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Abstract. In 2012, Colao, Lopez, Marino, and Martin-Marquez [J. Math. Anal. Appl. 388

(2012) 61–77] developed an equilibrium theory in Hadamard manifolds. In this paper, we

show that three of their key results (the KKM lemma, the Ky Fan type minimax inequality,

and Nash equilibrium theorem) on Hadamard manifolds can be extended to hyperbolic spaces

and are particular ones for abstract convex spaces in the sense of ours in [7,8]. Similarly,

most of main theorems in the KKM theory on abstract convex spaces can be applied to

hyperbolic spaces and Hadamard manifolds.

1. Introduction

In 1990, Reich and Shafrir [9] introduced hyperbolic spaces in order to
try to develop a theory of nonexpansive iterations in more general infinite-
dimensional manifolds than normed vector spaces. This class of metric spaces
contains all normed vector spaces and Hadamard manifolds, as well as the
Hilbert ball and the Cartesian product of Hilbert balls.

In 1992, we began to study the KKM theory and, in 2006, to extend it
to abstract convex spaces. Since 2008, we found that any hyperbolic spaces
are G-convex spaces [4] and also particular cases of c-spaces [5-8]. Actually,
in 2010 [7,8], we indicated but not concretely that most of key results in the
KKM theory can be applied to hyperbolic spaces.
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Recently, in 2012, Colao, Lopez, Marino, and Martin-Marquez [1] developed
an equilibrium theory in Hadamard manifolds. It is clear that their theory is
closely related to the KKM theory on hyperbolic spaces.

In this paper, we show that three of their key results can be extended to
hyperbolic spaces and are particular ones for abstract convex spaces in the
sense of ours in [7,8]. Similarly, most of main theorems in the KKM theory
on abstract convex spaces can be applied to hyperbolic spaces and Hadamard
manifolds.

Section 2 devotes to review some preliminary facts on our abstract convex
spaces as in [7,8]. In Section 3, we are concerned with definitions and examples
of hyperbolic spaces and we show that any of such spaces are KKM spaces,
which means that most results in [7,8] are applicable to them. Section 4 deals
with a KKM type theorem on hyperbolic spaces. In Section 5, a minimax
inequality on hyperbolic spaces is deduced from a general version on abstract
convex spaces. It can applied to get the existence of solutions to an equilibrium
problem under mild conditions on the bifunction F as in [1]. Section 6 deals
with the Nash type equilibrium theorems. We introduce two forms of them
previously obtained by us. From one of them, we deduce a Nash equilibrium
theorem on hyperbolic spaces generalizing the corresponding one on Hadamard
manifolds in [1].

Note that [1] contains more results on nonexpansive maps on Hadamard
manifolds as in [9] which are beyond of our reach in this paper.

2. Abstract convex spaces

We follow our recent works [7,8] and the references therein.

Definition 2.1. An abstract convex space (E,D; Γ) consists of a topological
space E, a nonempty set D, and a multimap Γ : 〈D〉 ( E with nonempty
values ΓA := Γ(A) for A ∈ 〈D〉, where 〈D〉 is the set of all nonempty finite
subsets of D.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for
any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X;

in other words, X is Γ-convex relative to D′ := X ∩ D. In case E = D, let
(E; Γ) := (E,E; Γ).
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Definition 2.2. Let (E,D; Γ) be an abstract convex space. If a multimap
G : D( E satisfies

ΓA ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map.

Definition 2.3. The partial KKM principle for an abstract convex space
(E,D; Γ) is the statement that, for any closed-valued KKM map G : D( E,
the family {G(y)}y∈D has the finite intersection property. The KKM principle
is the statement that the same property also holds for any open-valued KKM
map.

An abstract convex space is called a (partial) KKM space if it satisfies the
(partial) KKM principle.

Example 2.4. The following are typical examples of KKM spaces. For details,
see [8] and the references therein.

(1) A convex space (X,D) = (X,D; Γ) is a triple where X is a subset
of a vector space such that coD ⊂ X, and each ΓA is the convex
hull of A ∈ 〈D〉 equipped with the Euclidean topology. This concept
generalizes the one due to Lassonde for X = D.

(2) An abstract convex space (X,D; Γ) is called an H-space by Park if
Γ = {ΓA} is a family of contractible (or, more generally, ω-connected)
subsets of X indexed by A ∈ 〈D〉 such that ΓA ⊂ ΓB whenever A ⊂
B ∈ 〈D〉. If D = X, (X; Γ) is called a c-space by Horvath.

