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Abstract. In this paper, we introduce several types α-ψ interpolative proximal contractions

and provide some sufficient conditions to prove the existence of best proximity points for

these contractions in metric spaces. In the case of proximal contraction of the first kind,

these metric spaces are not necessarily complete. Meanwhile, some new results can derive

from our results. Finally, some examples are provided to show the validity of our results.

1. Introduction and Preliminaries

Fixed point theory is one of the important branches of nonlinear analysis.
Indeed, we find that many mathematics questions can be transformed into
the problem of finding fixed points of mappings. In order to obtain the fixed
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points of certain given mapping, we must utilize some suitable conditions.
However, when a non-self mapping in a metric space has no fixed points,
then it could be interesting to study the existence and uniqueness of some
points that minimize the distance between the point and its corresponding
image. These points are known as best proximity points. The best proximity
points were introduced by Fan [8] and modified by Basha in [4]. Many authors
obtained some recent best proximity points and fixed point results, refer to
[1, 2, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24].

For the sake of completeness, we collect some notations and notions related
to the best proximity point theory, which will be used throughout the rest of
this work.

Let A and B be two nonempty subsets of a metric space (X, d). We will
use the following notations:

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B};
A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B};
B0 = {y ∈ B : d(x, y) = d(A,B), for some x ∈ A}.

Definition 1.1. Let T : A → B be a given non-self mapping. If there exists
an element x∗ such that d(x∗, Tx∗) = d(A,B), then T has a best proximity
point x∗.

Remark 1.2. Note that if non-self mapping reduces to self mapping in Def-
inition 1.1, that is, A = B. In this case, if there exists an element x∗ such
that d(x∗, Tx∗) = d(A,B) = 0, then the best proximity point of T becomes
the fixed point of T .

In 1922, Since Banach [3] introduced the famous Banach contraction prin-
ciple, many authors have made generalization and improvement based on it.
Hence, a lot of interesting results are obtained. These results including the
relaxation of contraction inequalities, all kinds of new contraction conditions,
the generalization of metric spaces. As a pioneering work of fixed point theory,
Banach contraction principle is of great significance, and its specific results are
as follows.

Theorem 1.3. ([3]) Let (X, d) be a complete metric space and T : X → X be
a Banach contraction, that is,

d(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X, where k ∈ (0, 1). Then T has a unique fixed point.

In 2010, as an extension of Banach contraction, the case of Banach contrac-
tion under non-self mapping was proposed by Basha [5].
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Definition 1.4. ([5]) Let (X, d) be a metric space and A,B be two nonempty
subsets of X. T : A → B is said to be a proximal contraction, if there exists
k ∈ (0, 1) such that

d(x1, T y1) = d(A,B)
d(x2, T y2) = d(A,B)

}
⇒ d(x1, x2) ≤ kd(y1, y2), (1.1)

for all x1, x2, y1, y2 ∈ A.

Remark 1.5. It is easy to observe that a proximal contraction mapping is
exactly a contraction mapping when a non-self mapping reduces to a self map-
ping. However, a non-self mapping that proximal contraction need not be a
contraction. More importantly, a non-self proximal contraction mapping is
not necessarily continuous.

Example 1.6. ([5]) Let A = [0, 1], B = [2, 3] and d = |x − y|. Define a
mapping T by

T (x) =

{
3− x, if x is rational,

2 + x, otherwise.

Then T is a proximal contraction, but T is not continuous except at x = 1
2 .

Definition 1.7. ([5]) LetA,B be two nonempty subsets ofX. If each sequence
{yn} in B satisfies that d(x, yn) → d(x,B) for some x ∈ A, there exists a
subsequence {ynk

} of {yn} such that ynk
→ y ∈ B, then we say that B is

approximately compact with respect to A.

It is obvious that every compact subset of X is approximately compact with
respect to any subsets. In addition, each compact subset of X is approximately
compact with respect to itself.

The next result is a fundamental theorem of the best proximity point theory.

Theorem 1.8. ([5]) Let (X, d) be a complete metric space. Suppose that
A, B are two nonempty closed subsets of X such that B is approximately
compact with respect to A. Moreover, Assume that A0 and B0 are nonempty,
T : A → B is a proximal contraction such that T (A0) ⊂ B0. Then T has a
unique best proximity point in A.

