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Abstract. This paper deals with the stability of solutions to ψ-Hilfer fractional differential

systems. We derive the fundamental solution for the system by using the generalized Laplace

transform and the Mittag-Leffler function with two parameters. In addition, we obtained
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1. Introduction

The theories of fractional differential systems are widely acknowledged due
to the physical properties which are powerful gadgets to describe the real-world
phenomenon. By the characteristics we mentioned above, fractional calculus
caught a lot of attention in application with other research fields, such as
chemistry, engineering, modelling, viscoelastic and the others [6, 15, 17]. In
the last decades, there are many definitions of fractional derivatives presented
by expert mathematicians. There are two senses that caught the most at-
tention in differential equation which are Caputo fractional derivative and
Riemann-Liouville fractional derivative. These two common definitions leads
to several generalization of fractional derivatives such as fractional derivatives
of a function with respect to another function [3, 7, 14], variable-order frac-
tional derivatives [2, 9, 18] and Hilfer derivative [6] which interposed between
fractional derivatives in the sense of Riemann-Liouville and Caputo.

On the other hand, the fundamental solutions of linear differential systems
with integer order are usually written in the form of an exponential func-
tion. However, researchers combined the definition of fractional calculus with
the differential systems which is known as fractional differential systems and
caught much interest. For fractional order systems, fundamental solutions are
displayed in a more general form of Mittag-Leffler function which interpolates
between normal exponential function and the function related to power-law
also know as Lorentzian function. These make properties and stability of so-
lutions to fractional differential systems are the main contemplate considered
in several pieces of research.

Many researchers agree that stability theories are considered as the impor-
tant tools in control theory due to the physical properties which visualized
that delicate perturbation does not produce disruptive results in the systems
such as spring damping and small oscillating pendulum. Firstly, the stability
of autonomous Caputo fractional differential systems is originally been pro-
posed by Matignon [10] in the year 1996. Then other researchers investigate
and present more works in the field of stability to fractional differential sys-
tems such as stability theorems for Riemann-Liouville fractional differential
systems [12], linear fractional differential equations with constant coefficients
[4] and so on.

In 2015, the stability result of Hilfer fractional differential systems where
y ∈ Rn, A ∈ Rn×n, α = (α1, α2, ..., αn)n×1 are matrices such that 0 < αi < 1,
0 ≤ β ≤ 1 and γi = αi + β − αiβ.

0+D
α,β
t y(t) = Ay(t),

0+I
1−γ
t y(0+) = y0
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with the fundamental solution

y(t) = y0t
γ−1Eα,γ(Atα) (1.1)

was studied in [13]. In 2018, Jarad et al. [7] studies generalized fractional
derivatives and Laplace transform for solving the following Cauchy problem
involving a generalized Riemann-Liouville fractional derivative of the form:

aD
α
ψy(t)− λy(t) = f(t) t > a, α ∈ (0, 1], λ ∈ R,

aI
1−α
ψ y(a+) = c, c ∈ R

and the Cauchy problem of generalized Caputo fractional derivative of the
form:

C
aD

α
ψy(t)− λy(t) = f(t) t > a, α ∈ (0, 1], λ ∈ R,

y(a+) = c, c ∈ R.
Obviously, the functions

y(t) = (ψ(t)− ψ(a))α−1Eα,α(A(ψ(t)− ψ(a))α)c

and
y(t) = Eα(A(ψ(t)− ψ(a))α)c

are the fundamental solutions of generalized Riemann-Liouville fractional dif-
ferential and generalized Caputo fractional differential systems, respectively.

Motivated by these works, the purpose of our research is to extend the
stability result of Hilfer fractional differential systems to the generalized Hil-
fer fractional derivative with respect to another function (ψ-Hilfer derivative)
given by

aD
α,β
ψ y(t) = Ay(t) +B(t),

aI
(1−β)(1−α)
ψ y(a) = C,

(1.2)

where y ∈ Rn, A ∈ Rn×n is a matrix and α = (α1, α2, ..., αn) is a vector such
that 0 < αi < 1, 0 ≤ β ≤ 1 and B(t) : [a,∞) → Rn×n is continuous matrix
function. Also for i = 1, 2, ..., n, the system is said to be commensurate order
system if α1 = α2 = ... = αn. Our study gives a generalization to those results
presented in the literature. It should be noted that our fundamental solution
can be reduced to the solutions of the corresponding Riemann-Liouville sense
and Caputo sense when we take β = 0 and β = 1, respectively. In particular,
fundamental solution and stability of solutions to linear differential with ψ-
Caputo derivative in a recent paper [1] can also be obtained from our work
for the case of 0 < α < 1. We point out that our fundamental solutions are
written in terms of Mittag-Leffler function with two parameters α and β, and
the fractional order α for the differential system is an n×1 vector which leads
to a more general fractional differential system. Also, if ψ(t) = t and a = 0,
our fundamental solution can be reduced to (1.1).



