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Abstract. This present paper extends some fixed point theorems in rectangular b-metric
spaces using subadditive altering distance and establishing the existence and uniqueness of
fixed point for Kannan type mappings. Non-trivial examples are further provided to support

the hypotheses of our results.

1. INTRODUCTION

In 1968, Kannan proved that a contractive mapping with a fixed point need
not be necessarily continuous and presented the following fixed point result.

Theorem 1.1. ([13]) Let (X,d) be a complete metric space and T : X — X
be a mapping such that there exists 0 < k < 3 satisfying

d(Tz,Ty) < kld(z, Tz) + d(y, Ty)], Vz,y € X.
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Then, T has o unique fized point u € X, and for any x € X the sequence of
iterates {T™x} converges to u and

k
d(T" e u) < R(g—) (e, Ta), n=0,1,2,- .

The concept of metric space, as an ambient space in fixed point theory, has
been generalized in several directions. In particular, b-metric spaces were in-
troduced by Bakhtin [1] and Czerwik [2], in such a way that triangle inequality
is replaced by the b-triangle inequality:

d(z,y) < b(d(z, 2) + d(z,y))
for all pairwise distinct points z,y,z and b > 1. Various fixed point results
were established on such spaces, see [3, 4, 5, 10, 11, 14, 15, 17, 18, 19, 20].
In this paper, we provide some fixed point results for generalized Kannan
type mapping in rectangular b-metric spaces. Moreover, an illustrative exam-
ples is presented to support the obtained results.

2. PRELIMINARIES

Combining conditions used to define b-metric and rectangular metric spaces,
George et al. [9] announced the notions of b-rectangular metric space as follow:

Definition 2.1. ([9]) Let X be a nonempty set, b > 1 be a given real number,
and let d : X x X — [0, 400 be a mapping such that for all z,y € X and all
distinct points u,v € X, each distinct from x and y:

(1) d(z,y) =0, if only if z = y;

(2) d(z,y) =d(y,z);

(3) d(z,y) < bld(xz,u) +d(u,v) +d(v,y)] (b-rectangular inequality).
Then (X, d) is called a b-rectangular metric space.

Example 2.2. Let X = R. Define d(z,y) = |z — y| where z,y € R. It
is easy to verify that d is a rectangular b-metric and (X,R,d) is a complete
rectangular b-metric space.

We try to extend the result of Kannan using the following class of subaddi-
tive altering distance functions.

Definition 2.3. ([12]) A function ¢ : [0,00) — [0, 00) is said to be a subad-
ditive altering distance function if

(1) ¢ is an altering distance function (that is, ¢ is continuous, strictly
increasing and ¢(t) = 0 if and only if ¢ = 0),
(2) ¢z +y) < ol@) +¢y), Yo,y € [0,00).
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Example 2.4. The functions 1 (z) =/, p2(z) = 3z and ¢3(x) = log(1+x)
are subadditive altering distance functions.

We note that, if ¢ is subadditive, then for any non negative real number
k<1, p(d(z,y)) < kp(d(a,b)) implies d(z,y) < k'd(a,b) for some k' < 1.

3. MAIN RESULT

Consider ¢ as a subadditive altering distance function and the b-metric d is
assumed to be continuous in the topology generated by it, we give some new
fixed point results.

Theorem 3.1. Let (X,d) be a complete rectangular b-metric space with co-

) ) , ~ 1
efficient b > 1 and T : X — X be a mapping such that there exists p < o1
satisfying:

o(d(Tz, Ty)) < plp(d(z,y)) + e(d(x, Tz)) + ¢(d(y, Ty))], Yo,y € X. (3.1)

Then, T' has a unique fized point u € X, the sequence {T"x} converges to u
and for q = % < 1 we have

d(T" Mz, ) < ¢"d(z,Tz), n=0,1,2,3,--- .
Proof. Let z = Tx for an arbitrary element £ € X. Then

p(d(z,Tz)) = p(d(Tx, Tz))
< pleld(z, 2)) + p(d(z, Tx)) + (d(2, T2)).

