+xVx>,l<x<R,t>0,

F
uz(1,t) —u(l,t) = Et, Ve(1,t) = /Cjt, t >0,
u(R,t) =V(R,t) =0,t>0,
u(z,0) = u(z,0) =0, 1 <z < R,
L V(2,0) = V(2,0) =0, 1 <z <R,

where A\, u, v, I, G are the given constants, this is a mathematical model
describing the helical flows of Maxwell fluid in the annular region between
two infinite coaxial circular cylinders of radii 1 and R > 1. The authors have
obtained an exact solution for the problem (1.2) by means of finite Hankel
transforms and presented under series form in terms of Bessel functions Jy(z),
Yo(x), Ji(z), Yi(x), Jo(z) and Ya(z), satisfying all imposed initial and bound-
ary conditions. Extending the results of Jamil and Fetecau [5], in [24], Truong
et al. have established the global existence, uniqueness, regularity and decay
of solutions of Problem (1.1), where

f= flx,t,u,v,uz, vy, up, ve) = —MNug — f1(u,v) + Fi(z,t),

1.3
g= gz, t,u,v,uz, Vg, up, v) = —Aavg — fo(u,v) + Fo(x,t), (1.3)
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and fi(u,v), fa(u,v) have been assumed that (fi, f2) = <%Z,%Z> with

Fu,v) < Cy (1 +u? + 112) , for all u,v € R, C7 > 0. This paper is inspired by
the results of [24], we continue to extend the results of [5] to obtain a weak
solution (u,v) of Problem (1.1) in the sense as in Remark 2.2 below. The main
tools used here are the Galerkin method associated with a priori estimates, the
weak convergence and the compactness techniques. Furthermore, in case of
f € CN([0,1] x Ry x R?), under suitable assumptions we construct a N —order
iterative scheme to have a convergent sequence at a rate of order IV to a local
weak solution of Problem (1.1). This scheme is established based on a high-
order method for solving the operator equation F(x) = 0, it also has been
applied in some works, for example see [11], [15]-[18], [25] and the references
therein.

2. PRELIMINARIES

The notation we use in this paper is standard and can be found in [1] or
Lions’s book [8], with Q2 = (1, R), Q7 = Q2 x (0,7), T > 0 and ||| is the norm
in L?.

On H' = H(Q), we shall use the following norm

1/2
oll s = (ol + loal”) (2.1)

We put
Vi ={ve H': v(R) = 0}. (2:2)

Vg is a closed subspace of H! and on Vi two norms ||v||z: and [jv,|| are
equivalent norms.

Note that L2, H' are also the Hilbert spaces with respect to the correspond-
ing scalar products:

R
(u,v) :/1 zu(z)v(z)de, (u,v) + (Uz, Vg). (2.3)

The norms in L? and H'! induced by the corresponding scalar products (2.3)
are denoted by |||, and |||, , respectively. H' is continuously and densely
embedded in L2. Identifying L? with (L?)" (the dual of L?), we have H' —
L? < (H')’; on the other hand, the notation (-,-) is used for the pairing
between H' and (H')'.

We then have the following lemmas, the proofs of which can be found in
the paper [24].
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Lemma 2.1. We have the following inequalities

(@) ol < llvlly < VE|oll, for all v e L2,
(@) [l < vl < VRl for all v e H.

Lemma 2.2. The imbedding H' — C°(Q) is compact and

[vllcom < aollvllgr for all ve H!,

whereozoz\h(;i_l)\/1+ 1+ 16(R—1)2

Lemma 2.3. The imbedding Vg — C°(Q) is compact and

(i) ||U||Co(§) <VR—-1||vz|| £ VR = 1| vl for all v € Vg,
(ii) ||U||o \/ BL(R = 1) ||lvellg for all v € Vg,

) Sl (@)Y de < B2 (VR=1) |v.||] for all v € Vi, ¥y > 0.
Put
a(u, w) = a1 [(Uz, wz) + bru()w(1) + (Hu,w)],
b(v7¢) - a2<vm7¢m> for all u, v, w, ¢ € VRa
and

1/2
ol = \/ a0, ) = V/a [[[oall§ + bro?(1) + || 2o][7]
||UHb = \/ U7U = ﬁ|’vx||0, v E VR7

with a; > 0, ag > 0, by > 0 are given constants. Then, a(-,) and b(-,

the symmetric bilinear forms on Vi x Vg.

We also have the following lemmas.

R2 -1 1/2
Lemma 2.4. For af = {1 + <b1 + 5 > (R— 1)]

1 1/2
and @i = {1 + RT+(R - 1)2] , we have

() vatlvsll < l1oll, < afllvslly. for all v € Vi,
(@) lvcllo < Ivlly <3 lexlly, for all v € V.