516 N. Limpanukorn, P. Sa Ngiamsunthorn, D. Songsanga and A. Suechoei

This paper is organized in the following way. In section 2, the concepts
of ψ-Hilfer differential system will be introduced. Fundamental solutions and
stability of systems will be proved in Section 3. Examples will be provided in
Section 4 to illustrate the results.

2. Preliminaries

In this section, fundamental information and important notation will be
briefed.

Definition 2.1. ([8]) Let ψ(t) : [a,∞) → R, ψ′(t) 6= 0 and α > 0. The left
generalized Riemann-Liouville fractional integral of order α for function f(t)
is defined by

aI
α
ψf(t) =

1

Γ(α)

∫ t

a
(ψ(t)− ψ(τ))α−1ψ′(τ)f(τ)dτ .

Definition 2.2. ([8]) Let α > 0. The left ψ-Riemann-Liouville fractional
derivative of order α for function f(t) is defined by

aD
α
ψf(t) =

1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a
(ψ(t)− ψ(τ))n−α−1f(τ)ψ′(τ)dτ .

Definition 2.3. ([1]) Let α > 0. The left ψ-Caputo fractional derivative of
order α is defined by

C
aD

α
ψf(t) =

1

Γ(n− α)

∫ t

a
(ψ(t)− ψ(τ))n−α−1(ψ′(τ))1−nf (n)(τ)dτ ,

where n− 1 < α ≤ n and n ∈ N.

Definition 2.4. ([16]) Let n − 1 < α < n, β ∈ [0, 1] and the fuctions f, ψ ∈
Cn([a, b],R) such that ψ′(t) 6= 0 for t ∈ [a, b] and ψ be a increasing function.
Then the ψ-Hilfer fractional derivative is defined by

aD
α,β
ψ f(t) = aI

α(n−β)
ψ

(
1

ψ′(t)

d

dt

)n
aI

(1−β)(n−α)
ψ f(t).

We can see that when β = 0, ψ-Hilfer fractional derivative conforms to ψ-
Riemann-Liouville fractional derivative and harmonizes with ψ-Caputo frac-
tional derivative when β = 1.

Definition 2.5. ([8]) Let α, β > 0. The Mittag-Leffler function with two
parameters is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
, z ∈ C.
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Definition 2.6. ([7]) Let f, ψ : [a,∞) → R such that ψ′(t) ∈ [0,∞). The
generalized Laplace transform of f is defined by

Lψ{f(t)} =

∫ ∞
a

e−s(ψ(t)−ψ(a))f(t)ψ′(t)dt.

Theorem 2.7. ([7]) Let Re(α) > 0, β > 0 and
∣∣ λ
sα

∣∣ < 1. Then

Lψ{(ψ(t)− ψ(a))β−1Eα,β(λ(ψ(t)− ψ(a))α)} =
sα−β

sα − λ
.

Theorem 2.8. ([5]) Let n− 1 < α < n, β ∈ [0, 1]. Then

Lψ{aDα,β
ψ f(t)} = sαLψ{f(t)} −

n−1∑
i=0

sn(1−β)+αβ−i−1(aI
(1−β)(n−α)−i
ψ f(a)),

where

aI
(1−β)(n−α)
ψ f(a) = lim

t→a+
aI

(1−β)(n−α)
ψ f(t).

Lemma 2.9. ([13]) (Gronwall’s inequality). Suppose that ξ(t) ≥ 0 and ϕ(t)
are continuous functions in [a, b] and δ, ε ≥ 0. If

ϕ(t) ≤ δ +

∫ t

a
[ξ(s)ϕ(s) + ε]ds,

then

ϕ(t) ≤ (δ + ε(b− a)) exp

(∫ t

a
ξ(s)ds

)
, t ∈ [a, b].