On the other hand, we know that a mapping satisfying Banach contraction
inequality must be continuous. In 1968, Kannan [11] presented a famous
contraction and a key metric fixed point theorem, which is different from the
Banach contraction principle, named Kannan fixed point theorem. This kind
of contractions give a positive answers to the open question: whether there
exist discontinuous mappings at fixed points satisfying certain contraction
conditions in complete metric spaces.



536 J. Deng, X.L. Liu, Y. Sun and L. Rathour

Theorem 1.9. ([11]) Let (X, d) be a complete metric space and T : X → X
be a Kannan contraction mapping, that is, for all x, y ∈ X, the following
inequality holds:

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)],

where k ∈ [0, 12). Then T has a unique fixed point.

Inspired by Kannan’s contraction and proximal contraction, Basha [6] con-
sidered the following proximal contraction.

Definition 1.10. ([6]) Let (X, d) be a metric space and A,B be two non-
empty subsets of X. A mapping T : A → B is said to be a K-proximal
contraction, if there exists some k ∈ (0, 12) such that

d(x1, T y1) = d(A,B)
d(x2, T y2) = d(A,B)

}
⇒ d(x1, x2) ≤ k[d(x1, y1) + d(x2, y2)], (1.2)

for all x1, x2, y1, y2 ∈ A.

In the same year, Karapınar [12] revisited Kannan contraction and intro-
duced a kind of interesting contraction by the interpolative method. A self
mapping T : X → X defined on a metric space (X, d) is said to be an inter-
polative Kannan contraction, if the following inequality holds:

d(Tx, Ty) ≤ k[d(x, Tx)]τ [d(y, dy)]1−τ ,

for all x, y ∈ {z ∈ X : d(z, Tz) > 0}, where k ∈ [0, 1), τ ∈ (0, 1). The main
result in [12] is given below:

Theorem 1.11. ([12]) Let (X, d) be a complete metric space. If T : X → X
is an interpolative Kannan contraction, then T has a fixed point in X.

In 2012, Samet et al. [21] presented α-ψ contraction mapping by α-admissible
mapping.

Definition 1.12. ([21]) Let T : X → X be a mapping and α : X ×X → R+

be a function. Then T is said to be α-admissible if

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1, for all x, y ∈ X.
In 2013, based on α-admissible, Jleli et al. [9] proposed the notion of α-

proximal contraction and got some best proximity results of α-ψ proximal
contraction.

Definition 1.13. ([9]) Let T : A → B be a non-self mapping. Define a
function α : A×A→ [0,∞). We say that T is α-proximal admissible, if

α(x1, x2) ≥ 1
d(y1, Tx1) = d(A,B)
d(y2, Tx2) = d(A,B)

⇒ α(y1, y2) ≥ 1, (1.3)

for all x1, x2, y1, y2 ∈ A.
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Note that if A = B, then T is α-proximal admissible implies that T is
α-admissible.

Let Ψ represents all non-decreasing functions and Σ∞n=1ψ
n(t) < 0 for all

t > 0, where ψn is the n-th iteration of ψ. If ψ ∈ Ψ, then ψ(t) < t, for all
t > 0.

Definition 1.14. ([9]) Let T : A→ B be a mapping and α : A×A→ [0,∞)
be a function and ψ ∈ Ψ. We say that T is an α-ψ-proximal contraction
mapping, if the following inequality holds:

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)),∀x, y ∈ A.

To introduce the Theorem 1.16, we recall the notion of the P -property.

Definition 1.15. ([22]) Let A,B be two nonempty subsets of a metric space
(X, d). Then (A,B) is said to be have the P -property if and only of

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}
⇒ d(x1, x2) = d(y1, y2), (1.4)

where x1, x2 ∈ A0, y1, y2 ∈ B0.

Theorem 1.16. ([9]) Let (X, d) be a complete metric space and A,B be two
nonempty closed subsets of X such that A0 is nonempty. Define a non-self
mapping T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and (A,B) has the P -property;
(ii) T is α-proximal admissible;

(iii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(iv) T is a continuous α-ψ-proximal contraction,

then T has a best proximity point in A0.

Recently, Sahin et al. [20] introduced the notions of T -best orbitally com-
plete and best orbitally continuous in the best proximity point theory.