(3) A generalized convex space or a G-convex space (X,D; Γ) is an abstract
convex space such that for each A ∈ 〈D〉 with the cardinality |A| =
n + 1, there exists a continuous function φA : ∆n → Γ(A) such that
J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).

Here, ∆n is the standard n-simplex with vertices {ei}ni=0, and ∆J

the face of ∆n corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an}
and J = {ai0 , ai1 , . . . , aik} ⊂ A, then ∆J = co{ei0 , ei1 , . . . , eik}.

(4) A space having a family {φA}A∈〈D〉 or simply a φA-space

(X,D; {φA}A∈〈D〉)

consists of a topological space X, a nonempty set D, and a family of
continuous functions φA : ∆n → X (that is, singular n-simplexes) for
A ∈ 〈D〉 with the cardinality |A| = n+ 1.

Now we have the following diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Convex space =⇒ H-space
=⇒ G-convex space =⇒ φA-space =⇒ KKM space
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=⇒ Partial KKM space =⇒ Abstract convex space.

Recall that, in 2010 [7], we derived generalized forms of the Ky Fan minimax
inequality, the von Neumann–Sion minimax theorem, the von Neumann–Fan
intersection theorem, the Fan type analytic alternative, and the Nash equilib-
rium theorem for partial KKM spaces. Consequently, our results in [7] unify
and generalize most of previously known particular cases of the same nature.

Moreover, in [8], we clearly derived a sequence of a dozen statements which
characterize the KKM spaces and equivalent formulations of the partial KKM
principle. As their applications, we add more than a dozen statements includ-
ing generalized formulations of von Neumann minimax theorem, von Neumann
intersection lemma, the Nash equilibrium theorem, and the Fan type minimax
inequalities for any KKM spaces. Consequently, [8] unifies and enlarges previ-
ously known several proper examples of such statements for particular types
of KKM spaces.

3. Hyperbolic spaces

In 1990, Reich and Shafrir [9] introduced hyperbolic spaces in order to
try to develop a theory of nonexpansive iterations in more general infinite-
dimensional manifolds than normed vector spaces:

Definition 3.1. ([9]) Let (X, ρ) be a metric space and R the real line. We
say that a map c : R→ X is a metric embedding of R into X if

ρ(c(s), c(t)) = |s− t|
for all real s and t. The image of a metric embedding is called a metric line.
The image of a real interval [a, b]:= {t ∈ R | a ≤ t ≤ b} under such a map is
called a metric segment.

Assume that (X, ρ) contains a family M of metric lines, such that for each
pair of distinct points x and y in X there is a unique metric line in M which
passes through x and y. This metric line determines a unique metric segment
denoted by [x, y] joining x and y. For each 0 ≤ t ≤ 1 there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point is denoted by (1− t)x⊕ ty.
We say that X, or more precisely (X, ρ,M), is a hyperbolic space if

ρ(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z) ≤ 1

2
ρ(y, z)

for all x, y and z in X.

Example 3.2. ([9]) The following are examples of hyperbolic spaces:



Remarks on “Equilibrium problems in Hadamard manifolds” 27

(1) All normed vector spaces.
(2) All Hadamard manifolds, that is, all finite-dimensional connected, sim-

ply connected, complete Riemannian manifolds of constant curvature.
(3) The Hilbert ball equipped with the hyperbolic metric.
(4) Arbitrary product of hyperbolic spaces.

Definition 3.3. ([9]) A subset C of a hyperbolic space X is said to be convex
if, for each pair of points x and y in C, the metric segment [x, y] is also
contained in C. The closed convex hull of a subset D of X is the intersection
of all closed convex subsets of X which contains D.

In our previous works, we noted that any hyperbolic spaces are G-convex
spaces [3] and also particular cases of c-spaces [5-8]. This can be strengthened
as follows:

Definition 3.4. The convex hull coD of a subset D of a hyperbolic space X
is the intersection of all convex subsets of X which contains D.

Lemma 3.5. Any convex subset Y of a hyperbolic space X = (X, ρ,M) can
be made into a c-space (X; Γ) and hence a KKM space.

Proof. For any A ∈ 〈Y 〉, let ΓA = Γ(A) = coA. Then it is easily seen to be
contractible. Therefore (X; Γ) is a c-space in the sense of Horvath and hence,
a KKM space by our KKM theory. �

In view of Lemma 3.5, all results in [7,8] hold for any convex subset of a
hyperbolic spaces. In the following sections, we give some examples of this
fact in [1].