Lemma 2.10. ([3]) (Gronwall’s inequality respect to another function). Let
ξ(t), σ(t) ≥ 0 and ϕ(t) ≥ 0 be nondecreasing continuous functions in [a, b] with
ψ′(t) 6= 0 and σ(t) is nondecreasing. If

ξ(t) ≤ σ(t) + ϕ(t)

∫ t

a
(ψ(t)− ψ(s))α−1ξ(s)ψ′(s)ds,

then

ξ(t) ≤ σ(t)Eα(ϕ(t)Γ(α)(ψ(t)− ψ(τ))α), t ∈ [a, b], τ ∈ [a, t].

3. Solution to ψ-Hilfer fractional differential system

Firstly, we discuss about fundamental solutions to the ψ-Hilfer fractional
differential system (1.2) where γ = (γ1, γ2, ..., γn) such that γi = αi + β−αiβ.



518 N. Limpanukorn, P. Sa Ngiamsunthorn, D. Songsanga and A. Suechoei

Theorem 3.1. The fractional differential system (1.2) has the solution given
by

y(t) =C(ψ(t)− ψ(a))γ−1Eα,γ(A(ψ(t)− ψ(a))α)

+

∫ t

a
(ψ(t)− ψ(s))α−1Eα,α(A(ψ(t)− ψ(s))α)B(s)ψ′(s)ds.

(3.1)

Proof. Applying Theorem 2.7 and Theorem 2.8 on (1.2) we get

sαLψ{y(t)} − sαβ−β(aI
(1−β)(1−α)
ψ y(a)) = ALψ{y(t)}+ Lψ{B(t)},

(sαI −A)Lψ{y(t)} = Lψ{B(t)}+ sαβ−βC

and

Lψ{y(t)} = (sαI −A)−1Lψ{B(t)}+ sαβ−β(sαI −A)−1C.

Applying inverse Laplace transform, we have

y(t) =C(ψ(t)− ψ(a))γ−1Eα,γ(A(ψ(t)− ψ(a))α)

+

∫ t

a
(ψ(t)− ψ(s))α−1Eα,α(A(ψ(t)− ψ(s))α)B(s)ψ′(s)ds.

The proof is completed. �

Remark 3.2. If B(t) = 0 in (1.2), then the fractional systems become a
homogeneous system

aD
α,β
ψ y(t) = Ay(t),

aI
(1−β)(1−α)
ψ y(a) = C.

(3.2)

Consequently, we see that the function

U(t) = C(ψ(t)− ψ(a))γ−1Eα,γ(A(ψ(t)− ψ(a))α)

is the fundamental solution of (3.2).

Corollary 3.3. If A has distinct eigenvalues λi ∈ C, i = 1, 2, ..., n associated
with the corresponding eigenvectors Vi, i = 1, 2, ..., n, then the fundamental
solution of (3.2) can be expressed as

U(t) = (ψ(t)− ψ(a))γ−1
n∑
i=1

CiViEα,γ(λi(ψ(t)− ψ(a))α).

In addition, the solution to nonhomogeneous differential systems (1.2) can be
written as

U∗(t) = U(t) +

∫ t

a
(ψ(t)− ψ(s))α−1

n∑
i=1

ViEα,α(λi(ψ(t)− ψ(s))α)Bi(s)ψ
′(s)ds.
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We move further to solution of homogeneous case when A has repeated
eigenvalues. We have

Uk = (ψ(t)− ψ(a))γ−1VkEα,γ(λ(ψ(t)− ψ(a))α).

Corollary 3.4. If A has repeated eigenvalues λ with multiplicity n and V1 is
only corresponding eigenvector, then the fundamental solution of (3.2) can be
expressed as

U(t) = (ψ(t)− ψ(a))γ−1
n∑
i=1

Vi(ψ(t)− ψ(a))α(n−i)E(n−i)
α,γ (λ(ψ(t)− ψ(a))α),

where E
(j)
α,γ(z) = dj

dzj
Eα,γ(z).

In additon, solution of nonhomogeneous systems (1.2) can be written by

U∗(t) = U(t) +

∫ t

a

n∑
i=1

(ψ(t)− ψ(s))α(n+1−i)−1Vi

× E(n−i)
α,α (λ(ψ(t)− ψ(s))α)Bi(s)ψ

′(s)ds.