Definition 1.17. ([20]) Let (X, d) be a metric space, A,B be nonempty sub-
sets of X, T : A → B be a mapping and x ∈ A. Then, the set of iterative
sequences

OT (x) = {{xn} ⊆ A : x0 = x, d(xn+1, Txn) = d(A,B), for all n ∈ N}
is called the orbit of x.

Note that, when A = B = X, we have

OT (x) = {Tnx}.
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Definition 1.18. ([20]) Let (X, d) be a metric space, A,B be nonempty sub-
sets of X, T : A → B be a mapping. Then T is said to be best orbitally
continuous at a point x∗ in A, if for each x ∈ A and {xn} ⊂ OT (x) the
implication

xni → x∗ implies that Txni → Tx∗, i→ +∞.
holds for any subsequence {xni} of {xn}. If the mapping T is best orbitally
continuous at each point in A, then the mapping T is said to be best orbitally
continuous on A.

Remark 1.19. Take A = B = X in Definition 1.18. Then the best orbitally
continuity of the mapping T becomes the orbitally continuity of T in the sense
of Ćirić.

Definition 1.20. ([20]) Let (X, d) be a metric space, A,B be nonempty sub-
sets of X. Suppose that T : A → B and g : A → R are two mappings. If for
each x ∈ A and {xn} ⊂ OT (x),

xni → x∗ implies that g(x∗) ≤ lim inf
i→+∞

g(xni),

holds for any subsequence {xni} of {xn}, then f is said to be best orbitally
lower semi-continuous at x∗ in A. If the mapping g is best orbitally lower
semi-continuous at each point in A, then it is said to be best orbitally lower
semi-continuous on A.

It easily follows that if we take A = B = X in the above definition, then
the best orbitally lower semi-continuity of g becomes the orbitally lower semi-
continuity of g.

Definition 1.21. ([20]) Let (X, d) be a metric space, A,B be nonempty sub-
sets of X and T : A→ B be a mapping. The set A is said to be T -best orbitally
complete, if for all x ∈ A and {xn} in OT (x), every Cauchy subsequence {xni}
of {xn} converges to a point in A0.

Lemma 1.22. ([20]) Let (X, d) be a metric space, A,B be two nonempty
subsets of X. Suppose that T : A→ B is a given mapping. If T is best orbitally
lower semi-continuous on A, then g : A → R defined as g(x) = d(x, Tx) is
best orbitally lower semi-continuous on A.

Inspired by the results of Altun et al. [1], Sahin et al. [20] Karapınar [12]
and Jleli [9], we introduce several type of interpolative proximal contractions
and provide some sufficient conditions to prove the existence of best proximity
points for these contractions in a metric space. Moreover, some interesting
results can be deduced from our main results. Finally, some examples are
given to show the validity of our results.
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2. Main results

In this section, by combining these known contraction mappings, we firstly
present some new type of contraction non-self mappings. We begin with the
following definitions, that are crucial to introduce our main results.

Definition 2.1. Let (X, d) be a metric space and A,B be two nonempty
subsets of X, T : A→ B be a mapping. If there exist τ1, τ2 ∈ [0, 1) such that
the following inequality holds:

α(x1, x2)d(x1, x2) ≤ ψ([d(y1, y2)]
τ1 [d(y1, x1)]

τ2 [d(y2, x2)]
1−τ1−τ2), (2.1)

for all x1, x2, y1, y2 ∈ A with xi 6= yi for i = 1, 2 satisfying the condition

d(x1, Ty1) = d(x2, Ty2) = d(A,B),

then we say that T is an α-ψ interpolative Reich-Rus-Ćirić type proximal
contraction of the first kind.

Definition 2.2. Let (X, d) be a metric space and A,B be two nonempty
subsets of X, T : A → B be a mapping. If there exists τ1 ∈ [0, 1) such that
the following inequality holds:

α(x1, x2)d(x1, x2) ≤ ψ([d(x1, y1)]
τ1 [d(x2, y2)]

1−τ1), (2.2)

for all x1, x2, y1, y2 ∈ A with xi 6= yi for i = 1, 2 satisfying the condition

d(x1, T y1) = d(x2, Ty2) = d(A,B),

then we say that T is an α-ψ interpolative Kannan type proximal contraction
of the first kind.