Hence we have
p(d(2,T2)) < qp(d(z, T)),

where ¢ = %’p < 1, it implies that
d(z,Tz) < q¢d(z,Tz) (3.2)

for ¢’ < 1.

Without loss of generality, we assume ¢ = ¢’. Let zg € X, consider the
sequence {z,} C X such that x,, 11 = Tx, for all n € N. If there exists n € N
such that x, = Tz,. Then z, is a fixed point of T and the proof is finished.
Hence, we assume that x,, # Tx,, for all n € N. Then for m > 1 and r > 1, it
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follows that

ATty T

< bld(@mtr, Tmgr—1) + A(@mar—1, Tngr—2) + A(Tmir—2, Tm)]

< bd(Tmtry Tmtr—1) + 0d(Timgr—1, Tmtr—2)
+ bbld(Tmtr—2, Tmir—3) + d(Tmir—3, Tmtr—a) + A(Tmtr—a, Tm)]]

= bd(Zmtr, Tompr—1) + 0d(Tonir—1s Togr—2) + 02d(Tpyr—2, Trgr—3)
+ bzd(acm+r_3, Tmtr—4) + bzd(xm+r_4, Tm)

< bd(Trmprs Tmpr—1) + 0 Tmtr—1, Tmgr—2) + b2 d(Tmtr—2, Tinr—3)
+ 02 d(Zmr—3s Tongr—a) + - + b%d(:ﬁm%, Tmt2)
+ b%d(l’m+2, Tm+1) + bz A(Tm41, Tm)

< d(1, $O)(qu+r—1 e T b%lqmn 1 bgmHr—2
R I S LA )
re1 r1

2 2
= Z b g R d @y, ) + Z bE g2 d (21, 20) + b'F " d(w1, o)
k=1 k=1
— 0 as m — oo.

Therefore, {x,} is a Cauchy sequence in X. By completeness of X, there
exists an ¢ € X such that

lim,,—yo0 Tn, = limy,—so0 TTp—1 = .

Since
d(Tx,z) < bld(Tx,Txy) + d(Txp, Topi1) + d(Txpi1, )],

p(d(Tz,x)) < bplp(d(z, zn)) + o(d(z, TT)) + ¢(Tn, Tns1) + o(d(Tn, Tni1)
+ o(d(@n; Tny1)) + p(d(Tnt1, Tni2))] + bp(d(T i1, 7).
Then
(1 =bp)e(d(Tz,)) < bplp(d(z,zn)) + @(Tn, Tns1) + @(d(@n; Tny1)
+o(d(@n, Tnt1)) +o(d(@ns1, Tnt2)) ] +op(d(TTn 41, 2))
—0 as n — oo.

This implies that Tz = z, it means that that x is a fixed point of T'.

Now if y(# x) is an another fixed point of T, then

p(d(z,y)) < ple(d(x,y)) + ¢(d(z, Tx)) + ©(d(y, Ty))],
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it implies that
o(d(z,y)) < pp(d(z,y)).

Since ¢ is strictly increasing and p < T%H’ d(xz,y) = 0, therefore the fixed
point of T" is unique. From (3.2) we have

d(T" 2, T"z) < qd(T" 'z, T"z),
where ¢ = f_—pp < 1, that is,
d(T" 2, T"z) < ¢"d(x, Tx)
for all n =0,1,2,--- . This completes the proof. O

Example 3.2. Let X = R and (X, d) the complete rectangular b-metric space
as given in Example 2.2.

Define T': X — X, by Tz = g for all x € X and ¢(t) = 2t, we have

p(d(Tz,Ty)) < é((ﬂ(d(lﬂy)) +(d(z,Tx)) + ¢(d(y, Ty))), Y,y € X.

Then T is a continuous map satisfying (3.1) and 0 is a unique fixed point of

x
T and the sequence {T"x} = {3—”} for any point x € X converges to 0.

Corollary 3.3. Let (X,d) be a complete rectangular b-metric space and let
T:X — X be a mapping such that

d(Tz, Ty) < pld(z,y) + d(z, Tz) + d(y, Ty))], Vr,y€ X,
where p < #—&-1 Then, T has a fized point in X.

