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Abstract. In this paper, we introduce and study two different iterative hybrid projection

algorithms for solving a fixed point problem of nonexpansive mappings. The first algorithm

is generated by the combination of the inertial method and the hybrid projection method.

On the other hand, the second algorithm is constructed by the convex combination of three

updated vectors and the hybrid projection method. The strong convergence of the two

proposed algorithms are proved under very mild assumptions on the scalar control. For

illustrating the advantages of these two newly invented algorithms, we created some numeri-

cal results to compare various numerical performances of our algorithms with the algorithm

proposed by Dong and Lu [11].

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm
‖ · ‖. A mapping T : H → H is said to be a nonexpansive if ‖Tx − Ty‖ ≤
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‖x− y‖ holds for all x, y ∈ H. The set of all fixed points of the operator T is
denoted by Fix(T ) = {x ∈ H : Tx = x}. Given C a nonempty closed convex
subset of H. The metric projection of H onto C, PC : H → C is defined by
PC(x) = arg min

c∈C
‖x− c‖ for all x ∈ H, see more details in [3, 25] and the

references cited therein.

The fixed point problem for a mapping T is defined as:

Find x ∈ H such that x = Tx.

The development of iterative methods for approximating a solution of fixed
point problem of nonexpansive mappings is an important and interesting task
in numerical analysis and applied scientific branches. Many authors are in-
terested in this problem because it can be applied in a variety of applications
such as optimal control problems, economic modelings, inverse problem, image
recovery, signal processing, game theory and data analysis, see more detail in
[1, 3, 4, 8, 25] and the references cited therein. A significant body of work on
iteration methods for fixed point problems has accumulated in literature (for
example, see [12, 21, 22, 26, 28]).

Among the notable algorithms developed in this direction is the Mann it-
eration method [18], which is given as follows:

xn+1 = αnxn + (1− αn)Txn, ∀n ≥ 0, (1.1)

where x0 ∈ H and {αn}∞n=0 is a real sequence in [0, 1]. Reich [24] proved funda-
mental results of convergence, that is, if sequence {αn}∞n=0 satisfies

∑∞
n=0 αn(1−

αn) = +∞ then the sequence {xn}∞n=0 generated by Mann’s algorithm (1.1)
converges weakly to a fixed point of T . Later, Xu [27] constructed the iterative
method by using the convex combination of three updated vectors which is
called the Mann iteration process with errors as follows:

xn+1 = αnxn + βnTxn + γnun,

where x0, u0 ∈ H and αn, βn, γn ∈ [0, 1] are suitably chosen scalars satisfying
αn + βn + γn = 1.

One of the key patterns for accelerating convergence is the inertial extrap-
olation term θn(xn − xn+1) that has been an important tool employed in
improving the performance of algorithms and has some nice convergence char-
acteristics. By the main feature of the inertial-type algorithms, it can use
the previous iterates to construct the next one. Which the inertial-type ex-
trapolation based on the heavy ball method of the two-order time dynamical
system as an acceleration process was first proposed by Polyak [23] to solve



Accelerated hybrid algorithms for nonexpansive mappings in Hilbert spaces 555

the smooth convex minimization problem as follows:{
x0, x1 ∈ H,
xn+1 = xn + αn(xn − xn−1) + βnAxn,

where A is a mapping on H and {αn}∞n=0, {βn}∞n=0 are two control sequences.
Consequently, many researchers have adopted inertial-type algorithms to speed
up the convergence process. We refer interested readers to [1, 5, 6, 9, 10, 15, 16]
for more information.

The strong convergence is often much more desirable than the weak con-
vergence (see [2] and references therein). Many attempts have been made to
modify the Mann iteration so that the strong convergence is guaranteed. A hy-
brid algorithm is one of the interesting results for approximating fixed points
because it is a favor to solve strong convergence (see [7, 11, 13, 14, 17, 22, 26]).