(2.4)

(2.5)

(2.8)

-) are

(2.9)

Remark 2.5. On L2, two norms v — [jv|| and v — ||v]|, are equivalent.
So are two norms v — [[v|| ;1 and v — ||v]|; on H', and five norms v —

vl g1, v — |Jvlly s v — |Jvzl], v — |Jvzlly and v — [jv]|, on Vg.
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Lemma 2.6. There exists the Hilbert orthonormal base {w;} of L? consisting
of the eigenfunctions w; corresponding to the eigenvalue \j such that

0<5\1§5\2§--~§5\j§5\j+1§---,'lim 5\]-:+oo,
i jroo (2.10)
a(wj, w) = X\j(w;,w) for all we Vg, j=1,2,---.

Furthermore, the sequence {w;/\/)\;} is also the Hilbert orthonormal base
of Vg with respect to the scalar product a(-,-).

On the other hand, we also have w; satisfying the following boundary value
problem

{ Lle = _al(wjx:c + %wﬂ? - ?gwj) = j\jwj’ i (17R)7 (2 11)

wjz(1) — brw;(1) = w;(R) =0, w; € C>=([1, R]).
The proof of Lemma 2.6 can be found in [[20], p.87, Theorem 7.7], with
H = L% and V = Vg, and a(-,-) is defined as in (2.7).
Similarly, we also obtain the following lemma.

Lemma 2.7. There exists the Hilbert orthonormal base {¢;} of L? consisting
of the eigenfunctions ¢; corresponding to the eigenvalue [i; such that

0<in<fin< <y <fign <o, lim jij = +oc,
{ . M*Z oo , o’ (2.12)
b(pj, ) = fij(pj,d) for all p € VR, j=1,2,---.

Furthermore, the sequence {¢;/\/li;} is also the Hilbert orthonormal base
of Vg with respect to the scalar product b(-,-).

On the other hand, we also have ¢; satisfying the following boundary value
problem

{ L2¢j = _a2(¢jzx + %dhm) = ﬂj(z)j? imn (17R)7 (2 13)
9jz(1) = ¢;(R) =0, ¢; € C*([1, R]). '

Remark 2.8. The weak formulation of the initial-boundary value problem
(1.1) can be given in the following manner: Find (u,v) € Wr = {(u,v) €
L0, T5 (H? N VR)?) : (o, 0') € L (0, T (Va)? ) (u”,0") € L% (0,5 (12)*) },

such that (u,v) satisfies the following variational equation

(W (t), w) + a(u(t), w) = (f[u,v](t),w),
{ (W'(t), ) + b(v(t), ) = (g[u,v](t), p), (2.14)

for all (w,¢) € Vg x Vg, a.e., t € (0,T), together with the initial conditions
(u(0),4/(0)) = (o, @1), (v(0),0'(0)) = (2o, 01), (2.15)

where we use the notations f[u,v](z,t) = f(x,t,u,v), glu,v](z,t) = g(z,t,u,v).



476 L. T. P. Ngoc, N. V. Dzung and N. T. Long

Remark 2.9. We note that (see [8])

§|

- {(u,v) e L™ (0,T; (H> N Vk)?) N C([0,T); Vg x V) N C([0, T); L? x L?) :

(w',v) € £ (0,75 (Vi)®) N C([0,T1; 12 x 1), (u",0") € 2= (0,75 (£2)%) }.

3. THE N-ORDER ITERATIVE SCHEMES

In this section, we consider Problem (1.1) with aj, ag, b; are positive con-
stants and give the following assumptions:

(A1) (fg, @), (90,71) € (VRN H?) x Vg, figz(1) — briig(1) = @ip,(1) = 0;
(A2) f, g€ CN([0,1] x Ry x R?), f(R,t,0,0) = g(R,t,0,0) =0, Vt > 0.

Consider T* > 0 fixed, let T' € (0,7%], we define

Wr = {(u,0) € L% (0,T; (H2 N Va)?) (', v') € L(0,T; Vi x Vi),

(3.1)
(u”,v") € L*(0,T; L? x LQ)},
then Wy is the Banach space with norm
a0l = e { oty ) e 752002
(3.2)
/ / n "
[(u ’U)HLOO(O,T;(VR)Q)’ (u”sv )HL2(0,T;(L2)2) }
For M > 0, we put
W (M, T :{veW v <M}

(M., T) 7 vl (3:3)

Wi(M,T) = {(u,v) € W(M,T): (u",v") € L™(0,T;(L*)*)}.
Now, we construct the recurrent sequence {(up,, vy,)} defined by (ug,vg) =
(0,0), and suppose that
(U1, Vm—1) € W1 (M, T), (3.4)
and associate with Problem (2.13), (2.15) the following problem:

Find (um,vm) € Wi(M,T) (m > 1) which satisfies the following linear
variational problem:

(i (£), w) + a(um (t), w) = (Fin(t), w),
(Vi (), ) + b(um(t),9) = (Gm(t), 9), V(w,d) € Vi x Vg, (3.5)
(tm (0), u,,(0)) = (tho, 1), (vm(0), v7,(0)) = (%0, 01) ,

where
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1
Fm(x) t) = Z jDaf[umfla Umfl](-ra t)(um - Umfl)a1 (Um - Umfl)a%
o] <N-1 &

1
Gm(SU,t) Z *'D g[um 1, Um— 1](35 t)( - Umfl)a1 (Um - Umfl)aza
lo|<N—1 &

a a aa1+a2f

6] — 1 2 _

Df = DDy f = Ouc1Qvoz’

al = aglag!, la] = a1 + ag, a = (aq,a2) € Zi-

(3.6)
Then, we have the following theorem.

Theorem 3.1. Let (A1)-(Ag) hold. Then there exist positive constants M,

T > 0 such that, for (up,vo) = (Go,00), there exists a recurrent sequence
{(um,vm)} C Wi(M,T) defined by (3.5), (3.6).

Proof. The proof consists of several steps.

Step 1. The Faedo-Galerkin approximation (introduced by Lions [8]).
Put

a6 =3 Oy, O =3 e, (61

where the coefficients 052 (1), dgf; (t) satisfy the system of nonlinear differential
equations:

(i) (1), wj) +a<u¥?<t> i) = (B (1), w)),
(%) (1), 65 + b(os (t), 6;) = (G (1), 6 o L<i <k, (3.8)
(uth)(0), atn) (0)) = (or, k) (052 (0), 0% (0)) = (Tow, k) »
where
(Tok, U1x) = i( a; ,5 ) — (@i, t1) strongly in (H? N'Vg) X Vg,

k
(Tok, U1x) = Z (07] ,6(k )¢ — (o, U1) strongly in (H2 N VR) x VR,
(3.9)

<.
I
—_

and

1
F(@t)= Y =D flum1,vm1)(uhy) = tim_1)® (v — v1)*
la|<N— 10‘

G (z,t) = ‘ |<sz 15D°‘ gltm—1, Vm—1)(usn) — 1) (05 — V1)

(3.10)
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Let us suppose that (um—1,vm—1) satisfies (3.4). Then it is clear that the
system (3.8) has a solution (ugn), w(r’f)) on an interval 0 <t < Téf) < T. The
following estimates allow one to take constant Téf ) = T for all m and k.

Step 2. A priori estimates.
First, we put

HfHCO(AAI) = sup ]f(x,t,u,’u)],
(z,t,uw)EAN
Kn (M, ) = 1D Flamiay = 5 10 Flcoas
la|<N (3.11)
Apr = [0,1] x [0, 7] x [—VE = IM, VE=TM]?,
f =1 tun), Dif = 90 pyp =9 pyy - —f =

and

v = o], + [ o], + farel, + o],
Ll el
o [ oo
Then, it follows from (3.8), (3.12) that

sW) =sWo)+2 [ [(EB (), 68 () + (G (), 1 (5] ds
0

+ Q/Ot [Q(F,Sf>(s),agf)(3)) + b(ggg)(s)m%)(s))] i

+/OtHu§,’§>(s)szs+/0tH@'g’p(s) ’
*)(0) +§4:Ij.
j=1

We shall estimate the terms of (3.13) as follows.
We can easily check that for

2 2
10l 2w, = \/ l1v2llg + l[vaz g,

1 1
Liv=—ay (U;px + ;U:r - .’E2v> s (314)

1
Lov = —ay (vm + vx> ,
T

(3.13)
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there exist two constants 1, 72 > 0 such that

(1) 1Lavl + 101 2 7 ol - Yo € H2 N Vi, (3.15)
(@) 1220l + ol 2 7 oy » o € H2 N V.

We shall estimate the terms S{ (1), Sk (0), I; of (3.13) as follows.