Definition 2.3. Let (X, d) be a metric space and A,B be two nonempty
subsets of X, T : A→ B be a mapping. If there exist τ1, τ2 ∈ [0, 1) such that
the following inequality holds:

α(x1, x2)d(Tx1, Tx2) ≤ ψ([d(Ty1, Ty2)]
τ1 [d(Ty1, Tx1)]

τ2 [d(Ty2, Tx2)]
1−τ1−τ2),

(2.3)
for all x1, x2, y1, y2 ∈ A with Txi 6= Tyi for i = 1, 2 satisfying the condition

d(x1, Ty1) = d(x2, Ty2) = d(A,B),

then we say that T is an α-ψ interpolative Reich-Rus-Ćirić type proximal
contraction of the second kind.

Definition 2.4. Let (X, d) be a metric space and A,B be two nonempty
subsets of X, T : A → B be a mapping. If there exists τ1 ∈ [0, 1) such that
the following inequality holds:

α(x1, x2)d(Tx1, Tx2) ≤ ψ([d(Tx1, T y1)]
τ1 [d(Tx2, T y2)]

1−τ1), (2.4)



540 J. Deng, X.L. Liu, Y. Sun and L. Rathour

for all x1, x2, y1, y2 ∈ A with Txi 6= yi for i = 1, 2 satisfying the condition

d(x1, T y1) = d(x2, Ty2) = d(A,B),

then we say that T is an α-ψ interpolative Kannan type proximal contraction
of the second kind.

The following theorem is one of our main results.

Theorem 2.5. Let (X, d) be a metric space and A,B be the nonempty subsets
of X such that B is approximately compact with respect to A. Define a mapping
T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and T is α-proximal admissible;
(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-ψ interpolative Reich-Rus-Ćirić type proximal contraction
of the first kind;

(iv) A is T -best orbitally complete and g(x) = d(x, Tx) is best orbitally
lower semi-continuous on A,

then T has a best proximity point in A0.

Proof. From (ii), there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1. (2.5)

Consider Tx1 ∈ T (A0) ⊂ B0, so there exists x2 ∈ A0 such that

d(x2, Tx1) = d(A,B). (2.6)

Take (2.5) and (2.6) into account, since T is an α-proximal admissible, we can
get

α(x1, x2) ≥ 1.

Using T (A0) ⊂ B0 again, clearly Tx2 ∈ T (A0) ⊂ B0 still holds. Since T is
α-proximal admissible, we have

d(x3, Tx2) = d(A,B) and α(x2, x3) ≥ 1.

Continuing this process, we can produce a sequence {xn} ⊂ A0 such that

d(xn+1, Txn) = d(A,B) and α(xn, xn+1) ≥ 1, for all n ∈ N. (2.7)

Now, if xn+1 = xn for some n ∈ N, then from (2.7), we have d(xn, Txn) =
d(A,B), that is, xn is a best proximity point of T , the proof is completed.
Therefore, suppose that xn+1 6= xn for all n ∈ N, that is,, d(xn, xn+1) > 0 for
all n ∈ N. By the construction of sequence {xn}, we known that

d(xn, Txn−1) = d(A,B)
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and

d(xn+1, Txn) = d(A,B),

for all n ≥ 1. Since T is an α-ψ interpolative Reich-Rus-Ćirić type contraction
of the first kind, we apply x1 = xn, x2 = xn+1, y1 = xn−1 and y2 = xn to
(2.1), by (2.7), we get

d(xn, xn+1) ≤ α(xn, xn+1)d(xn, xn+1)

≤ ψ([d(xn−1, xn)]τ1 [d(xn−1, xn)]τ2 [d(xn, xn+1)]
1−τ1−τ2)

= ψ([d(xn−1, xn)]τ1+τ2 [d(xn, xn+1)]
1−τ1−τ2). (2.8)

Suppose that, for some n ∈ N, d(xn, xn+1) ≥ d(xn−1, xn). In this case, (2.8)
is equal to

d(xn, xn+1) ≤ ψ([d(xn−1, xn)]τ1+τ2 [d(xn, xn+1)]
1−τ1−τ2)

≤ ψ([d(xn, xn+1)]
τ1+τ2 [d(xn, xn+1)]

1−τ1−τ2)

= ψ(d(xn, xn+1))

< d(xn, xn+1),

which is a contradiction. So it must be d(xn, xn+1) < d(xn−1, xn) for all n ∈ N.
The fact that (2.8) can be rewritten as

d(xn, xn+1) ≤ ψ([d(xn−1, xn)]τ1+τ2 [d(xn, xn+1)]
1−τ1−τ2)

≤ ψ([d(xn−1, xn)]τ1+τ2 [d(xn−1, xn)]1−τ1−τ2)

= ψ(d(xn−1, xn)) (2.9)

< d(xn−1, xn).