In 2003, Nakajo and Takahashi [20] introduced a hybrid algorithm for a
nonexpansive mapping T as follows:

x0 ∈ H chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈x0 − xn, z − xn〉 ≤ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.2)

where PK denotes the metric projection from H onto a closed convex subset
K of H, {αn}∞n=0 ⊂ [0, 1). They showed that the hybrid algorithm defined by
(1.2) converges strongly to q = PFix(T )x0.

In 2015, Dong and Lu [11] proposed and studied a hybrid algorithm for a
nonexpansive mapping T as follows:

x0, z0 ∈ H chosen arbitrarily,
zn+1 = αnzn + (1− αn)Txn,
Cn = {z ∈ H : ‖zn+1 − z‖2 ≤ αn‖zn − z‖2 + (1− αn)‖xn − z‖2},
Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.3)

where {αn}∞n=0 ⊂ [0, σ] for some σ ∈ [0, 12). They proved that (1.3) converges
strongly to q = PFix(T )x0. Moreover, the numerical results of (1.3) showed
more advantage than (1.2).

Motivated by the research works as in the above direction, we present two
new accelerated hybrid algorithms for solving a fixed point problem of non-
expansive mappings. Moreover, we create some numerical results to compare
various numerical performances of our algorithms with the algorithm of Dong
and Lu [11].
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2. Preliminaries

In this section, we provide some notations and tools in a real Hilbert space
H. We will use the symbols ⇀ for weak convergence and→ for strong conver-
gence and define the set ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit
set of the sequence {xn}.

The following lemma for the geometric properties, is useful for the proofs of
the results in this paper. It is very easy to prove that for the Hilbert spaces.

Lemma 2.1. Let H be real Hilbert space. Then the following equalities are
hold.

(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, for all x, y ∈ H.
(ii) ‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x − y‖2 − αγ‖x −

z‖2 − βγ‖y − z‖2 for all α, β, γ ∈ [0, 1] with α+ β + γ = 1 and for all
x, y, z ∈ H.
In particular, if γ = 0 then the following identity holds:

(iii) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x− y‖2 for all
α ∈ [0, 1] and for all x, y ∈ H.

Lemma 2.2. ([25]) Let C be a closed convex subset of a real Hilbert space H
and let PC be the (metric or nearest point) projection from H onto C (i.e., for
x ∈ H,PCx is the only point in C such that ‖x−PCx‖ = inf{‖x−z‖ : z ∈ C}).
Given x ∈ H and z ∈ C. Then z = PCx if and only if

〈x− z, y − z〉 ≤ 0 for all y ∈ C.

Lemma 2.3. ([3]) Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → H be a nonexpansive mapping. Let {xn}∞n=0 be a
sequence in C and x ∈ H such that xn ⇀ x and Txn − xn → 0 as n → +∞.
Then x ∈ Fix(T ).

Lemma 2.4. ([19]) Let C be a closed convex subset of a real Hilbert space H.
Let {xn}∞n=0 be a sequence in H and u ∈ H. Let q = PCu. If {xn}∞n=0 is a
sequence such that ωw(xn) ⊂ C and satisfies the condition:

‖xn − u‖ ≤ ‖u− q‖ for all n.

Then xn → q as n→∞.

3. Main results

In this section, we propose two new accelerated hybrid algorithms to solve
a fixed point problem of nonexpansive mappings in real Hilbert spaces. The
strong convergence results of these two algorithms are proved.
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Before going to the main theorems, we would like to provide the following
lemma to help the proof easier.

Lemma 3.1. Let H be a real Hilbert space and given x, y, z, w ∈ H, t ∈ [0, 1]
and a ∈ R. Then the set

K :=
{
v ∈ H : ‖x− v‖2 ≤ t‖y − v‖2 + (1− t)‖z − v‖2 + 〈w, v〉+ a

}
is closed and convex.

Proof. It can be observed from the definition of K,

‖x− v‖2 ≤ t‖y − v‖2 + (1− t)‖z − v‖2 + 〈w, v〉+ a.