(i) Estimate of S (¢).
By above inequalities, we deduce from (3.12) that

s 2 ol [0 + oo + s

2
[0y 0 \
HQOVR H2ﬂVR (316)
o [ el [ e
> Yy S(k (1),
where 7, = min{1, 1,72} and
=0k k 2 ) 2
50 = e o], + [l l
2
D0 o, + [0
* H H2NVg o’ (®) H2NVR (3.17)
2
+/ <Hug§)(s)H + Hvyf)(s)H ) ds.
0 0 0
(ii) In order to estimate the terms I3, --- , I4, we prove that the followings:

(@) [P @] < A7 |1+

N TN
q
N———

2

() |G (@0 < gl |1+
(3.18)

@ | < +<Jw )Nl,
(V&)

@ oo, <ol |1+



480 L. T. P. Ngoc, N. V. Dzung and N. T. Long

where
N-1
_ RE
£ = Kn(M, f) (14 MN7Y) g
k=0
N—-1
_ RE
9\ = Kn(M,g) (1+MN7h o
k=0

3.19
£ = Kn(M, f) (1 + dy) (1+ MY~Y) R, 319

gy = En(M, [) (1 +dj)) (1+ MY R,

d*MRN—l N_QRk
. =4 —1, Ry =4+ 22— + 4+ dj =,
R, =4VR R +(N_1>!+( +dM)kZ_1 i

(a) Estimate of ‘F,Sf ) (x, t)‘ . By using the inequalities

et (@) < s @)l gogy < VE=1 [Vt ()]l < VE= 1M,
|/Um—1 (I‘,t)‘ < R—1M,
] < [i20]y =TT
< VR_1 Hu(k)(t)‘ <VE-1\/5P ),
m H2NVg
‘vfjﬁ (x,t)‘ < VE-1y5¥ ),
(a4+bP < 2°7YaP +VP), Ya,b >0, Vp > 1,
a < 1+dP, Va>0, Vp>1,

it follows from (3.10); that

FP,)]
< [ fltm—1,Vm—1](z, )]
o B s (] (4 )

1<|a|<N-1

1<|a|<N-1
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1 || _ lot]
+ENOL )Y 7'( R—l) glel—1 M'a+( ,(,ff)(t)> ]
1<|a]<N-1
N—-1
+En(M.f) Y (ﬁ) glol=1\ oy MN_1+< ‘ﬁ,i”(t)) ]
1<]a|<N— @ :
1 || N_1 = (k) N-1
+EN(M,f) Y E(2 R—l) (1+M —)1+< Sm (t)>
1<|a|<N-1
It is known that Z ! 2k hence
W ERE
1 o N-1 1 N-1 5k
3 —,(2\/1%—1) - —'(2\/ ) -y B
a! e k!
1<]a|<N-1 k=1 |a|=k k=1

we deduce that

[F0 @,

< [flum—1, vm—1](2, 1))

1 a
+ Z ol | D flum—1, vm-1]| (’u,(ji)’ + ‘um—lo 1(
1<]a|<N—1
N1 N-1
< Ky(M,f)+ Kn(M, f) Y == (1+ MV +< 5’5’?@)) ]
k=1

l
1+< sf,’?(t))N 1].
(3.20)

(b) Estimate of ‘Gﬁ,’i) (:c,t)‘. Similar to F4 (x,t), we also have a estimate
el (x,t) as in (3.18)(b).

a2
o] + Jom-1])

k

<79
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(c) Estimate of HFT(,Q (t)H . We have
0

Fk)(z,t)
B 0
o s

f[umfl,vmfl]

0
+ (2D v ) () ) (o) — )

a‘ ax m—1L1y ¥m— m m— m m—
1<|a]<N-1

o
Y D e v () — ) () — V)

1<al<N -1
X (fu,(,ff) — Upp—1)?
« _
Y D et ) — ) () = o)
1<|a]<N -1

X (v,gfb”% — VUm-1)
0 * * *
= %f[um—lyvm—l] + Jl + J2 + Jg.
(3.21)

0

We shall estimate the terms a—f[um,l, Um—1], JT, J3, J5 on the right-hand
T

side of (3.21) as follows.

(c)-1 Estimate of

flum—1,vm—1]. We have

ox
0

Hamf[umlavml] o

= || D1 flm—1,Vm—1] + D3 flttm—1, Vm—1]Vtm—1 + Dy flthm—1, Vm-1]Vim-1lly
R?> -1

< Kn(M, 1) [\ "5 + IVl + 19l
R?-1 .

(3.22)
2
-1
where djy, = R + 2M.

(c)-2 Estimate of J;. Similarly

. 110
ITile< > =

1 || 25 D7 Flutm 1, vm ) () — 1) (0 — v 1)
1<|a|<N-1

0
(3.23)
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0
ox

gzl

1<[al<N-1%

szl

1<|a|<N-1

< kv dy Y L (VEST)

1<|a|<N-1

< Kn(M, f)dy Y (ﬁ) glal—1

1<|a|<N-1 ol

=D flatn-1, 0] (|| + Joal) ™ ([o) | fomoal) ™
(/)" (e 0)
s ()|
20+ ni“’(o)Nl]
<KNOLNdy o (2VRST) T aar Y

1<|a|<N-1""
T N-1
1+ ( fn)(t)> .

