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Abstract. In this paper, we study some regularization methods for the problem of finding a

common fixed point of a finite family of nonexpansive mappings Ti : Ci −→ Ci, i = 1, 2, ..., N

from a closed convex subset Ci of an uniformly convex and uniformly smooth Banach spaces

into itself.

1. Introduction

Let E be a Banach space with its dual space E∗. For the sake of simplicity,
the norm of E and E∗ are denoted by the symbol ‖.‖. We write 〈x, x∗〉 instead
of x∗(x) for x∗ ∈ E∗ and x ∈ E. We use the symbols ⇀ and −→ to denote
the weak convergence and strong convergence, respectively.

The problem of finding a fixed point of a nonexpansive mapping T : E −→
E is equivalent to the problem of finding a zero of operator A = I − T.

One of the methods to solve the problem 0 ∈ A(x), with A is maximal
monotone in Hilbert space H, is the proximal point algorithm. This algorithm
is proposed by Rockafellar [10]. Starting from any initial guess x0 ∈ H, this
algorithm generates a sequence {xn} given by

xn+1 = JAcn(xn + en), (1.1)

where JAr = (I + rA)−1 is the resolvent of A on the space H for all r > 0.
Rockafellar [10] proved the weak convergence of his algorithm (1.1) provided
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that the regularization sequence {cn} remains bounded away from zero and
the error sequence {en} satisfies the condition

∑∞
n=0 ‖en‖ < ∞. However,

G
..
uler’s example [7] shows that in infinite dimensional Hilbert space, proximal

point algorithm (1.1) has only weak convergence. An example of the authors
Bauschke, Matoušková and Reich [4] also show that the proximal algorithm
only converges weakly but not in norm.

Ryazantseva [11] extended the proximal point algorithm (1.1) for the case
that A is a m−accretive mapping in a properly Banach space E and proved
the weak convergence the sequence of iterations of (1.1) to a solution of the
equation 0 ∈ A(x) which is assumed to be unique. Then, to obtain the strong
convergence for algorithm (1.1), Ryazantseva [12] combined the proximal al-
gorithm with the regularization, named regularization proximal algorithm, in
the form

cn(A(xn+1) + αnxn+1) + xn+1 = xn, x0 ∈ E. (1.2)

Under some conditions on cn and αn, the strong convergence of {xn} of (1.2)
is guaranteed only when the dual mapping j is weak sequential continuous and
strong continuous, and the sequence {xn} is bounded.

Attouch and Alvarez [3] considered an extension of the proximal point al-
gorithm (1.1) in the form

cnA(un+1) + un+1 − un = γn(un − un−1), u0, u1 ∈ H, (1.3)

which is called an inertial proximal point algorithm, where {cn} and {γn} are
two sequences of positive numbers. With this algorithm we also only obtained
weak convergence of the sequence {xn} to a solution of problem A(x) 3 0 in
Hilbert space when the sequences {cn} and {γn} are chosen suitable [3].

The purpose of this paper is to construct an operator version of the Tikhonov
regularization method and give a regularization inertial proximal point algo-
rithm to solve the problem of finding a common fixed point of a finite family
of nonexpansive self - mappings Ti : Ci −→ Ci, i = 1, 2, ..., N on a closed
convex subset Ci of an uniformly convex and uniformly smooth Banach space
E. Next, in the final section we give an application for the convex feasibility
problems.

2. Preliminaries

Definition 2.1. A Banach space E is said to be uniformly convex if for any
ε ∈ (0, 2] the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε imply there exists a
δ = δ(ε) ≥ 0 such that

‖x+ y‖
2

≤ 1− δ.
The function

δE(ε) = inf{1− 2−1‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε} (2.1)
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is called the modulus of convexity of the space E, it defined on the interval
[0, 2] is continuous, increasing and δE(0) = 0. The space E is uniformly convex
if and only if δE(ε) > 0, ∀ε ∈ (0, 2].
The function

ρE(τ) = sup{2−1
(
‖x+ y‖+ ‖x− y‖

)
− 1 : ‖x‖ = 1, ‖y‖ = τ}, (2.2)

is called the modulus of smoothness of the space E, it defined on the interval
[0,+∞) is convex, continuous, increasing and ρE(0) = 0.