It implies that

‖x‖2 + 2〈x, v〉+ ‖v‖2 ≤ t
(
‖y‖2 + 2〈y, v〉+ ‖v‖2

)
+ (1− t)

(
‖z‖2 + 2〈z, v〉+ ‖v‖2

)
+ 〈w, v〉+ a.

Hence we have

‖x‖2 + 2〈x, v〉 ≤
(
t‖y‖2 + (1− t)‖z‖2

)
+ 〈2(ty + (1− t)z) + w, v〉+ a.

Therefore, we obtain

〈2x− 2(ty + (1− t)z)− w, v〉 ≤
(
t‖y‖2 + (1− t)‖z‖2

)
+ a− ‖x‖2.

It is not hard to verify by using the linearity of inner product to ensure that
K is closed and convex. �

Theorem 3.2. Let T : H → H be a nonexpansive mapping such that Fix(T ) 6=
∅. For the the control sequences {θn}∞n=0 ⊂ [0, 1] and {αn}∞n=0 ⊂ [0, 1), define
a sequence {xn}∞n=0 by the following:

x0, x1, z1 ∈ H chosen arbitrarily,
yn = xn + θn(xn − xn−1),
zn+1 = αnzn + (1− αn)Tyn,
Cn =

{
z ∈ H : ‖zn+1 − z‖2 ≤ αn‖zn − z‖2 + (1− αn)‖xn − z‖2
+(1− αn)(2θn〈xn − z, xn − xn−1〉
+θ2n‖xn − xn−1‖2 − αn‖zn − Tyn‖2)

}
,

Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0, n ≥ 1.

(3.1)

Then the iterative sequence {xn}∞n=0 converges strongly to PFix(T )x0.
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Proof. First, we will show that Fix(T ) ⊂ Cn for all n ≥ 0. Using Lemma 2.1,
we get that for all p ∈ Fix(T ),

‖zn+1−p‖2 = ‖αn(zn − p) + (1− αn)(Tyn − p)‖2

= αn‖zn−p‖2 + (1−αn)‖Tyn − p‖2 − αn(1−αn)‖zn−Tyn‖2

≤ αn‖zn−p‖2 + (1−αn)‖yn−p‖2 − αn(1−αn)‖zn−Tyn‖2. (3.2)

It can be observed that

‖yn − p‖2 = ‖(xn − p) + θn(xn − xn−1)‖2

= ‖xn − p‖2 + 2θn〈xn − p, xn − xn−1〉+ θ2n‖xn − xn−1‖2. (3.3)

Substituting (3.3) into (3.2), we obtain that

‖zn+1 − p‖2 ≤ αn‖zn − p‖2 + (1− αn)
(
‖xn − p‖2 + 2θn〈xn − p, xn − xn−1〉

+ θ2n‖xn − xn−1‖2
)
− αn(1− αn)‖zn − Tyn‖2

= αn‖zn − p‖2 + (1− αn)‖xn − p‖2

+ (1− αn)
(
2θn〈xn − p, xn − xn−1〉+ θ2n‖xn − xn−1‖2

−αn‖zn − Tyn‖2
)
.

This shows that Fix(T ) ⊂ Cn 6= ∅ for all n ≥ 0.

Next, it is not hard to prove by using Lemma 3.1 to confirm that Cn is
closed and convex.

We claim that Fix(T ) ⊂ Qn for all n ≥ 0. For n = 0, we have Fix(T ) ⊂
H = Q0. Assume that Fix(T ) ⊂ Qn. Then since Fix(T ) ⊂ Cn for all n ≥ 0,
we get that Fix(T ) ⊂ Cn ∩ Qn. It follows from xn+1 = PCn∩Qnx0 and by
applying Lemma 2.2, we get

〈xn+1 − z, xn+1 − x0〉 ≤ 0 for all z ∈ Cn ∩Qn. (3.4)

Since Qn+1 = {z ∈ H : 〈xn+1 − z, xn+1 − x0〉 ≤ 0}, it yields Cn ∩Qn ⊂ Qn+1.
Thus, we have Fix(T ) ⊂ Qn+1. By mathematical induction, we can conclude
that Fix(T ) ⊂ Qn for all n ≥ 0.