Proof. From Theorem 3.1 if we take ¢(x) = x, we obtain the result. O

Theorem 3.4. Let (X,d) be a complete rectangular b-metric space with co-
efficient b > 1 and T : X — X be a mapping such that there exists p1,p2,p3
with p1 + p2 + p3 < 1 and bpy < 1 satisfying

gO(d(TZL‘, Ty)) < pl@(d(xv y))+p2<p(d(x, Tx))—i—pggo(d(y, Ty))? V:Ca RS X. (3'3)

Then T has a unique fized point u € X, and for any x € X the sequence of
Dp1+ P2

1—ps’
d(T" Mz, T"z) < ¢"d(x, Tz), n=0,1,2,--- .

iterates {T™x} converges to u and for q =

Proof. Similary to the proof of Theorem 3.1 if we consider a metric space
(X,d) and ¢(x) = =. O
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Example 3.5. Let X = [0,1] and d : X x X — [0, 00| defined as d(z,y) =
T

|z — y|? is a rectangular b-metric and T : X — X defined by Tx = 5 if
1 1 1 1
S [0,1[andT1:§. If we put p; =5y P2=3 and p3 = 9 and p(x) = =z,

we obtain that T satisfies (3.3) then 7" has a unique fixed point.

We can easily prove the following two theorems.

Theorem 3.6. Let (X, d) be a rectangular b-metric space with coefficient b >
1, if every mapping T : X — X satisfying

(d(Tx, Ty)) < plp(d(z,y)) + ¢(d(x, Tx)) + ¢(d(y, Ty))], Y,y € X,

1
for some 0 < p < T then X s complete.

2b +

Theorem 3.7. Let (X,d) be a complete rectangular b-metric space with coeffi-

citentb > 1, andT : X — X be a mapping such that there exists 0 < p < ST
satisfying
e(d(Tz,Ty)) < p(e(d(z, Tx)) + ¢(d(y, Ty))), Y,y € X.

Then T has a unique fized point uw € X and the sequence {T™xz} converges to
u.

By the proof of Theorem 3.1, we get the following result which is the Kannan
theorem as a consequence.

Theorem 3.8. Let (X,d) be a complete rectangular b-metric space with co-

1
efficient b > 1, and T : X — X be a mapping such that there exists p < %
satisfying

e(d(Tz, Ty)) < p(e(d(z,Tx)) + ¢(d(y, Ty))), Yo,y e X.  (3.4)
Then T has a unique fized point u € X, and for all x € X the sequence {T"x}
converges to u and for q = 1L <1,
-Dp

d(T" Mz, u) < ¢"d(z, Tz), n=0,1,2,--- .

Proof. Let o be an arbitrary point of X. Consider the iterative sequence
{zy}, where x,, = T'x;,—1 for n € N. Then we have

o(d(xn, 2n11)) = p(d(Txp—1,Txy))
[p(d(zn—1,TTn-1)) + @(d(2n, Txy))]
[So(d(xnfla xn)) + go(d(mn, anrl))]'

VANVAN

p
p
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Hence, we get
(1 = p)p(d(@n, tni1)) < pe(d(Tn-1,2n)),
that is,
Pldln, ns1) < 7oA, 7).
From (3.2), we get

d(l’n, xn—l—l) < f%pd(xn_l’ xn) = qd(xn—la xn)
S qnd(l'o,ﬂjl)
—0 as n — oo.

For m > 1 and r > 1, it follows that

d(mm—&-ra xm)
S b[d(xm—‘rm xm-{—r—l) + d(xm+r—1; xm+r—2) + d($m+r—27 xm)]
< bd(l'm—f—r, xm+r—1) + bd(xm-l—r—la xm-{—r—?)

+ b[b[d(wm+7"—2a wm+7‘—3) + d(xm+T—37 xm+7"—4) + d(xm-‘rr—éla xm)]]

= bd(xm—f—ra xm+r—1) + bd(xm-l—r—la $m+r—2) + de(xm—f—r—Q: mm—&-r—?))