This implies that the sequence {d(xn, xn+1)} is a strictly decreasing. So there
exists ξ ≥ 0 such that lim

n→+∞
d(xn, xn+1) = ξ. From (2.9), we have

d(xn, xn+1) ≤ ψ(d(xn−1, xn))

≤ ψ2(d(xn−2, xn−1))

...

≤ ψn(d(x0, x1)). (2.10)

Take limit on the two sides of (2.10), by the property of ψ, we get

lim
n→+∞

d(xn, xn+1) = 0. (2.11)

Now, for all m,n ∈ N with n < m, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm).
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Letting n → +∞, then by (2.11), we can get that lim
n→∞

d(xn, xm) = 0. It

means that {xn} is a Cauchy sequence in A. Since A is a T -best orbitally
complete, there exists x∗ ∈ A such xn → x∗ as n→ +∞. On the other hand,
by the definition of sequence {xn}, we know that d(xn+1, Txn) = d(A,B), for
all n ∈ N. Therefore, we have

d(x∗, B) ≤ d(x∗, Txn)

≤ d(x∗, xn+1) + d(xn+1, Txn)

= d(x∗, xn+1) + d(A,B)

≤ d(x∗, xn+1) + d(x∗, B).

Hence, d(x∗, Txn)→ d(x∗, B) as n→ +∞. Since B is approximately compact
with respect to A, there exists a subsequence {Txnk

} of {Txn} such that
Txnk

→ y∗ as k → +∞, for some y∗ ∈ B. According to d(xn+1, Txn) =
d(A,B), we can get

d(x∗, y∗) = d(A,B).

Finally, from (iv), we know that g(x) = d(x, Tx) is best orbitally lower semi-
continuous on A, so

d(A,B) ≤ d(x∗, Tx∗)

= g(x∗)

≤ lim inf
k→+∞

g(xnk
)

= lim inf
k→+∞

d(xnk
, Txnk

)

= d(x∗, y∗)

= d(A,B).

Hence, we obtain that d(x∗, Tx∗) = d(A,B), so T has a best proximity point
in A0. �

If the best orbitally continuity of T instead of best orbitally lower semi-
continuity of g, then we can remove the approximately compactness of B.
Hence, we give the following result.

Theorem 2.6. Let (X, d) be a metric space and A,B be the nonempty subsets
of X. Define a mapping T : A→ B. If the following conditions hold:

(i) T (A0) ⊆ B0 and T is α-proximal admissible;
(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-ψ interpolative Reich-Rus-Ćirić type proximal contraction
of the first kind;
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(iv) A is T -best orbitally complete and T is best orbitally continuous on A,

then T has a best proximity point in A0.

Proof. Let x0 ∈ A0, according to the proof of Theorem 2.5, we can get the
same sequence {xn} in OT (x0), Meanwhile, {xn} is also a Cauchy sequence
in A. Since A is T -best orbitally complete, there exists x∗ ∈ A0 such that
xn → x∗ as n → +∞. By the best orbitally continuity of T , when n → +∞,
we have Txn → Tx. So we get

d(x∗, Tx∗) = lim
n→+∞

d(xn+1, Txn) = d(A,B).

Hence, T has a best proximity point in A. �

Next, we give the case of the Kannan type contraction of the first kind.

Theorem 2.7. Let (X, d) be a metric space and A,B be nonempty subsets of
X such that B is approximate compact with respect to A. Define a mapping
T : A→ B. If the following conditions hold:

(i) T (A0) ⊆ B0 and T is α-proximal admissible;
(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-ψ interpolative Kannan type proximal contraction of the first
kind;

(iv) A is T -best orbitally complete and g(x) = d(x, Tx) is best orbitally
lower semi-continuous on A,

then T has a best proximity point in A.