Since Fix(T ) is a nonempty closed convex subset of H, there exists a unique
element q ∈ Fix(T ) such that q = PFix(T )x0. From the definition of Qn

actually implies xn = PQnx0. This together with the fact that Fix(T ) ⊂ Qn

further implies ‖xn − x0‖ ≤ ‖p− x0‖ for all p ∈ Fix(T ). Due to q ∈ Fix(T ),
we get

‖xn − x0‖ ≤ ‖q − x0‖ for all n ∈ N ∪ {0}, (3.5)

which implies that {xn}∞n=0 is bounded and thus ωw(xn) 6= ∅.
On the other hand, by the fact that xn+1 ∈ Qn, we have

〈xn+1 − xn, xn − x0〉 ≥ 0.



Accelerated hybrid algorithms for nonexpansive mappings in Hilbert spaces 559

This together with Lemma 2.1 (i) implies that

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2. (3.6)

By (3.5) and (3.6), we obtain that

N∑
n=1

‖xn+1−xn‖2 ≤
N∑

n=1

(‖xn+1 − x0‖2−‖xn − x0‖2) = ‖xN−x0‖2−‖x1−x0‖2

≤ ‖q − x0‖2 − ‖x1 − x0‖2.

By letting N →∞, it follows that the series
∑∞

n=1 ‖xn+1−xn‖2 is convergent
and then we have ‖xn+1−xn‖ → 0 as n→∞. By the definition of yn in (3.1),
we get

‖yn − xn‖ = θn‖xn − xn−1‖ → 0. (3.7)

From xn+1 ∈ Cn, we get

‖zn+1 − xn+1‖2 ≤ αn‖zn − xn+1‖2 + (1− αn)‖xn − xn+1‖2

+ (1− αn)
(
2θn〈xn − xn+1, xn − xn−1〉+ θ2n‖xn − xn−1‖2

−αn‖zn − Tyn‖2
)
. (3.8)

By using Lemma 2.1 (iii), we have the following:

‖zn+1 − xn+1‖2

= ‖αn(zn − xn+1) + (1− αn)(Tyn − xn+)‖2

= αn‖zn−xn+1‖2 + (1−αn)‖Tyn − xn+1‖2 − αn(1−αn)‖zn − Tyn‖2. (3.9)

Substituting (3.9) into the left side of (3.8) and eliminate the same terms and
then divide throughout the inequality by (1− αn), we get

‖Tyn−xn+1‖2 ≤ ‖xn − xn+1‖2+2θn〈xn − xn+1, xn − xn−1〉+θ2n‖xn − xn−1‖
2

→ 0 as n→∞.
Note that

‖yn − xn+1‖ ≤ ‖xn − xn+1‖+ θn ‖xn − xn−1‖ → 0 as n→∞.
Therefore,

‖yn − Tyn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − Tyn‖ → 0 as n→∞.
By using (3.7), we get the following

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Tyn‖+ ‖Tyn − Txn‖
≤ 2 ‖xn − yn‖+ ‖yn − Tyn‖ → 0 as n→∞. (3.10)
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From (3.10) and Lemma 2.3 guarantee that every weak limit point of {xn}
is a fixed point of T . That is, ωw(xn) ⊂ Fix(T ). And then, inequality (3.5)
and Lemma 2.4 ensure the strong convergence of {xn}∞n=0 to PFix(T )x0. This
completes the proof. �

Corollary 3.3. Let T : H → H be a nonexpansive mapping such that Fix(T ) 6=
∅. For the control sequence {αn}∞n=0 ⊂ [0, 1), define a sequence {xn}∞n=0 by
the following:

x0, z0 ∈ H chosen arbitrarily,
zn+1 = αnzn + (1− αn)Txn,
Cn = {z ∈ H : ‖zn+1 − z‖2 ≤ αn‖zn − z‖2 + (1− αn)‖xn − z‖2

−αn(1− αn)‖yn − Txn‖2},
Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0, n ≥ 1.