0

0

axDaf[um 1, Um— 1]

0

glal—1

Rk
= Kn(M, f) (1+MN71) dMZ

(c)-3 Estimate of J5 + J5. We have

B
D D B L (T T

1<fal<N-1 ¢

X (U = Vg 1) (0F) — v1)22

0

a;—1
D% fltm1, 0] ([u)| + 1)

< X

1<la|<N-1
X <’u§r]f;)p m—ﬂ) (Ur(f)’ + |vm_1|)a2 . (3.24)
< Kn(M, f) Z %( R_l)\al—l (M+ _ﬁlf)(t)>a|l
1<lal<N-1
m A +’vum—1’HO
<Ky(Mf) > % (m)m—l <M+ Sﬁ,’f’@))al

1<|al<N-1
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xvnn 3 o) e ()]

1<ja|<N-1

< 2KnN(M, f) (1 +MN_1) Z % <2m)|a|fl

1<|a|<N-1

+ ( S}?(t))Nll .

Similarly

|a]—1
1J5]lg < 2Kn (M, f) (1+MNH Y % (2 R— 1)

1<|o|<N-1

+ < 5*},2%)) Nl] .

Hence, we deduce from (3.24) and (3.25) that

(3.25)

175 + I3l
< 12 llo + 1751l

N-1 laf a1
<2Kn(M, ) (L+ M) ST B (avR=T)"

1<|a|<N-1

14 ( ‘ﬁ’i)(t)>N1] (3.26)

N-1
=4KN(M, f) (1+ M7 Z
k=1

=4KN(M, f) (1 + M)

k=1

Combining (3.21), (3.22), (3.23) and (3.26), we obtain

N
(3.27)

< Haxf[um—ly Um—l]

+ 1 7llo + 12 + I3l
0
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< KN(M Hdir + En(M, f) (1+ M"Y dy,
N-1
1+< Sﬁf)(t))

1+ ( i) (t))Nll

Rk RN—l
WV o1)!

X
= P W

+ Kn(M, f) (1+ MV

N-2 1
k
444 i
k=1

< Kn(M, f)di; + Kn(M, f) (1+ M)

* R*Nil * e Rf a(k) N-1
X 4+dM(N—1)! + (4+dy) kz R < S (t)>
L =1
< Kn(M, f) (1 +d3,) (1+MV7)

[ @, RN-1 Py

4 Mi* 4 i
X +(N_1) (4+dy) D X

k=1
+< Sﬁ,’f)(t)>N 1] .

(d) Estimate of HG%E (t)HO. Similar to HF,% (t)
HG% (t)H0 as in (3.18)(d).
Next, we estimate the I; (i = 1,2,3,4).
(k

Estimate of I, = 2 [<F£f>(s),a£’i)(s)> +(GW (5), 0P (s))] ds.
By the Cauchy inequality, we deduce from (3.18) (a), (b) that

< 5 (t)) N_ll

= £

’ , we also have a estimate
0

=2 [ [0, + <G£,’z><s>,@£’§><s>>] ds

<2 [ ([l sl « fe ool o] J o

= [E (0 o) [ Vs + <\/5§r’f)(s)>N] s
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Simnlar to 1, we have
=2 [ [alrs), @M»+M@?@wWdes

: [ :HFr(f“S) W, i@l
2 o uwue ol /e
2(a1f§})+@g§?>/o 1+(\/7)

2 (sisf) + vty [ V5o + (Vi )]ds
(

¢ N
<4 alf](\})—i—\/@g](\}[))/o 1—|—( Sﬁn)(s)) ]ds.

(k)

IN

a

5 (5)

m

2
Estimate of I3 = [7 Hﬂg,’f)(s)HO ds. Eq. (3.8)1 is rewritten as follows
<u$r]§)(t)7wj> + <L1u7(7]~f)(t)7wj> = <Fm(t)7wj>7 1<j<k

Then, it follows after replacing w; with uﬁlﬁ’ (t) and integrating that

- [ s
’ t 9 t
<2 [ el a2 [ 1Rl s

< 2/ SW®) (s)ds + T(R* —1)K%(M, f).
. RO PNE o
Estimate of Iy = [; va (s)Hods. Similarly, we get

¢
14:/ Hv( H ds<2/ SW (s)ds + T(R? — 1)K (M, g).
0
On the other hand, we have

~ 2 ~ 2 ~ 2 ~ 2
S 0) = Nawllg + IBull + a2 + 191ll;
+ aokll? + 1okl + | Ladiow |l + | Laok]|§ -

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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By means of the convergences in (3.9), we deduce the existence of a constant
M > 0 independent of k and m such that

S (0) < %MQ, for all k and m € N. (3.34)

m

Combining (3.13), (3.16), (3.17), (3.28), (3.29), (3.31), (3.32) and (3.34),
the result is

t N
Sk (t) < %M2+TD3(M)+D2(M) /0 < §§£>(s)> ds, (3.35)

Dy(M) = (R — 1) [K3(M, ) + K2(M. g)] .