4. Stability of solutions to ψ-Hilfer fractional differential
systems

In this section, we investigate the stability of solutions to ψ-Hilfer differen-
tial systems for homogeneous, non-homogeneous and non-autonomous cases.

We first collect some important lemmas which are useful in stability anal-
ysis.

Lemma 4.1. ([11]) Let F (s) be the Laplace transform of function f(t). If all
poles of sF (s) are in the open left-half plane, then

lim
t→∞

f(t) = lim
s→0

sF (s).

Lemma 4.2. ([13]) Let α ∈ (0, 1), β ∈ C and µ ∈ R be such that

απ

2
< µ < min{π, απ}.

Then, for integers p ≥ 1, | arg(z)| ≤ µ and |z| → ∞ we have

Eα,β(z) =
z(1−β)/α

α
exp(z

1
α )−

p∑
k=1

z−k

Γ(β − kα)
+O(|z|−1−p),

where O(|z|−1−p) is defined by

∞∑
k=0

ak|z|−1−p−k, a0 6= 0, ak ∈ R.
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And when µ ≤ | arg(z)| ≤ π and |z| → ∞ we have

Eα,β(z) = −
p∑

k=1

z−k

Γ(β − kα)
+O(|z|−1−p) (4.1)

and

Eα,α(z) = −
p∑

k=2

z−k

Γ(α− kα)
+O(|z|−1−p). (4.2)

Next, we state our main result for ψ-Hilfer fractional differential systems.
These results are generalized of [13].

4.1. Stability of fractional order homogeneous differential system.

Theorem 4.3. The zero solution of the fractional order homogeneous differ-
ential system (3.2) is asymptotically stable if ψ and all of the eigenvalues λi
satisfied

lim
t→∞

ψ(t) =∞, | arg(λi)| >
αiπ

2
, i = 1, 2, ..., n

Proof. From Theorem 3.1 we get

y(t) = C(ψ(t)− ψ(a))γ−1Eα,γ(A(ψ(t)− ψ(a))α).

Now, suppose that A is diagonalizable, so that we can write

D = T−1AT = diag(λi)n×n.

We get

Eα,γ(A(ψ(t)− ψ(a))α) = TEα,γ(D(ψ(t)− ψ(a))α)T−1

= Tdiag(Eα,γ(λi(ψ(t)− ψ(a))α))n×nT
−1.

Then

‖Eα,γ(D(ψ(t)− ψ(a))α)‖ = ‖diag(Eα,γ(λi(ψ(t)− ψ(a))α))n×n‖ → 0

as t→∞ for all 1 ≤ i ≤ n.
Suppose that A is similar to Jordan canonical form. Then there exists an

invertible matrix T such that J = T−1AT = diag(Ji)r×r, where

Ji =


λi 1

λi
. . .
. . . 1

λi


ni×ni

, i = 1, 2, ..., r

is the Jordan block with
∑r

i=1 ni = n. Obviously, we gain

Eα,γ(A(ψ(t)− ψ(a))α) = TEα,γ(diag(Ji)r×r(ψ(t)− ψ(a))α)T−1.
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Let Cjk where 1 ≤ j ≤ ni − 1 are the binomial coefficients. Then

Eα,γ(Ji(ψ(t)− ψ(a))α)

=

∞∑
k=0

((ψ(t)− ψ(a))α)k

Γ(kα+ γ)
Jki

=

∞∑
k=0

((ψ(t)− ψ(a))α)k

Γ(kα+ γ)


λki C1

kλ
k−1
i · · · Cni−1k λk−ni+1

i

λki
. . .

...
. . . C1

kλ
k−1
i

λki

 .
Obviously, we get

∞∑
k=0

((ψ(t)− ψ(a))α)k

Γ(kα+ γ)
Cni−1k λk−ni+1

i

=
1

(n− 1)!

(
d

dλi

)ni−1
Eα,γ(λi(ψ(t)− ψ(a))α).

This implies
|Eα,γ(λi(ψ(t)− ψ(a))α)| → 0 as t→∞,

which leads∣∣∣∣∣ 1

j!

(
d

dλi

)j
Eα,γ(λi(ψ(t)− ψ(a))α)

∣∣∣∣∣→ 0, 1 ≤ j ≤ ni − 1, as t→∞.