(3.11)

Then the iterative sequence {xn}∞n=0 converges strongly to PFix(T )x0.

Proof. If θn = 0 for all n ∈ N ∪ {0} in Theorem 3.2, then yn = xn, and then
we have the desired result. �

Note that the set Cn in Corollary 3.3 is the subset of Cn of [11, Theorem
3.1]. For this advantage, it can be said that Theorem 3.2 and Corollary 3.3
were developed to produce better results which are numerically effected in the
next section.

The following theorem is another approach used for solving a fixed point
problem of nonexpansive mappings.

Theorem 3.4. Let T : H → H be a nonexpansive mapping such that Fix(T ) 6=
∅. For the control sequences {αn}∞n=0, {βn}∞n=0 ⊂ [0, 1] and {γn}∞n=0 ⊂ (0, 1]
with αn + βn + γn = 1, define a sequence {xn}∞n=0 by the following:

x0, z0 ∈ H chosen arbitrarily,
zn+1 = αnzn + βnxn + γnTxn,
Cn = {z ∈ H : ‖zn+1 − z‖2 ≤ αn‖zn − z‖2 + (1− αn)‖xn − z‖2

−αnβn‖zn − xn‖2 − αnγn‖zn − Txn‖2 − βnγn‖xn − Txn‖2},
Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0, n ≥ 1,

(3.12)
Then the iterative sequence {xn}∞n=0 converges strongly to PFix(T )x0.
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Proof. First, we will show that Fix(T ) ⊂ Cn for all n ≥ 0. Using Lemma 2.1
(ii), we get that for all p ∈ Fix(T ),

‖zn+1 − p‖2 = ‖αn(zn − p) + βn(xn − p) + γn(Txn − p)‖2

= αn‖zn − p‖2 + βn‖xn − p‖2 + γn‖Txn − p‖2

− αnβn‖zn − xn‖2 − αnγn‖zn − Txn‖2 − βnγn‖xn − Txn‖2

≤ αn‖zn − p‖2 + βn‖xn − p‖2 + γn‖xn − p‖2

− αnβn‖zn − xn‖2 − αnγn‖zn − Txn‖2 − βnγn‖xn − Txn‖2

= αn‖zn − p‖2 + (1− αn)‖xn − p‖2 − αnβn‖zn − xn‖2

− αnγn‖zn − Txn‖2 − βnγn‖xn − Txn‖2.

This means that Fix(T ) ⊂ Cn 6= ∅ for all n ≥ 0.

Next, by employing Lemma 3.1, it can be proved that Cn is closed and
convex.

For proving that Fix(T ) ⊂ Qn for all n ≥ 0, the steps of proof are the same
as in Theorem 3.2.

Since q = PFix(T )x0, xn = PQnx0 and Fix(T ) ⊂ Qn, we get that

‖xn − x0‖ ≤ ‖q − x0‖, (3.13)

which implies that {xn} is bounded and thus ωw(xn) 6= ∅.
On the other hand, from xn+1 ∈ Qn, we have

〈xn+1 − xn, xn − x0〉 ≥ 0.

This together with Lemma 2.1 (i) implies that

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2. (3.14)

By (3.13) and (3.14), we obtain that

N∑
n=1

‖xn+1−xn‖2 ≤
N∑

n=1

(‖xn+1 − x0‖2−‖xn − x0‖2) = ‖xN − x0‖2−‖x1 − x0‖2

≤ ‖q − x0‖2 − ‖x1 − x0‖2.

By letting N →∞, it follows that the series
∑∞

n=1 ‖xn+1−xn‖2 is convergent
and so, we have ‖xn+1 − xn‖ → 0 as n→∞.