R%2-1 36
e (14 o0) + (i vl O

_ 4
2
D3(M) = D1(M) + Do(M).

Then, by solving a nonlinear Volterra integral equation (based on the methods
in [7]), there exists a constant T' > 0 depending on T (independent of m) such
that

S (1) < M2, ¥m €N, Vt € [0,T], (3.37)

where Cr is a constant depending only on T.

Step 3. (Limiting process). From (3.37), we deduce the existence of a subse-
quence of {(ugf), v,(,lj))}, denoted by the same symbol such that

(u,(ﬁ),v,(?’f)) = (Um,vm) in L*(0,T; (H2 N VR)Q) weak*,

(i) oin)) = (upvfy) 0 L(0,T; Vi x Vi) weak*, (3.38)
@, 8%y = (W ") in L2(Qr) x L2(Qr) weak,

(U, V) € W(M,T).

By the compactness of Lemma ([8], p. 57) and the compact imbedding
HY0,T.) < C°([0,T.]), we can deduce from (3.38);2 the existence of a
subsequence still denoted by {u,,} such that

(u® v )Y =5 (U, vm) strongly in L2(0,T; Vg x Vi) and a.e. in Qp. (3.39)

m ) Tm
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On the other hand
’Fr(f)(:l?,t) - Fm(l‘vt)

1 «
D DI 112
lo|<N—-1
X ’ {(Ugi) - um—l)a1 (Ur(r]f) - rUm—l)OZ2 - (um - um—l)a1 (vm - vm—l)a2:|

|a|<N-1

[ = 1) (0 = v 1) = (o = 1) (U = vm-1)?]

1
=Kn(M.f) Y oW
la|<N—-1

9

(3.40)

where

S
—~
=
=
—~
8
~
~
I

(u%) — um—1)a1(v7(jf) — Um—1)"% = (U, — Up—1) " (U, — Vppp—1)*?
= (u%) - um—l)a1 - (um - um—l)al] (Uy(ﬁ) - vm—l)a2

o (= )™ [0 = 0m-1) = (v = Om1)2]
(3.41)
By using the inequalities
|’UJm71| § R — 1M,
< 2vR-1M,

|um - um—1|

WP < VR=T|jul| < vVE-1y/SW 0 < VR 1,
\ugp - um_l‘ < ‘ug’j)‘ + |1
< VR-1 (Hugﬁ?;(t)HO + [ Vttm-1ll) < 2VR =10,
2% — 4% < aMP e -y,

for all x,y € [—My, M;], M7 > 0, a € N, we obtain

< ale”_l ‘u(k) — um’

(u,(ji) = Um—1)"" — (U — Up—1)™ m

< ale‘l_lx/Rleugi;fumx .
aq
< EMlal U,(ﬁg);—umx‘ov
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(651 R2 —1 k
s MM H“S’”)” —tme

where M7 = 2v/R — 1M, hence

«aq

[ e )

This implies

(k)
H(Um — Um )al— U, — Um— 1) ! LQ(DTLZ)
MOé1 —1 H (k) _
L2 0,T;Vg)
Similarly, it is clear to see that
k
s
Moé2 / —1 H (k) _
L2 0,7 VR)
By the inequalities ‘vﬁ,’f) — Up—1 < M2 |ty — um—1|™ < M7, it follows
that
Hq;(k)‘ < MMMHE
™ 2012y — 201 2

X {Hugj) — umH + HU,(,’L“) — UmH ] —0
L2(0,T;VR) L2(0,T;VR)
It follows that
E® 5 F, stronglyin L2(0,T; Vg x Va). (3.42)
Similarly, by (3.39), we deduce from (3.6)2 and (3.10)2 that
G Gy stronglyin  L2(0,T; Vg x Vg). (3.43)

Passing to limit in (3.8), we have (u,, v,,) satisfying (3.5), (3.6) in L2(0,T).
On the other hand, it follows from (3.5)-(3.8) and (3.38)4 that

u! = —Lyupm + Fry € L0, T; L?)

and
o) = —Lovy, + G € L(0,T; LZ).
Hence (tm, vm) € Wi(M,T) and the proof of Theorem 3.1 is complete. O

Next, we state and prove the main theorem in this section, in which

W1(T) = C([0,T); Vg x Vg) N CY([0,T]; L* x L?), (3.44)



490 L. T. P. Ngoc, N. V. Dzung and N. T. Long

it is well known that W;(T') is a Banach space with respect to the norm (see
Lions [8]):

H(Uav)le(T) = H(uvv)HC([O,T];VRXVR) + [ (u, U)Hcl([o,T};me?) : (3.45)

Theorem 3.2. Let (A1)-(A2) hold. Then, there exist positive constants M,
T > 0 such that

(i) the problem (1.1) has a unique weak solution (u,v) € Wi (M,T).