So for any non-zero initial value y(a) when t→∞ it follows that

‖y(t)‖ = ‖C(ψ(t)− ψ(a))γ−1Eα,γ(A(ψ(t)− ψ(a))α)‖ → 0,

which completes the proof. �

Remark 4.4. For commensurate order homogeneous system, If | arg(λ)| >
απ
2 , the system (3.2) is asymptotically stable.

Remark 4.5. For αi are rational numbers. let ω = 1
M where M is the lowest

common multiple of denominators ui of αi where αi = vi
ui

, gcd(ui, vi) = 1,

ui, vi ∈ N and all roots of det(diag(λMαi)n×n−A) = 0 satisfied | arg(λ)| > ωπ
2 ,

The system (3.2) is asymptotically stable.

Theorem 4.6. If A has an eigenvalue λ∗ such that | arg(λ∗)| < απ
2 , then the

zero solution of the homogeneous system (3.2) is unstable.

Proof. Suppose A is diagonalizable matrix. Then by using Lemma 4.2, we
obtain

Eα,γ(λ∗(ψ(t)− ψ(a))α)
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=
(λ∗(ψ(t)− ψ(a))α)(1−γ)/α

α
exp(λ∗(ψ(t)− ψ(a))α)

1
α )

−
p∑

k=1

(λ∗(ψ(t)− ψ(a))α)−k

Γ(γ − kα)
+O((|λ∗(ψ(t)− ψ(a))α)|−1−p)

→∞, as t→∞.
Also, we have

lim
t→∞
‖y(t)‖ =∞.

Next, we concern in the case that A is similar to Jordan canonical form. We
have

1

(n− 1)!

(
d

dλi

)n−1
Eα,γ(λi(ψ(t)− ψ(a))α)

=
1

(n− 1)!

{∏n−2
j=0 (1− γ − jα)

αn
λ
(1−γ−(n−1)α)/α
∗ (ψ(t)− ψ(a))1−γ + · · ·

+
(n− 1)n− (n− 1)γ − (n− 1)(n− 2)α

2αn

×λ(n−1−γ−(n−1)α)/α∗ (ψ(t)− ψ(a))n−1−γ

+
1

αn
λ
(n−γ−(n−1)α)/α
∗ (ψ(t)− ψ(a))n−γ

}
× exp(λ

1/α
∗ (ψ(t)− ψ(a)))

− 1

(n− 1)!

p∑
k=1

∏n−2
j=0 (−k − j)

Γ(γ − αk)λk+n−1∗ (ψ(t)− ψ(a))αk

+O(|λ∗|−n−p(ψ(t)− ψ(a))−pα−α).

For large t, we obtain

(ψ(t)− ψ(a))γ−1

(n− 1)!

(
d

dλi

)n−1
Eα,γ(λi(ψ(t)− ψ(a))α)

≥ 1

(n− 1)!

{∣∣∣∣ 1

αn
λ
(n−γ−(n−1)α)/α
∗ (ψ(t)− ψ(a))n−1

∣∣∣∣
−

∣∣∣∣∣
∏n−2
j=0 (1− γ − jα)

αn
λ
(1−γ−(n−1)α)/α
∗

∣∣∣∣∣
− · · · −

∣∣∣∣(n− 1)n− (n− 1)γ − (n− 1)(n− 2)α

2αn

∣∣∣∣
×
∣∣∣λ(n−1−γ−(n−1)α)/α∗ (ψ(t)− ψ(a))n−2

∣∣∣}
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× exp

(
|λ∗|1/α cos

(
arg(λ∗)

α

)
(ψ(t)− ψ(a))

)

− 1

(n− 1)!

p∑
k=1

∣∣∣∏n−1
j=0 (−k − j)

∣∣∣
|Γ(γ − αk)| |λ∗|k+n (ψ(t)− ψ(a))αk−n+1

+O(|λ∗|−n−p(ψ(t)− ψ(a))−pα−α+γ−1)

→∞, as t→∞.

Since | arg(λ∗)| < απ
2 , the zero solution of the homogeneous system is unstable.

�

Theorem 4.7. If A has zero eigenvalue, then the zero solution of the homo-
geneous system (3.2) is unstable.

Proof. We have(
d

dλ

)n−1
Eα,γ(λ(ψ(t)− ψ(a))α) =

∞∑
k=0

(k + n− 1)!λk(ψ(t)− ψ(a))α(k+n−1)

k!Γ(αk + α(n− 1) + γ)
.