We expect that ‖Txn − xn‖ → 0. From the fact xn+1 ∈ Cn, we get

‖zn+1 − xn+1‖2 ≤ αn‖zn − xn+1‖2 + (1− αn)‖xn − xn+1‖2 − αnβn‖zn − xn‖2

− αnγn‖zn − Txn‖2 − βnγn‖xn − Txn‖2. (3.15)
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Since zn+1 = αnzn +βnxn +γnTxn, by using Lemma 2.1 (ii), it will come that

‖zn+1 − xn+1‖2 = αn‖zn − xn+1‖2 + βn‖xn − xn+1‖2

+ γn‖Txn − xn+1‖2 − αnβn‖zn − xn‖2

− αnγn‖zn − Txn‖2 − βnγn‖xn − Txn‖2. (3.16)

Substituting (3.16) into the left side of (3.15) and eliminate the same terms,
we get that

γn‖Txn − xn+1‖2 ≤ γn‖xn − xn+1‖2.

By dividing the above inequality by γn, we obtain that

‖Txn − xn+1‖2 ≤ ‖xn − xn+1‖2 → 0 as n→∞.

Continuing simple calculations will show that

‖Txn − xn‖ ≤ ‖Txn − xn+1‖+ ‖xn+1 − xn‖ → 0 as n→∞. (3.17)

From (3.17) and Lemma 2.3 guarantee that every weak limit point of {xn} is
a fixed point of T . That is,

ωw(xn) ⊂ Fix(T ).

And then, inequality (3.13) and Lemma 2.4 ensure the strong convergence of
{xn}∞n=0 to PFix(T )x0. This completes the proof. �

Notice that if βn = 0 in Theorem 3.4 then γn = (1−αn) for all n ∈ N∪{0}.
And then for each n ∈ N ∪ {0}, the set Cn in Theorem 3.4 is the same as in
Corollary 3.3. Therefore, Theorem 3.4 can be reduced to Corollary 3.3.

4. Numerical experiments

In this section, we provide a numerical example to illustrate the performance
of the proposed algorithms. We first begin with presenting the specific expres-
sion of PCn∩Qnx0 in Algorithm (3.1) and Algorithm (3.12) that were obtained
from our main results. The form of hybrid algorithm is difficult to realize in
actual computing programs because the specific expression of PCn∩Qnx0 can-
not be got, in general. So, He et al. [13] introduced the specific expression
of PCn∩Qnx0 and thus the hybrid method for Mann iteration process can be
realized easily, where Cn and Qn are two half-spaces.

For this reason, we follow the ideas of He et al. [13], and obtain the specific
expression of PCn∩Qnx0 of Algorithm (3.1) and Algorithm (3.12).

We now translate a new algorithm which is equivalent to Algorithm (3.1)
as follows:
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x0, x1, z1 ∈ H chosen arbitrarily,
yn = xn + θn(xn − xn−1),
zn+1 = αnzn + (1− αn)Tyn,
un = αnzn + (1− αn)yn − zn+1,

vn =
1

2

(
αn‖zn‖2 + (1− αn)

(
‖xn‖2 + 2θn〈xn − xn−1, xn〉

+θ2n‖xn − xn−1‖2 − αn‖zn − Tyn‖2
)
− ‖zn+1‖2

)
,

Cn = {z ∈ H : 〈un, z〉 ≤ vn},
Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = pn, if pn ∈ Qn,
xn+1 = qn, if pn /∈ Qn,

(4.1)

and we translate a new algorithm which equivalent to Algorithm (3.12) as
follows:

x1, z1 ∈ H chosen arbitrarily,
zn+1 = αnzn + βnxn + γnTxn,
un = αnzn + (1− αn)xn − zn+1,

vn =
1

2

(
αn‖zn‖2 + (1− αn)‖xn‖2 − αnβn‖zn − xn‖2

−αnγn‖zn − Txn‖2 − βnγn‖xn − Txn‖2 − ‖zn+1‖2
)
,

Cn = {z ∈ H : 〈un, z〉 ≤ vn},
Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},
xn+1 = pn, if pn ∈ Qn,
xn+1 = qn, if pn /∈ Qn,

(4.2)

where

pn = x0 −
〈un, x0〉 − vn
‖un‖2

un,

qn =
(

1− 〈x0 − xn, xn − pn〉
〈x0 − xn, wn − pn〉

)
pn +

〈x0 − xn, xn − pn〉
〈x0 − xn, wn − pn〉

wn,

wn = xn −
〈un, xn〉 − vn
‖un‖2

un.