(ii) the recurrent sequence {(um,vm)} defined by (3.5)-(3.6) converges to the
weak solution (u,v) of Problem (1.1) strongly in the space W1(T).

Furthermore, we have the estimate

|Gt vm) = (1 0) sy < € Ghr)™™ , ¥im € N, (3.46)

where kp € (0,1) and C are chosen such that kr, C depend only on T, f, g,
U, U1, Vo, V1.

Proof. (a) Existence of the solution.
We shall prove that {(um,,vn)} is a Cauchy sequence in Wi (T). Let @, =
Um+1 — Umy Um = Um+1 — Um- Then (U, U,y,) satisfies the variational problem:

(1 (1), w) + A (t), w) = (Frnpa(t) = F(t), w)
<q_}’;’;’b(t)7 ¢> + b(ﬁm(t% (b) - <Gm+1(t) - Gm<t)7 ¢> ) V(wa ¢) € VR X VR;
(m (0), m (0)) = (u,(0), v;,(0)) = (0,0).

(3.47)

Taking (w, ¢) = (al,(t), v, (t)) in (3.47), after integrating in ¢, we get

Zon(t) = 2 / (Fos1(5) — Fn(s), W (s)) ds
0
2 [ (Gnis(6) = Gunls),%0(5)) ds (349
0
=J1+ Jo,
where

Zn(®) = a5 + [0 O + I1Em @G + om0 - (3.49)

And all terms of (3.48) are estimated as follows.
(1) The term Z,,(t). We have

Zn(t) = || (D)3 + [5O3 + lam 12 + 1m (817
> ||a,(t )HO + |[on, (¢ Hf) + a1 || Tma(8)|12 + a2 || ()13 (3.50)
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where
Znlt) = N )1+ [T O + W O+ Dma O,
a, = min{1, ay,as}. '
(2) First integral J; =2 fg (Frt1(8) — Fu(s), 1, (s)) ds. We have
Fna1(t) = Fin(t)
= f[uTm Um](xv t) - f[um—lv vm—l](xv t)
1
Y Dl vl (@) (@) (B) (3.52)
1<la|<N-1
- Z %Daf[um—h V1) (2, ) (Um—1)"" (Om—1)"*.
1<jaj<N-1 "

By using Taylor’s expansion of the function f|tm,, vm] = fltm—1+Um—1, Vm—1+
Um—1] around the point [um—1,Vm—1] = (2, t, Um—1,VUm—1) up to order N, we
obtain

f[uma Um] - f[um—h Um—l]

- Z %Do‘f[um_h Um—1] (ﬂm_l)al (@m_l)az + Rm[f], (3.53)
1<|a|<N-1

where for 0 < 0 < 1,

Rm[f] = Z i|Daf[um—l + eam—lyvm—l + aﬁm—l] (am—l)a1 (IDm—l)O‘2 .
=
(3.54)
Then, Fy,41(t) — Fy,(t) is rewritten as follows:

Fint1 (t) - Fm(t) = Z éDaf[uma Um](il?, t) (am)al (ﬁm)a2 + Rm[f]
e (3.55)
Thus

|Frs1 (2, 8) = F(, )] < Kn(M, f) ) él(ﬂm)a1 (Om) 2 [+ B [f](2, )]

1<|a|<N-1""
(3.56)
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1
(3) Estimate of Y. — |(Um)™ (0m)*?|. Note that

1<jalSN—1 !

()™ %] < (VE=1) " it O [ 000 (D)
< (\/R7>| af
< (VE=1) " a2, )

METEMO ([t (£)]o (3.57)

Therefore, by (3.57), we obtain

S L s ¥ L () e E

1<la|]<N—-1 1<

(3.58)
(4) Estimate of Ry,[f](z,t). We have

Rl 0] < Kn(M 1) S (1) (1))

la[=N

<Kx(M.) Y = (VEST)

!
laj=N

<ky0.f) Y L (VE1) " s 5] o

al
lal=N

vE—1)"

= K (M. )= [t T -

laf o _ o
IVim-1()llg" [[VOm-1 ()5

(3.59)
It follows from (3.56), (3.58) and (3.59) that

Z(t)

KN(M = 2M\/ —1)"
2

‘Fm-f—l(xat) - Fm(ajat)’ <

vE-D)"