Definition 2.2. A Banach space E is said to be uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0. (2.3)

It is well known that every uniformly convex and uniformly smooth Banach
space is reflexive.

Definition 2.3. A mapping j from E onto E∗ satisfying the condition

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 and ‖f‖ = ‖x‖} (2.4)

is called the normalized duality mapping of E.
In any smooth Banach space J(x) = 2−1grad‖x‖2, and if E is a Hilbert

space, then J = I, where I is the identity mapping. It is well known that if
E∗ is stricly convex or E is smooth, then J is single valued. Suppose that
J is single valued, then J is said to be weakly sequentially continuous if for

each {xn} ⊂ E with xn ⇀ x, J(xn)
∗
⇀ J(x). We denote the single valued

normalized duality mapping by j.

Definition 2.4. An operator A : D(A) ⊆ E −→ 2E is called accretive if for
all x, y ∈ D(A) there exists j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0, ∀u ∈ A(x), v ∈ A(y). (2.5)

Definition 2.5. An operator A : D(A) ⊆ E −→ 2E is called m−accretive if
it is an accretive operator and the range R(λA+ I) = E for all λ > 0.

If A is a m−accretive operator, then it is a demiclosed operator, i.e., if the
sequence {xn} ⊂ D(A) satisfies xn ⇀ x and A(xn) −→ f , then A(x) = f [2].

Definition 2.6. A mapping T : C −→ E is called nonexpansive mapping on
a closed convex subset C of a Banach space E if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (2.6)

If T : C −→ E is a nonexpansive mapping, then I − T is accretive operator.
In the case C ≡ E, we have I − T is m−accretive operator.

Definition 2.7. Let C be a nonempty closed convex subset of E. A mapping
QC : E −→ C is said to be
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(i) a retraction onto C if Q2
C = QC ;

(ii) a nonexpansive retraction if it also satisfies the inequality

‖QCx−QCy‖ ≤ ‖x− y‖, ∀x, y ∈ E; (2.7)

(iii) a sunny retraction if for all x ∈ E and for all t ∈ [0,+∞),

QC(QCx+ t(x−QCx)) = QCx. (2.8)

A closed convex subset C of E is said to be a nonexpansive retract of E, if
there exists a nonexpansive retraction from E onto C and is said to be a sunny
nonexpansive retract of E, if there exists a sunny nonexpansive retraction from
E onto C.

Proposition 2.8. [1] Let C be a nonempty closed convex subset of a smooth
Banach E. A mapping QC : E −→ C is a sunny nonexpansive retraction if
and only if

〈x−QCx, j(ξ −QGx)〉 ≤ 0, ∀x ∈ E, ∀ξ ∈ C. (2.9)

Reich [9] showed that if E is uniformly smooth and D is the fixed point set of
a nonexpansive mapping from C into itself, then there is a sunny nonexpansive
retraction from C onto D and it can be constructed as follows.

Lemma 2.9 (Reich [9]). Let E be a uniformly smooth Banach space and
let T : C −→ C be a nonexpansive mapping with a fixed point. For each
u ∈ C and every t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction
C 3 x 7−→ tu + (1 − t)Tx converges strongly as t −→ 0 to a fixed point of T.
Define Q : C −→ Fix(T ) by Qu = s− limt→0 xt. Then Q is the unique sunny
nonexpansive retract from C onto Fix(T ); that is, Q satisfies the property

〈u−Qu, j(z −Qu)〉 ≤ 0, u ∈ C, z ∈ Fix(T ). (2.10)

3. Main results

We need the following lemmas in the proof of our results.

Lemma 3.1. [1] Let E be an uniformly convex and uniformly smooth Banach
space. If A = I − T with a nonexpansive mapping T : D(A) ⊂ E −→ E then
for all x, y ∈ D(T ), the domain of T ,

〈Ax−Ay, j(x− y)〉 ≥ L−1R2δE

(
‖Ax−Ay‖

4R

)
, (3.1)

where ‖x‖ ≤ R, ‖y‖ ≤ R and 1 < L < 1.7 is Figiel constant.

Lemma 3.2. [8] Let {an}, {bn}, {σn} be the sequences of positive numbers
satisfying the conditions

(i) an+1 ≤ (1− bn)an + σn, bn < 1;
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(ii)
∑∞

n=0 bn = +∞, limn→∞ σn/bn = 0.