Let R2 be a two-dimensional Euclidean space with the usual inner product

〈v(1), v(2)〉 = v
(1)
1 v

(2)
1 + v

(1)
2 v

(2)
2 for all v(1) = (v

(1)
1 , v

(1)
2 )T , v(2) = (v

(2)
1 , v

(2)
2 )T ∈

R2 and the norm ‖v‖ =
√
v21 + v22 (v = (v1, v2)

T ∈ R2). He et al. [13] defined
a mapping

T : (v1, v2)
T 7→

(
sin

v1 + v2√
2

, cos
v1 + v2√

2

)T
, (4.3)

then it is nonexpansive. It is easy to get that T has a fixed point in the unit
disk which is difficult to calculate.
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For supporting Theorem 3.2 and Theorem 3.4, we simulate a numerical
example by using the nonexpansive mapping T defined by (4.3), Algorithm
(3.1) and Algorithm (3.12) compared with Algorithm (1.3). In the Table,
‘Iter.’ and ‘Sec.’ denote the number of iterations and the CPU time in seconds,
respectively. We set x0 = x1 = z1 in Algorithm (1.3), Algorithm (3.1) and
Algorithm (3.12), αn = 0.1, θn = 0.8 for Algorithm (1.3), Algorithm (3.1)
and set αn = 0.1, βn = 0.1, γn = 0.8 for Algorithm (3.12). Denote E(x) =
‖xn − xn−1‖. We took E(x) < ε as the stopping criterion and ε = 10−4. The
algorithms were coded in Matlab R2016b and run on a personal computer.

Table 1. Comparison of Algorithm (1.3), Algorithm (3.1) and
Algorithm (3.12) with different initial values.

x0 = x1 Algorithm (1.3) Algorithm (3.1) Algorithm (3.12)
(z1) Iter. Sec. Iter. Sec. Iter. Sec.
(4,8) 130 0.038485 6 0.008101 19 0.008332
(7,-7) 922 0.082289 6 0.008230 16 0.008659
(-2,-6) 280 0.054435 4 0.022878 78 0.016505
(-4,9) 1106 0.091497 11 0.008419 19 0.008346
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Figure 1. The results computed by Algorithm (1.3), Algo-
rithm (3.1) and Algorithm (3.12). Case: x0 = x1(z1) = (4, 8).
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Figure 2. The results computed by Algorithm (1.3), Algo-
rithm (3.1) and Algorithm (3.12). Case: x0 = x1(z1) = (7,−7).
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Figure 3. The results computed by Algorithm (1.3), Algo-
rithm (3.1) and Algorithm (3.12). Case: x0 = x1(z1) =
(−2,−6).
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Figure 4. The results computed by Algorithm (1.3), Algo-
rithm (3.1) and Algorithm (3.12). Case: x0 = x1(z1) = (−4, 9).

5. Conclusions

We studied strong convergence theorems for finding a fixed point of non-
expansive mappings by using the accelerated hybrid algorithm presented in
Algorithm (3.1) and Algorithm (3.12), respectively. In order to present the
advantage and performance of the new algorithms, the numerical results of
Algorithm (1.3), Algorithm (3.1) and Algorithm (3.12) were compared. From
the example, it can be seen that Algorithm (3.1) and Algorithm (3.12) showed
better results than Algorithm (1.3) that was presented by Dong and Lu [11].
Moreover, Algorithm (3.1) seemed to show better performance than Algorithm
(3.12). All of these can be clearly seen by Table 1, Figure 1, Figure 2, Figure
3 and Figure 4, respectively.
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