Proof. Similar to the proof of Theorem 2.5, we can get the similar sequence
{xn} in A0, for all n ≥ 1, we obtain α(xn, xn+1) ≥ 1,

d(xn, Txn−1) = d(A,B)

and

d(xn+1, Txn) = d(A,B).

Since T an α-ψ interpolative Kannan type proximal contraction of the first
kind, by (2.2), we have

d(xn, xn+1) ≤ α(xn, xn+1)d(xn, xn+1)

≤ ψ([d(xn, xn−1)]
τ1 [d(xn+1, xn)]1−τ2). (2.12)
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Suppose that there exists some n ∈ N such that d(xn, xn+1) ≥ d(xn−1, xn).
In this case, (2.12) is equal to

d(xn, xn+1) ≤ ψ([d(xn, xn−1)]
τ1 [d(xn+1, xn)]1−τ1)

= ψ([d(xn−1, xn)]τ1 [d(xn, xn+1)]
1−τ1)

≤ ψ(d(xn, xn+1))

< d(xn, xn+1),

which is a contradiction. So d(xn, xn+1) < d(xn−1, xn), for all n ≥ 1. Then
(2.12) can be rewritten as

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) < d(xn−1, xn). (2.13)

Hence, {d(xn, xn+1)} is a strictly decreasing positive sequence. So there exists
η ≥ 0 such that lim

n→+∞
d(xn, xn+1) = η. by (2.13), we obtain

d(xn, xn+1) ≤ ψ(d(xn−1, xn))

≤ ψ2(d(xn−2, xn−1))

...

≤ ψn(d(x0, x1)). (2.14)

Take limit on the two sides of (2.14), by the property of ψ, when n → +∞,
we get

lim
n→+∞

d(xn, xn+1) = 0. (2.15)

Now, for ∀m,n ∈ N with n < m, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm).

Let n→ +∞, then by (2.15), we can deduce that d(xn, xm)→ 0, that is, {xn}
is a Cauchy sequence in A. Following the similar proof of Theorem 2.5, we can
also prove that d(x∗, Tx∗) = d(A,B), that is, T has a best proximity point in
A. �

In the case of Kannan type, the following result also holds naturally. We
can also use the best orbitally continuity of T to replace the best orbitally
semi-continuity of g, thus eliminate the approximate compactness of B.

Theorem 2.8. Let (X, d) be a metric space and A,B be nonempty subsets of
X. Define a mapping T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and T is α-proximal admissible;
(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;
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(iii) T is an α-ψ interpolative Kannan type proximal contraction of the first
kind;

(iv) A is T -best orbitally complete and T is best orbitally continuous on A,

then T has a best proximity point in A.

Next, we discuss the cases of proximal contractions of the second kind. For
the second kind of contractions, we remove the T -best orbitally completeness
of A and the best orbitally lower semi-continuity of g(x) = d(x, Tx), add the
continuity of T , the completeness of metric space. In this case, we get the
following results.

Theorem 2.9. Let (X, d) be a complete metric space and A,B be two nonempty
subsets of X with B is closed such that A is approximately compact with respect
to B. Define a mapping T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and T is α-proximal admissible;
(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is a continuous α-ψ interpolative Reich-Rus-Ćirić type proximal con-
traction of the second kind,

then T has a best proximity point in A.

Proof. As shown in Theorem 2.5, we can easily find a sequence {xn} ⊂ A0

such that, for all n ∈ N, α(xn, xn+1) ≥ 1 and

d(xn+1, Txn) = d(A,B). (2.16)

Now, we assume that xn+1 6= xn for all n ∈ N. Otherwise, the proof is

completed. Since T is an α-ψ interpolative Reich-Rus-Ćirić type proximal
contraction of the second kind, we have

d(Txn, Txn+1) ≤ α(xn, xn+1)d(Txn, Txn+1)

≤ ψ([d(Txn−1, Txn)]τ1[d(Txn−1, Txn)]τ2[d(Txn, Txn+1)]
1−τ1−τ2)

= ψ([d(Txn−1, Txn)]τ1+τ2 [d(Txn, Txn+1)]
1−τ1−τ2).

For all n ≥ 1, we have

d(Txn, Txn+1) ≥ d(Txn−1, Txn).