Then limn→∞ an = 0.

We consider the problem

Find an element x∗ ∈ S = ∩Ni=1F (Ti), (3.2)

where F (Ti) is the set of fixed points of nonexpansive mappings Ti : Ci −→ Ci
and Ci is a closed convex subset of an uniformly convex and uniformly smooth
Banach space E, i = 1, 2, ..., N .

Theorem 3.3. Suppose that E is a uniformly convex and uniformly smooth
Banach space which admits a weakly sequentially continuous normalized dual-
ity mapping j from E to E∗. Let Ci be a closed convex nonexpansive retract
of E and let Ti : Ci −→ Ci, i = 1, 2, ..., N be nonexpansive mappings such
that S = ∩Ni=1F (Ti) 6= ∅.

(i) For each αn > 0 the equation

N∑
i=1

Ai(xn) + αnxn = 0, (3.3)

has a unique solution xn, where Ai = I − TiQCi and QCi : E −→ Ci
is a nonexpansive retraction form E onto Ci, i = 1, 2, ..., N ;

(ii) If in addition, αn −→ 0, then xn −→ QSθ, where QS : E −→ S is a
sunny nonexpansive retraction from E onto S and θ is origin of E.

Moreover, we have the following estimate

‖xn+1 − xn‖ ≤
|αn − αn+1|

αn
R0, (3.4)

where R0 = 2‖QSθ‖.

Proof. (i) First, it is clear that TiQCi is a nonexpansive mapping on E and
F (Ti) = F (TiQCi), i = 1, 2, ..., N , so S = ∩Ni=1F (TiQCi). Since the operator∑N

i=1Ai is Lipschitz continuous and accretive on E, it is m−accretive [5].
Therefore equation (3.3) has a unique solution xn.
(ii) For each x∗ ∈ S, we have

〈
N∑
i=1

Ai(xn), j(xn − x∗)〉+ αn〈xn, j(xn − x∗)〉 = 0. (3.5)

By the accretiveness of
∑N

i=1Ai, we obtain

〈xn, j(xn − x∗)〉 ≤ 0. (3.6)

The obtained inequatlity yields the estimates

‖xn − x∗‖2 ≤ 〈x∗, j(xn − x∗)〉 ≤ ‖x∗‖‖xn − x∗‖. (3.7)
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Hence, ‖xn‖ ≤ 2‖x∗‖, i.e., the sequence {xn} is bounded. Every bounded set
in a reflexive Banach space is relatively weakly compact. This means that
there exists some subsequence {xnk

} ⊂ {xn} and an element x ∈ E such that
xnk

⇀ x as k −→∞.
We will show that x ∈ S. Indeed, for each i ∈ {1, 2, ..., N}, x∗ ∈ S and

R > 0 satisfies R ≥ max{sup ‖xn‖, ‖x∗‖}, and by using Lemma 3.1, we have

δE

(
‖Ai(xn)‖

4R

)
≤ L

R2
〈Ai(xn), j(xn − x∗)〉

≤ L

R2
〈
N∑
k=1

Ak(xn), j(xn − x∗)〉

≤ Lαn
R2
‖xn‖.‖xn − x∗‖

≤ Lαn
R2

2‖x∗‖2 −→ 0, n −→∞.

By the continuity of the function δE(.) and the uniformly convexity of Banach
space E, we obtain Ai(xn) −→ 0, n −→ ∞. Every m−accretive operator is
demiclosed, hence Ai(x) = 0. Since i ∈ {1, 2, ..., N} is arbitrary element, so
x ∈ S.

In inequality (3.7) replacing xn by xnk
and x∗ by x, using the weak conti-

nuity of j we obtain xnk
−→ x. From inequality (3.6) we get

〈x, j(x− x∗)〉 ≤ 0, ∀x∗ ∈ S. (3.8)

Now, we show that the inequality (3.8) has unique solution. Suppose that
x1 ∈ S is also its solution. Then

〈x1, j(x1 − x∗)〉 ≤ 0, ∀x∗ ∈ S. (3.9)

In inequalities (3.8) and (3.9) replacing x∗ by x1 and x, respectively, we obtain

〈x, j(x− x1)〉 ≤ 0,

〈−x1, j(x− x1)〉 ≤ 0.