+ bZd(xm—i-r—l%; xm+r—4) + b2d(l‘m+r—4u xm)

< bd(mm—i-r’ xm—&-r—l) + bd($m+r—1a $m+r—2) + bzd(xm—i—r—% $m+r—3)

+ V2 d(Trmtr—3y Tonr—a) + oo F b T d(Tm43, Tmt2)
+ b%d($m+2, Tm+1) + bz d(Tm+1, Tm)

< d(x1,20)(bg™ T+ 2¢™TT 4 L+ bz "2
N R N N e

r—1 r—1

669

2 2
— Z bkqm+T_(2k_1)d(5L’1, xO) + Z bkqm+r—2kd(m1’ 1'0) + b%lqmd(ml, IEO)

k=1 k=1
—0 as m — oo.

Therefore {x,} is a Cauchy sequence in X. By completeness of X, there exists

an x € X such that

lim z, = lim Tx,_1 =x.
n—oo n—oo

From

d(Tx,z) < bld(Tx, Tzy) + d(TTp, ) + d(Tn, 7)),

we have
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p(d(Tz,z)) < bplp(d(Tx, Tzn)) + o(Tan, Tn) + o(d(Tn, x)).
< bplp(d(z, Tx)) + (d(zn, Ten))]
+ bo(d(Txy, zp)) + bp(d(zp, x)).
Hence, we have
(L =bp)e(d(Tz,x)) < b(p+ 1)p(d(Tzn, zn)) + bo(d(zn, x))
—0 as n — oo.
This implies that Tz = z, it means that x is a fixed point of T'.
Now, if y(# x) is an another fixed point of 7', then
p(d(z,y)) < ple(d(z,Tx)) + (d(y, Ty))]-
Hence,
p(d(z,y)) < pe(d(z, ) + ¢(d(y, y))) = 0,
then d(x,y) = 0. Therefore, the fixed point of T' is unique. From (3.2), we
have
AT, T"z) < qd(T" 'z, T"z),
where g = 1f¥p < 1, that is,
d(T™" ez, T"x) < ¢"d(z, Tx)
foralln=0,1,2,---. O

Example 3.9. Consider the complete rectangular b-metric space (X, d), where
X =R and d(z,y) = |x — y| for all x,y € X. Define the mapping 7 : X — X

by
0, if <1,
= 1
T(z) i a1

Then T is not continous at 1. For gp(x% = 3z, we have
3d(Tx,Ty) < 3p(d(z, Tz) + d(y,Ty)).
Forx<landy<1,
d(Tz, Ty) =0 < pld(z, Tx) + d(y, Ty)]
= pllz| + lyl]

and

e(d(Tz, Ty)) < ple(|z]) + (ly])]-
Forz >1and y > 1,

d(Tx,Ty) = 0 < pld(x, Tx) + d(y, Ty)]

ool

T
o4
3
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2
O§p<x+y+3)

and

o(d(Tz, Ty)) < 3p <x fy+t ;) .

Thus, T satisfies (3.4). Therefore, T has a unique fixed point = = 0.

Theorem 3.10. Let (X,d) be a rectangular b-metric space with coefficient
b>1, if every mapping T : X — X satisfying

e(d(Tz,Ty)) < p(e(d(z,Tz)) + ¢(d(y,Ty))), Vx,y € X

1
for some p < 2% has a unique fixed point, then X is complete.

In 1975, Subrahmanyam [21] proved that a metric space (X, d) is complete
if and only if every Kannan mapping has a unique fixed point in X. Later
on, Fisher [7] and Khan [16] proved two important fixed point results related
to contractive type mappings on compact metric spaces. They proved that
a continuous mapping on a compact metric space (X, d) has a unique fixed
point if T satisfies

1
or
1
d(Tz, Ty) < (d(z, Tz)d(y,Ty))>
for all x,y € X with z # y respectively.

Since sequentially compact rectangular b-metric spaces are complete, the
completeness condition in Theorem 3.8 may be replaced by sequential com-
pactness.

A bounded compact metric space [6] is a metric space X in which every
bounded sequence in X has a convergent subsequence. The same notion may
be defined in the case of rectangular b-metric spaces. The class of bounded
compact rectangular b-metric spaces is larger than that of sequentially compact
spaces as the rectangular b-metric space R of real numbers with the usual
metric is not sequentially compact but bounded compact. In the next result,
p is independent of the coefficient b of the rectangular b-metric space.