N' ||(ﬂm*1’ﬁm*1)||gf1(T) °

+Kn (M, f) (
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Hence
1Fmi1(t) = Fon(t)llg < Br(M, £)\ Zin(t) + Ba(M, £) || (@1, Bm—2) [y, (1 »
(3.60)
where
Ey(M. ) = KNMf —1 2M\/ )7
(3.61)

B, ) = Ky, o 1

Now, we can estimate the integral J; as follows:
51 =2 [ (Fusr(s) = B, () ds
<2 / 1Foms1(5) = Fn()ll [ ()] ds
<2 [ (mow, f)m B, 1) [P ) o o
= 2B, 1) [ o)+ 2200, By [ /(500

t
< TEZM, f) (1,50 ) |2 ) + (14 2B1(M, f)) /0 Zon(5)ds.

(3.62)
Next integral Jy. Similarly
t
Jy = 2/ (Grng1(s) = Gin(s), U, (s)) ds
0 . (3.63)
< TE3(M, 9) || (@1, 0m—1) 59, ) + (1 + 2E1(M,9))/0 Zm(s)ds,
where
K M - 1 2M\/
El(Mag N f ) )
(3.64)

2 ST N
EQ(Mag):KN(va)~IR2 1(2 R;V' 1)

Combining (3.48), (3.50), (3.51), (3.62) and (3.63), we obtain

~ ~ t —
Zm(t) S EQ(M7 f’ g)T H(amflyﬁmfl)”%/[]/\i(T) + 2E1(Ma fag) /0 Zm(s)d‘sa
(3.65)
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where

B(M. £,6) =+ (1+ Ey(M, /) + Ea(M. g)).

3.66)
E2 M, f)+ E2(M,g (
By(1, f.g) = LI 2 E3OL)
A
By Gronwall’s lemma, we deduce from (3.65) that
1G5 sy < 1 1, B sy (3.67)

1

where pp = 4y/ Ey(M, f,g)VT exp(TE1(M, f,g)) with fr = Mpu) " < 1,
which implies that

1 m
| (U vm) — (umﬂn Uerp)HWl(T) <(1- BT)i1 (pr)~=T (5T)N , Vm,p € N.
(3.68)
It follows that {(um,vm)} is a Cauchy sequence in Wi(T'). Then there exists
(u,v) € Wi(T) such that

(U, V) — (u,v) strongly in W1 (T). (3.69)

Note that (tm, vm) € W1(M,T), then there exists a subsequence { (tm,, vm; )}
of {(wm,vm)} such that

(tmy,Vm;) = (u,v)  in L®(0,T; (H* N VR)Q) weak™,
! u,v")  in L*°(0,T; Vg x Vi) weak*

( ’ (3.70)

(W o) = (", 0") i I2(Qr) x LX(Qr) weak '

(

We also note that

[ Fm — f[U,U]”Loo(o T;L2)

2
< Kn(M, f )\/Ri[\/iﬂ(um 1,Vm-1) — (%v)le(T) (3.71)
N-1 (2\/7)

=1

Hence, from (3.69) and (3.71), we obtain

+ ||(umavm) - (Um—lvvm—l)Ha/l(T)

F(t) — flu,v] strongly in L>°(0,T; L?). (3.72)
Similarly, we have that

G — glu,v] strongly in L>°(0,T; L?). (3.73)
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Finally, passing to limit in (3.5), (3.6) as m = m; — oo, it implies from
(3.69), (3.70)1,2,3, (3.72) and (3.73) that there exists (u,v) € W(M,T) satis-
fying the equations

(W (t), w) + a(u(t),w) = {f[u,v](t),w),
0601 60009 = too k0. (3.74)

for all (w,¢) € Vg x Vg, a.e., t € (0,T), and the initial conditions
(u(0),4'(0)) = (@, a1), (v(0),v'(0)) = (To, 01)- (3.75)

On the other hand, from the assumption (Az), we obtain from (3.70)4,
(3.72), (3.73) and (3.74), that

"= —Lyu+ flu,v] € L>(0,T; L?)

and

" = —Lyv + gu,v] € L>(0,T; L?).
Thus, we have the solution (u,v) € Wi (M,T). The existence proof is com-
pleted.

(b) Uniqueness of the solution:

By applying a similar argument, which is used in the proof of Theorem 3.1,
the solution (u,v) € Wi (M, T) is unique.
(c) The estimate (3.46):

Passing to the limit in (3.68) as p — +oo for fixed m, we get (3.46). O

Remark 3.3. In order to construct a N-order iterative scheme, we need the
condition f € CN(]0,1] x Ry x R?). Then, we obtain a convergent sequence
at a rate of order IV to a local weak solution of the problem. We note that,
this condition of f can be relaxed if we only consider the existence of solution
(for more detail, we refer to [9]-[14]).
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