Their combination gives ‖x− x1‖2 ≤ 0, thus x = x1 = QSθ and the sequence
{xn} converges weakly to x = QSθ, because QSθ satisfies the inequality (3.8).
Finally, from the first inequality in (3.7), implies that xn −→ QSθ.

Now, we will prove inequality (3.4). In equation (3.3), replacing n by n+ 1,
we obtain

N∑
i=1

Ai(xn+1) + αn+1xn+1 = 0. (3.10)
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From equations (3.10) and (3.3) and by the accretiveness of the operator∑N
i=1Ai, we get

〈αn+1xn+1 − αnxn, j(xn+1 − xn)〉 ≤ 0. (3.11)

Therefore,

αn‖xn+1 − xn‖2 ≤ (αn+1 − αn)〈−xn+1, j(xn+1 − xn)〉
≤ |αn+1 − αn|.‖xn+1‖.‖xn+1 − xn‖
≤ 2‖QSθ‖.|αn+1 − αn|.‖xn+1 − xn‖.

Hence,

‖xn+1 − xn‖ ≤
|αn+1 − αn|

αn
R0, ∀n ≥ 0,

where R0 = 2‖QSθ‖. �

Next, we consider a regularization inertial proximal point algorithm in the
form

cn

( N∑
i=1

Ai(un+1)+αnun+1

)
+un+1 = un+γn(un−un−1), u0, u1 ∈ E (3.12)

to solve problem (3.2).

Theorem 3.4. Suppose that E is a uniformly convex and uniformly smooth
Banach space which admits a weakly sequentially continuous normalized dual-
ity mapping j from E to E∗. Let Ci be a closed convex nonexpansive retract
of E and let Ti : Ci −→ Ci, i = 1, 2, ..., N be nonexpansive mappings such
that S = ∩Ni=1F (Ti) 6= ∅. If the sequences {cn}, {αn} and {γn} satisfy

(i) 0 < c0 < cn, αn > 0, αn −→ 0,
|αn+1 − αn|

α2
n

−→ 0,
∑∞

n=0 αn = +∞;

(ii) γn ≥ 0, γnα
−1
n ‖un − un−1‖ −→ 0,

then the sequence {un} defined by equation (3.12) converges strongly to QSθ,
where QS : E −→ S is a sunny nonexpansive retraction from E onto S.

Proof. First, we show that equation (3.12) has unique solution un+1. Indeed,

since the operator
∑N

i=1Ai is Lipschitz continuous and accretive on E, it is
m−accretive [5]. Therefore, equation (3.12) has a unique solution un+1.
Now, we rewrite equations (3.3) and (3.12) in their equivalent forms

dn

N∑
i=1

Ai(xn) + xn = βnxn, (3.13)

dn

N∑
i=1

Ai(un+1) + un+1 = βn(un + γn(un − un−1)), (3.14)
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where βn =
1

1 + cnαn
and dn = cnβn.

From equations (3.13) and (3.14) and by virtue of the property of
∑N

i=1Ai,
we get

‖uu+1 − xn‖ ≤ βn‖un − xn‖+ βnγn‖un − un−1‖.
Therefore,

‖un+1 − xn+1‖ ≤ ‖un+1 − xn‖+ ‖xn+1 − xn‖

≤ βn‖un − xn‖+ βnγn‖un − un−1‖+
|αn+1 − αn|

αn
R0,

(3.15)

or equivalent to

‖un+1 − xn+1‖ ≤ (1− bn)‖un − xn‖+ σn, bn =
cnαn

1 + cnαn
, (3.16)

where σn = βnγn‖un − un−1‖+
|αn+1 − αn|

αn
R0.

Under the assumption, we have

σn
bn

=
1

cn
α−1n γn‖un − un−1‖+ (

1

cn
+ αn)

|αn+1 − αn|
α2
n

R0

≤ 1

c0
α−1n γn‖un − un−1‖+ (

1

c0
+ αn)

|αn+1 − αn|
α2
n

R0 −→ 0.