And for λ = 0, we have(
d

dλ

)n−1
Eα,γ(λ(ψ(t)− ψ(a))α) =

(n− 1)!(ψ(t)− ψ(a))α(n−1)

Γ(α(n− 1) + γ)
.

Multiply (ψ(t)−ψ(a))γ−1

(n−1)! on above equality, we obtain

y(t) =
(ψ(t)− ψ(a))γ−1

(n− 1)!

(
d

dλ

)n−1
Eα,γ(λ(ψ(t)− ψ(a))α)

=
(ψ(t)− ψ(a))α(n−1)+γ−1

Γ(α(n− 1) + γ)
.

For n ≥ 1, it is obvious that

lim
t→∞
‖y(t)‖ = lim

t→∞

(ψ(t)− ψ(a))α(n−1)+γ−1

Γ(α(n− 1) + γ)
=∞.

Hence, the system is unstable. �

Theorem 4.8. If lim
t→∞

ψ(t) =∞ and A has all eigenvlues satisfy | arg(λi)| ≥
απ
2 , i = 1, 2, ..., n which critical eigenvalues λc satisfy | arg(λc)| = απ

2 have
the same algebraic and geometric multiplicities, then the homogeneous system
(3.2) is stable.
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Proof. From Lemma 4.2, we have

Eα,γ(λc(ψ(t)− ψ(a))α)

=
(λc(ψ(t)− ψ(a))α)(1−γ)/α

α
exp(λc(ψ(t)− ψ(a))α)

1
α )

−
p∑

k=1

(λc(ψ(t)− ψ(a))α)−k

Γ(γ − kα)
+O((|λc(ψ(t)− ψ(a))α)|−1−p).

We set λc = rei
απ
2 where r is the modulus of λc, we obtain

(ψ(t)− ψ(a))γ−1Eα,γ(λc(ψ(t)− ψ(a))α)

=
r(1−γ)/α

α
exp

(
ln
(
i exp

(
−iγπ

2

))
+ ir1/α(ψ(t)− ψ(a))

)
−

p∑
k=1

r−k(ψ(t)− ψ(a))γ−αk−1 exp
(
−iαkπ2

)
Γ(γ − αk)

+O((ψ(t)− ψ(a))γ−αp−α−1).

Obviously,

lim
t→∞
‖y(t)‖ =

r(1−γ)/α

α
,

hence the system is stable but not asymptotically stable. �

4.2. Stability of fractional order nonhomogeneous and nonautonomous
differential systems. Next, we move forward to stability of nonhomogeneous
ψ-Hilfer fractional differential system. By setting

Ω(t) := C(ψ(t)− ψ(a))γ−1Eα,γ(λi(ψ(t)− ψ(a))α),

we get from (3.1) that

y(t) = Ω(t) +

∫ t

a
(ψ(t)− ψ(s))α−1Eα,α(A(ψ(t)− ψ(s))α)B(s)ψ′(s)ds.

Theorem 4.9. Suppose that all conditions in Theorem 4.3 hold and ‖B(t)‖ ≤
MB for some MB > 0. Then the solution of the system (1.2) converges to 0
as t→∞.
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Proof. From Theorem 3.1 and (4.2), the solution to nonhomogeneous system
leads to

‖y(t)‖ ≤ ‖Ω(t)‖+
∫ t

a
‖(ψ(t)− ψ(s))α−1Eα,α(λi(ψ(t)− ψ(s))α)‖‖B(s)‖ψ′(s)ds

≤ ‖Ω(t)‖+MB

∫ t

a
‖(ψ(t)− ψ(s))α−1Eα,α(λi(ψ(t)− ψ(s))α)‖ψ′(s)ds

≤ ‖Ω(t)‖+MB

(
p∑

k=2

|λi|−k(ψ(t)− ψ(a))−kα+α

Γ(α− kα+ 1)

+O

(
1

|λi|p+1(ψ(t)− ψ(a))pα

))
→ 0, t→∞.

The proof is completed. �

From Theorem 4.9, we only obtain global behavior of solution. Lastly, we
consider stability of following nonautonomous system

aD
α,β
ψ y(t) = Ay(t) +B(t)y(t), t > a,

aI
(1−β)(1−α)
ψ y(a) = C,

(4.3)

where B(t) : [a,∞)→ Rn×n is continuous matrix.