Hence, the above equation can be rewritten as

d(Txn, Txn+1) ≤ ψ([d(Txn, Txn+1)]) < [d(Txn, Txn+1)],
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which is a contradiction. So

d(Txn, Txn+1) ≤ ψ([d(Txn−1, Txn)])

≤ ψ2([d(Txn−2, Txn−1)])

...

≤ ψn([d(Tx0, Tx1)]).

Take limit on two sides of above inequality, when n → +∞, we can attain
d(Txn, Txn+1)→ 0.

Next, for all m,n ∈ N with n < m, by the triangle inequality of metric, we
have

d(Txn, Txm) ≤ d(Txn, Txn+1) + d(Txn+1, Txn+2) + · · ·+ d(Txm−1, Txm).

Take n→ +∞, m→ +∞, it easily follows that d(Txn, Txm)→ 0. So {Txn}
is a Cauchy sequence in B. Since (X, d) is a complete metric space and B is
a closed subset of X, there exists y∗ ∈ B such that Txn → y∗. Moreover, by
(2.16), we can get

d(y∗, A) ≤ d(y∗, xn+1)

≤ d(y∗, Txn) + d(Txn, xn+1)

= d(y∗, Txn) + d(A,B)

≤ d(y∗, Txn) + d(y∗, A).

Therefore, when n → +∞, there must be d(y∗, xn) → d(y∗, A). Since A is
approximately compact with respect to B, there exists a subsequence {xnk

}
of {xn} such that {xnk

} → z∗ ∈ A as k → +∞. Consider the continuity of T ,
by (2.16), we have

d(z∗, T z∗) = lim
k→+∞

d(xnk+1, Txnk
) = d(A,B).

Hence T has a best proximity point in A. �

Using the similar method of Theorem 2.9, in the case of Kannan type of
the second kind, we can also obtain the following theorem.

Theorem 2.10. Let (X, d) be a complete metric space. A,B are two nonempty
subsets of X with B is closed such that A is approximately compact with respect
to B. Define a mapping T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and T is α-proximal admissible;
(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is a continuous α-ψ interpolative Kannan type proximal contraction
of the second kind,



Some results of α-ψ interpolative proximal contractions 547

then T has a best proximity point in A.

According to the particularity of the α-admissible mapping and the diversity
of functions ψ. Take α(x, y) = 1, ψ(t) = kt with k ∈ (0, 1), then there are
some results can be derived directly from our main theorems.

Corollary 2.11. Let (X, d) be a metric space and A,B be two nonempty
subsets of X such that B is approximately compact with respect to A. Define
a mapping T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and A0 6= ∅;

(ii) T is an interpolative Reich-Rus-Ćirić type proximal contraction of the
first kind;

(iii) A is T -best orbitally complete and g(x) = d(x, Tx) is best orbitally
lower semi-continuous in A,

then T has a best proximity point in A.

Corollary 2.12. Let (X, d) be a metric space. A,B are two non-empty subsets
of X such that B is approximately compact with respect to A. Define a mapping
T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and A0 6= ∅;
(ii) T is an interpolative Kannan type proximal contraction of the first

kind;
(iii) A is T -best orbitally complete and g(x) = d(x, Tx) is best orbitally

lower semi-continuous in A,

then T has a best proximity point in A.

Remark 2.13. Take α(x, y) = 1, ψ(t) = kt with k ∈ (0, 1).

(1) We can easily show that Corollary 2.11 and Corollary 2.12 satisfy the
all conditions of Theorem 2.5 and Theorem 2.6, respectively;

(2) The condition (ii) can be omitted naturally, so we must require that
A0 6= ∅.

In the case of proximal contraction of the second kind, the following results
easily deduce from our main results.

Corollary 2.14. Let (X, d) be a complete metric space and A,B be two
nonempty subsets of X with B is closed such that A is approximately compact
with respect to B. Define a mapping T : A → B. If the following conditions
hold:

(i) T (A0) ⊂ B0 and A0 6= ∅;

(ii) T is a continuous interpolative Reich-Rus-Ćirić type proximal contrac-
tion of the second kind,
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then T has a best proximity point in A.