Furthermore, by
∑∞

n=0 αn = +∞ hence
∑∞

n=0 bn = +∞.
By Lemma 3.2, ‖un − xn‖ −→ 0. Since xn −→ QSθ as n −→ ∞, un −→ QSθ
as n −→∞. �

4. An application

Consider the following convex feasibility problem:

Finding an element x∗ ∈ S = ∩Ni=1Si 6= ∅, (4.1)

where Si, i = 1, 2, ..., N are closed convex sunny nonexpansive retracts of an
uniformly convex and uniformly smooth Banach space E.

In this section, we give an application of regularization algorithms (3.3) and
(3.12) to find a solution of (4.1).

Let QSi denote the sunny nonexpansive retraction from E onto Si, i =
1, 2, ..., N . It is clear that F (QSi) = Si, i = 1, 2, ..., N . Thus, the problem
(4.1) is equivalent to the problem of finding a common fixed point of finite
family of nonexpansive mappings Ti = QSi , i = 1, 2, ..., N . By Theorem 3.3
and Theorem 3.4, we have the following results:
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Theorem 4.1. If the positive sequence {αn} satisfies limn→∞ αn = 0, then
the sequence {xn} is defined by

N∑
i=1

Bi(xn) + αnxn = 0, n ≥ 0, (4.2)

converges strongly to a solution QSθ of (4.1), where Bi = I − QSi , i =
1, 2, ..., N , QS is a sunny nonexpansive retraction from E onto S.

Theorem 4.2. If the sequences {cn}, {αn} and {γn} satisfy

(i) 0 < c0 < cn, αn > 0, αn −→ 0,
|αn+1 − αn|

α2
n

−→ 0,
∑∞

n=0 αn = +∞;

(ii) γn ≥ 0, γnα
−1
n ‖un − un−1‖ −→ 0,

then the sequence {un} is defined by u0, u1 ∈ E and

cn

( N∑
i=1

Bi(un+1) + αnun+1

)
+ un+1 = un + γn(un − un−1), n ≥ 1 (4.3)

converges strongly to a solution QSθ of (4.1), where Bi = I − QSi , i =
1, 2, ..., N , QS is a sunny nonexpansive retraction from E onto S.

Finally, we consider a special case of problem (4.1), it is the problem of
finding a solution of a general system of linear equations.

Let S denote the set of solutions of the general system of linear equations

k∑
j=1

aijxj = bi, i = 1, 2, ..., N, (4.4)

and we suppose S 6= ∅, and
∑k

j=1 a
2
ij > 0, ∀i = 1, 2, ..., N. An element x∗ ∈ S

is called the normal solution of system (4.4) if ‖x∗‖ ≤ ‖x‖, ∀x ∈ S.
Let

Si = {(x1, x2, ..., xk) |
k∑
j=1

aijxj = bi}, i = 1, 2, ..., N. (4.5)

Then, Si is a hyperplane in Rk.
It is well - known that, the sunny nonexpansive retraction QSi from Rk onto

Si is also the orthogonal projection from Rk onto Si, i = 1, 2, ..., N . Moreover,

QSi(x) =

(
xl − ail

k∑
j=1

aijxj − bi
n∑
j=1

a2ij

)k
l=1

, i = 1, 2, ..., N, (4.6)

for all x = (x1, ..., xk) ∈ Rk.
We have two corollarys of Theorem 4.1 and Theorem 4.2, respectively:
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Corollary 4.3. If the positive sequence {αn} satisfies limn→∞ αn = 0, then

the sequence {x(n)} is defined by

N∑
i=1

Bi(x
(n)) + αnx

(n) = 0, n ≥ 0, (4.7)

converges strongly to the normal solution of system (4.4).

Corollary 4.4. If the sequences {cn}, {αn} and {γn} satisfy

i) 0 < c0 < cn, αn > 0, αn −→ 0,
|αn+1 − αn|

α2
n

−→ 0,
∑∞

n=0 αn = +∞;

ii) γn ≥ 0, γnα
−1
n ‖un − un−1‖ −→ 0,

then the sequence {u(n)} is defined by u(0), u(1) ∈ Rk and

cn

( N∑
i=1

Bi(u
(n+1))+αnu

(n+1)

)
+u(n+1) = u(n)+γn(u(n)−u(n−1)), n ≥ 1 (4.8)

converges strongly to the normal solution of system (4.4).
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