Theorem 4.10. Suppose ψ is a strictly increase function on [a,∞), ‖B(t)‖ ≤
MB for some MB > 0, ‖Eα,α(λi(ψ(t)−ψ(s))α)‖ ≤ME(t) and all λ, α satisfied
| arg(λi)| > απ

2 . Then the solution of system (4.3) is asymptotically stable.

Proof. From Lemma 2.10 and Theorem 3.1, we get

‖y(t)‖ ≤ ‖Ω(t)‖+

∫ t

a
‖(ψ(t)− ψ(s))α−1Eα,α(λi(ψ(t)− ψ(s))α)‖

× ‖B(s)‖‖y(s)‖ψ′(s)ds

≤ ‖Ω(t)‖+MBME(t)

∫ t

a
‖(ψ(t)− ψ(s))α−1‖‖y(s)‖ψ′(s)ds

≤ ‖Ω(t)‖Eα(MBME(t)Γ(α)(ψ(t)− ψ(τ))α), τ ∈ [a, t].

Further ‖Ω(t)‖ → 0 as t→∞, we have

lim
t→∞
‖y(t)‖ = 0,

which gives the assertion of the theorem. �

Theorem 4.11. Suppose ψ is a strictly increase function on [a,∞) and all
eigenvlues satisfy | arg(λi)| ≥ απ

2 which critical eigenvalues λc satisfy | arg(λc)| =
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απ
2 with the same algebraic and geometric multiplicities. If

∫∞
0 ‖B(t)‖ψ′(t)dt

is bounded, then the solution of system (4.3) is stable.

Proof. From Theorem 4.8 there exists a positive numberMΩ such that ‖Ω(t)‖ ≤
MΩ. Also, for β = 0 there exists a positive number NΩ such that

‖(ψ(t)− ψ(a))α−1Eα,α(A(ψ(t)− ψ(a))α)‖ ≤ NΩ.

Applying the Gronwall’s inequality in Lemma 2.9, we have

‖y(t)‖ ≤MΩ +

∫ t

a
NΩ‖B(s)‖‖y(s)‖ψ′(s)ds

≤MΩ exp

(
NΩ

∫ t

a
‖B(s)‖ψ′(s)ds

)
.

This completes the proof. �

5. Examples

To demonstrate our main results, this section provides examples and numer-
ical illustration for the stability of solutions to ψ-Hilfer differential systems.
By choosing various parameters α, β and ψ(t), we compare the solutions when
the fractional derivative reduces to ordinary derivative, ψ-Riemann-Liouville
derivative, ψ-Caputo derivative and ψ-Hilfer derivative.

Example 5.1. Let ψ(t) =
√
t. Consider the system

0D
α,β
ψ(t)w(t)

0D
α,β
ψ(t)x(t)

0D
α,β
ψ(t)y(t)

0D
α,β
ψ(t)z(t)

 = A


w(t)
x(t)
y(t)
z(t)

 ,

w(0)
x(0)
y(0)
z(0)

 =


1
2
3
4

 ,
where

A =


−5 1 0 0
4 −2 0 0
0 0 −3 −9
0 0 −4 −3

 .
Then the eigenvalues of matrix A are

{λ1, λ2, λ3, λ4} = {−1,−6,−3− 6i,−3 + 6i}

with the corresponding eigenvectors, V1 = (14 , 1, 0, 0)T , V2 = (−1, 1, 0, 0)T , V3 =

(0, 0, 3i2 , 1)T and V4 = (0, 0, −3i2 , 1)T . Therefore, the solution of the system (3.2)
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where γi = αi + β − αiβ for i = 1, 2, 3, 4 is

U(t) = (
√
t)γ−1

C1


1
4
1
0
0

Eα,γ(−(
√
t)α) + C2


−1
1
0
0

Eα,γ(−6(
√
t)α)

+C3


0
0
3i
2
1

Eα,γ((−3−6i)(
√
t)α)+C4


0
0
−3i
2
1

Eα,γ((−3+6i)(
√
t)α)

 .