Corollary 2.15. Let (X, d) be a complete metric space. A,B are two non-
empty subsets of X with B is closed such that A is approximately compact with
respect to B. Define a mapping T : A→ B. If the following conditions hold:

(i) T (A0) ⊂ B0 and A0 6= ∅;
(ii) T is a continuous interpolative Kannan type proximal contraction of

the second kind,

then T has a best proximity point in A.

Now, in order to verify the validity of our theorems, we give the following
examples.

Example 2.16. Let X = [0, 3)2 and d be the Euclidean metric on R2. Set

A = {(u, v) : u2 + v2 = 4};

B = {(u, v) : u2 + v2 = 1}.
Then, clearly A0 = A, B0 = B and d(A,B) = 1. Define a mapping T : A→ B
by

Tx = T (u, v) =

 (
u

2
,
v

2
), u ≥ 0,

(−1, 0), u < 0.

Take α(x1, x2) = 1, ψ(t) = t
2 . Firstly, we prove that T is a α-ψ interpolative

Reich-Rus-Ćirić type proximal contraction mapping of the first kind. We
notice that if y = (w, z) ∈ A with w ≥ 0, x = (u, v) ∈ A with u ≥ 0, we can
get

d(x, Ty) = d((u, v), (
w

2
,
z

2
)) = 1 ⇒ T (u, v) = (

w

2
,
z

2
).

Therefore, (u, v) = (w, z), that is, x = y. Consider y1 = (w1, z1), y2 =
(w2, z2) ∈ A, where w1 < 0 and w2 < 0. Now, we have

d(x1, T y1) = d((u1, v1), (−1, 0)) = 1 = d(A,B),

d(x2, Ty2) = d((u2, v2), (−1, 0)) = 1 = d(A,B).

It implies that x1 = x2 = (−2, 0), so we have d(x1, x2) = 0. Therefore,

by (2.1), T is an α-ψ interpolative Reich-Rus-Ćirić type proximal contraction
mapping of the first kind. It is easy to verify that other conditions of Theorem
2.5 hold. Then T has a best proximity point in A0.
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Example 2.17. Let X = R2 and d be the Euclidean metric on R2. Set

A = {(u, 0) : u ∈ R};

B = {(u, 2) : u ∈ R}.
Then A0 = A, B0 = B and d(A,B) = 2. Define a mapping T : A→ B as

Tx = T (u, 0) =

{
(0, 2), u < 0,

(u, 2), u ≥ 0.

Take α(x1, x2) = 1, ψ(t) = t
2 . We show that T is an α-ψ interpolative Kannan

type proximal contraction of the first kind. Now, if x = (u1, v2) ∈ A with
u1 ≥ 0, y = (u2, v2) ∈ A with u2 ≥ 0, Then the following implication holds:

d(y, Tx) = d(A,B) = 2 ⇒ x = y.

In order to get the inequality (2.2), we consider the following case. If y1 =
(u1, 0), y2 = (u2, 0) ∈ A with u1 < 0 and u2 < 0, then

d(x1, T y1) = d(A,B)

and

d(x2, T y2) = d(A,B),

which implies thatx1 = x2 = (0, 0), so we get d(x1, x2) = 0. Therefore T is an
α-ψ interpolative Kannan proximal contraction of the first kind. we can easily
prove the other conditions of Theorem 2.6 hold. Then T has a best proximity
point in A0.

3. Conclusion

In this paper, we introduce several new types proximal contractions by
some known mappings and provide some sufficient condition to ensure that
the existence and uniqueness of the best proximity points of these contraction
mappings in metric spaces. Some new results can be derived directly from our
results. In the end, we utilize two non-trivial examples to verify our results.
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[10] Z. Kadelburg and S. Radenović, A note on some recent best proximity point results for

non-self mappings, Gulf J. Math., 1 (2013), 36–41.
[11] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.
[12] E. Karapınar, Revisiting the Kannan type contractions via interpolation, Adv. Theory

of Nonlinear Anal. and its Appl., 2(2) (2018), 85–87.
[13] M.S. Khan, M. Menaka, G.K. Jacob and M. Marudai, Proximity points for cyclic 2-

convex contraction mappings,Nonlinear Funct. Anal. Appl., 25(1) (2020), 1–12.
[14] K.S. Kim, Best proximity point of cyclic generalized ϕ-weak contraction mapping in

metric spaces, Nonlinear Funct. Anal. Appl., 27(2) (2022), 261–269.
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