4. The KKM theorem on hyperbolic spaces

In 2012, V. Colao, G. Lopez, G. Marino, and V. Martin-Marquez [1] es-
tablished an equilibrium theory for Hadamard manifolds. Actually, in their
abstract, they claimed as follows: “The existence of equilibrium points for a
bifunction is proved under suitable conditions, and applications to variational
inequality, fixed point and Nash equilibrium problems are provided. The con-
vergence of Picard iteration for firmly nonexpansive mappings along with the
definition of resolvents for bifunctions in this setting is used to devise an al-
gorithm to approximate equilibrium points.”

From now on, we show that some key results in [1] can be extended to
hyperbolic spaces instead of Hadamard manifolds by applying our KKM theory
of abstract convex spaces in [7,8].

The following is given as [8, Theorem 3]:
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Theorem 4.1. (Generalized partial KKM principle) Let (E,D; Γ) be a partial
KKM space and G : D( E a map such that

(1) G is closed-valued;
(2) G is a KKM map (that is, ΓA ⊂ G(A) for all A ∈ 〈D〉); and
(3) there exists a nonempty compact subset K of E such that one of the

following holds:
(i) K = E;
(ii) K =

⋂
{G(z) | z ∈M} for some M ∈ 〈D〉; or

(iii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of E
relative to some D′ ⊂ D such that N ⊂ D′ and

LN ∩
⋂
z∈D′

G(z) ⊂ K.

Then K ∩
⋂
{G(z) | z ∈ D} 6= ∅.

Since any hyperbolic space is a partial KKM space, Theorem 4.1 is appli-
cable to hyperbolic spaces. Hence, we immediately have the following form of
the KKM theorem in the setting of hyperbolic spaces:

Theorem 4.2. Let M be a hyperbolic space and K ⊂M a convex subset. Let
G : K ( K be a multimap such that, for each x ∈ K, G(x) is closed. Suppose
that

(i) there exists x0 ∈ K such that G(x0) is compact;
(ii) ∀x1, . . . , xm ∈ K, co {x1, . . . , xm} ⊂

⋃m
i=1G(xi).

Then
⋂

x∈K G(x) 6= ∅.

Remark 4.3. In [1, Lemma 3.1], Theorem 4.2 was provided in the setting of
Hadamard manifolds with almost two page proof.

5. A minimax inequality on hyperbolic spaces

From the partial KKM principle we deduced the following very general
version of the Ky Fan minimax inequality in [7, Theorem 4.1]:

Theorem 5.1. Let (X,D; Γ) be a partial KKM space, f : D × X → R, g :
X ×X → R extended real functions, and γ ∈ R such that

(1) for each z ∈ D, {y ∈ X | f(z, y) ≤ γ} is closed;
(2) for each y ∈ X, coΓ{z ∈ D | f(z, y) > γ} ⊂ {x ∈ X | g(x, y) > γ}; and
(3) the coercivity condition (3) of Theorem 4.1 holds for G(z) := {y ∈

X | f(z, y) ≤ γ}.
Then either (i) there exists a x̂ ∈ X such that f(z, x̂) ≤ γ for all z ∈ D; or

(ii) there exists an x0 ∈ X such that g(x0, x0) > γ.
Moreover, if γ := supx∈X g(x, x), then we have
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inf
y∈X

sup
z∈D

f(z, y) ≤ sup
x∈X

g(x, x).

This is a correct formulation of [8, Theorem 4] and applicable to hyperbolic
spaces.

From Theorem 4.2, as for [1, Theorem 3.2], we are able to get the existence
of solutions to an equilibrium problem under mild conditions on the bifunction
F . However, we can apply Theorem 5.1:

Theorem 5.2. Let F : K ×K → R be a bifunction on a convex subset K of
a hyperbolic space M such that

(i) for any x ∈ K, F (x, x) ≥ 0;
(ii) for every x ∈ K, the set {y ∈ K | F (x, y) < 0} is convex;
(iii) for every y ∈ K, x 7→ F (x, y) is upper semicontinuous;
(iv) there exists a compact set L ⊂ M and a point y0 ∈ L ∩ K such that

F (x, y0) < 0 for all x ∈ K \ L.
Then there exists a point x0 ∈ L ∩K satisfying F (x0, y) ≥ 0 for all y ∈ K.

Proof. Let
G(y) := {x ∈ K | F (x, y) ≥ 0}.