0 1 2 3 4 5 6 7 8 9 10

time(t)

-2

-1

0

1

2

3

4

5

U
(t

)

(t) = t,  = 1,  = 0

w(t)

x(t)

y(t)

z(t)

Figure 1. Solutions to ordinary differential system
(ψ(t) = t, α = 1, β = 0)

Unlike fractional differential systems, the complex eigenvalues with negative
real part motivate small exquisite oscillation of solution to ordinary differential
system (when α = 1, β = 0 and ψ(t) = t) shown in Figure 1. From Figure 2
we can see that all the zero solutions of the differential system (3.2) are stable
since stability condition in Theorem 4.3 is satisfied. The picture demonstrates
that the stability of solution to fractional differential systems are more slick
than the solution of the ordinary one. Furthermore, we can see that the
solution to ψ-Riemann-Liouville fractional differential system (Figure 2(A))
converges rapidly to zero whereas solution to ψ-Caputo fractional differential
system (Figure 2(B)) converges to zero with the gradual rate and solution to
ψ-Hilfer differential system interpolates between the solutions to the systems
mentioned above shown in Figure 2(C).
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(a) ψ-Riemann-Liouville system (ψ(t) =
√
t, α = 0.7, β = 0)
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(b) ψ-Caputo system (ψ(t) =
√
t, α = 0.7, β = 1)
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(c) ψ-Hilfer system (ψ(t) =
√
t, α = 0.7, β = 0.7)

Figure 2. Solutions to fractional differential systems with
ψ(t) =

√
t
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Example 5.2. Let ψ(t) = t2. Consider the system


0D

α,β
ψ(t)w(t)

0D
α,β
ψ(t)x(t)

0D
α,β
ψ(t)y(t)

0D
α,β
ψ(t)z(t)

 = A


w(t)
x(t)
y(t)
z(t)

 ,

w(0)
x(0)
y(0)
z(0)

 =


1
2
3
4



where

A =


−2 −5 0 0
1 2 0 0
0 0 −2 −5
0 0 1 2

 .
Then the eigenvalues of matrix A are

{λ1, λ2, λ3, λ4} = {i, i,−i,−i}

with the corresponding eigenvectors V1 = (−2 + i, 1, 0, 0)T , V2 = (0, 0,−2 +
i, 1)T , V3 = (−2− i, 1, 0, 0)T and V4 = (0, 0,−2− i, 1)T .
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Figure 3. Solutions to ordinary differential system
(ψ(t) = t, α = 1, β = 0)
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(a) ψ-Riemann-Liouville system (ψ(t) = t2, α = 0.7, β = 0)

0 1 2 3 4 5 6 7 8 9 10

time(t)

-20

-15

-10

-5

0

5

10

U
(t

)

(t) = t
2
,  = 0.7,  = 1

w(t)

x(t)

y(t)

z(t)

(b) ψ-Caputo system (ψ(t) = t2, α = 0.7, β = 1)
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(c) ψ-Hilfer system (ψ(t) = t2, α = 0.7, β = 0.7)

Figure 4. Solutions to fractional differential systems with ψ(t) = t2
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Therefore, the solution of the system (3.2) where γi = αi + β − αiβ for
i = 1, 2, 3, 4 is

U(t) = t2γ−2

C1


−2 + i

1
0
0

Eα,γ(it2α) + C2


0
0

−2 + i
1

Eα,γ(it2α)

+C3


−2− i

1
0
0

Eα,γ(−it2α) + C4


0
0

−2− i
1

Eα,γ(−it2α)

 .

The complex eigenvalues with zero real part conduct solution to ordinary
differential equation (when α = 1, β = 0 and ψ(t) = t) to be periodic as shown
in Figure 3. In contrast, the solutions to fractional differential equation are
stable as the result of α establish wider argument range of eigenvalues that
satisfied the condition of stability theory in Theorem 4.3. Similar to Figure 2,
solution to ψ-Riemann-Liouville fractional differential system (Figure 4(A))
is fleetly stable whereas solution to ψ-Caputo fractional differential system
(Figure 4(B)) is stable with the slower rate and solution to ψ-Hilfer differential
system interpolates between the solutions to the systems mentioned above as
shown in Figure 4(C).

6. Conclusion

We obtained the fundamental solution to ψ-Hilfer fractional linear differen-
tial systems, solution of nonhomogeneous and nonautonomous systems. The
stabilities of homogeneous, nonhomogeneous and nonautonomous systems in-
volving ψ-Hilfer fractional derivative with order 0 < α < 1 are studied in this
paper. The given examples illustrate that parameters β motive solution to
ψ-Hilfer differential system to interpose between differential system ψ-Caputo
derivative and ψ-Riemann-Liouville derivative.

Acknowledgments: The authors would like to thank referees for useful com-
ments and feedback.
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