(1) Since F (·, y) is upper semicontinuous by (iii), G(y) is closed for all y ∈ K.
(2) For each x ∈ K, {y ∈ K | F (x, y) < 0} is convex by (ii).
(3) By condition (iv) there exists a point y0 ∈ K for which G(y0) ⊂ L, so

G(y0) is compact. Hence (iv) is a coercivity condition (3) of Theorem 4.1.
Then, in view of condition (i), by Theorem 5.1, there exists a point x0 ∈ K

such that F (x0, y) ≥ 0 for all y ∈ K. Note that x0 ∈ G(y0) ⊂ L ∩K. �

Remark 5.3. 1. If K is a closed convex subset of an Hadamard manifold,
then Theorem 5.2 reduces to [1, Theorem 3.2], whose proof can be modified
to show that Theorem 4.2 implies Theorem 5.2.

2. We may assume L ⊂ K instead of L ⊂M in Theorem 5.2.

By setting L = K in Theorem 5.2, we have the following:

Corollary 5.4. Let K be a compact convex subset of a hyperbolic space M
and F : K ×K → R such that

(i) for any x ∈ K, F (x, x) ≥ 0;
(ii) for every x ∈ K, the set {y ∈ K | F (x, y) < 0} is convex;
(iii) for every y ∈ K, x 7→ F (x, y) is upper semicontinuous.

Then there exists a point x0 ∈ K satisfying F (x0, y) ≥ 0 for all y ∈ K.

Remark 5.5. If K is a subset of an Hadamard manifold, then Corollary 5.4
reduces to [1, Corollary 3.3].
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6. A Nash equilibrium theorem on hyperbolic spaces

Let {Xi}i∈I be a family of sets, and let i ∈ I be fixed. Let

X =
∏
j∈I

Xj , Xi =
∏

j∈I\{i}

Xj .

If xi ∈ Xi and j ∈ I \ {i}, let xij denote the jth coordinate of xi. If xi ∈ Xi

and xi ∈ Xi, let [xi, xi] ∈ X be defined as follows: its ith coordinate is xi and,
for j 6= i the jth coordinate is xij . Therefore, any x ∈ X can be expressed as

x = [xi, xi] for any i ∈ I, where xi denotes the projection of x in Xi.
In [7, Theorem 9.1], we obtained the following form of the Nash-Fan type

equilibrium theorems:

Theorem 6.1. Let {(Xi; Γi)}ni=1 be a finite family of compact abstract convex
spaces such that (X; Γ) = (

∏n
i=1Xi; Γ) is a partial KKM space and, for each

i, let fi, gi : X = Xi ×Xi → R be real functions such that
(0) fi(x) ≤ gi(x) for each x ∈ X;
(1) for each xi ∈ Xi, xi 7→ gi[x

i, xi] is quasiconcave on Xi;
(2) for each xi ∈ Xi, xi 7→ fi[x

i, xi] is u.s.c. on Xi; and
(3) for each xi ∈ Xi, x

i 7→ fi[x
i, xi] is l.s.c. on Xi.

Then there exists a point x̂ ∈ X such that

gi(x̂) ≥ max
yi∈Xi

fi[x̂
i, yi] for all i = 1, 2, . . . , n.

This can be applicable for hyperbolic spaces Xi since any product of hyper-
bolic spaces is also hyperbolic and so satisfies the KKM principle. However,
this is not comparable to the following generalized Nash-Ma type theorem [2,
Theorem 5], [7, Theorem 9.2] where I can be infinite:

Theorem 6.2. Let {(Xi; Γi)}i∈I be a family of compact Hausdorff G-convex
spaces and, for each i ∈ I, let fi, gi : X = Xi × Xi → R be real functions
satisfying (0)− (3) in Theorem 6.1. Then there exists a point x̂ ∈ X such that

gi(x̂) ≥ max
yi∈Xi

fi[x̂
i, yi] for all i ∈ I.

From Theorem 6.2, we have the following for hyperbolic spaces:

Theorem 6.3. For any i ∈ I, let Ki be a compact convex subset of a hyperbolic
space Mi and fi : K → R a continuous function such that it is convex in the
i-th variable. Then there exists a Nash equilibrium point.

Recall that the Nash equilibrium problem associated to {Ki}i∈I and {fi}i∈I
consists of finding x = (xi)i∈I ∈ K such that fi(x) ≥ maxyi∈Xi fi[x̂

i, yi] for all
i ∈ I. In other words, no player can reduce his loss by varying his strategy
alone.
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Proof. Note that Ki is a subset of a metric space and hence Hausdorff. More-
over, it is a c-space and hence G-convex. Therefore, we can apply Theorem
6.2 for Ki instead of Xi. �

Remark 6.4. ([1, Theorem 3.12]) is a particular case of Theorem 6.3 for a
finite family of Hadamard manifolds Mi.
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