Theorem 3.11. Let (X,d) be a bounded compact rectangular b-metric space

1
and T : X — X be a continuous mapping satisfying (3.4) for some 0 < p < 3

Then T has a unique fixed point u € X and for every rg € X, the sequence
{T"zo} converges to u.
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Proof. Let 9 € X be an arbitrary point. Consider a sequence {z,}, where
xn = T"xq for all n € N. Then by (3.4) we have

e(d(xn, p1)) = @(d(T" w0, T" o))

— Q(d(T(T" 20), T(T"x0))
< plo(d(T™ Lag, T"x0)) + @(d(T"zg, T 2y)))
=D (Tn-1,2n)) + o(d(xn, Tn1)))-

It implies that

(]' - p)@(d(ajnfla xn)) < ps@(d($n,$n+1)), Vn e N.
Since 1 —p > p,
d(Tpn, Tni1) < d(Tp—1,Ty), Yn € N.

This means that the sequence {d(z,, Tp+1) fnen is strictly decreasing and hence
convergent, so there exists t > 0 such that lim, o d(zp, Tp+1) = t.
For m,n € N with n < m, we have

P(d(zm, ) < @(d(Tm-1,2m) + @(d(Tn-1,2n))),

and hence ¢(d(zp,, z,)) < ¢(t) as m,n — oo. This implies that d(x,,x,) <t
as m,n — oo, therefore, {x,} is a bounded sequence. Hence, {z,} has a
subsequence which converges to u, that is, limy_,o T5, = u. By the continuity
of T' we have Tu = T(limp_0o T x0) = UimTxp, 1120 = u, thus, u is a fixed
point of T

Next, we show the uniqueness of the fixed point ot T Let z(# u) be an
another fixed point of T'. Then

p(d(Tz,Tu)) < p(e(d(z,Tz)) + (d(u, Tu))),
it implies that
p(d(z,1)) < pl(d(z, 2)) + p(d(u, u))),

which is a contradiction. Hence, u = z. This completes the proof. O

Example 3.12. Let (X,d) a bounded compact rectangular b-metric space,
where X = [0, co[ and

r+y)?, ifx ,
d(%y):{((), v) if;piz,

Define T : X — X by
if0 <z <2,
Tx =

1
37
1
—, ifzx>2.
T
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Then, for ¢(t) = 3t, we have
1
d(Tz,Ty) < 5(d(z, Tz) + d(y, Ty))-

For z # y and x,y > 2, we have

1 1\?

and

%(d(w,Tx) +d(y, Ty)) = ;<(x+ $)2+ (y+1)2> -

Similary, for 0 < x < 2 and y > 2, we have

1 1\?
d(Tz,Ty) = <3 + y)

and
1 1 1 1 1 1\?
—(d(z,T dly,Ty)) = = )2 2)2 T
S Ta) ) = 5 (G P+ ) > (541
Thus, 7" has a unique fixed point x = 3.

Garai et al. [8] defined T-orbitally compact metric spaces and derived a
fixed point result for the same. The definition of T-orbitally compactness can
be extended to rectangular b-metric spaces as follows.

Definition 3.13. Let (X, d) be a rectangular b-metric space and T be a self-
mapping on X. The orbit of T" at x € X is defined as

O,(T) = {x,Tx, T?x, T3z, ...}.
If every sequence in O, (7T') has a convergent subsequence for all x € X, X
is said to be T-orbitally compact.

It is easy to see that every compact rectangular b-metric space is T-orbitally
compact. Also the bounded compactness and T-orbitally compactness are
totally independent. Moreover, T-orbitally compactness of X does not give to
be complete.

Theorem 3.14. Let (X, d) be a T-orbitally compact rectangular b-metric space
1
and T satisfying (3.4) with p < 3 and bp < 1. Then T has a unique fixed point

u and
lim Tz = u, Vz e X.

n—o0
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Proof. Let x¢g € X be arbitrary but fixed, and consider the iterative sequence
{z,}, where z,, = T"xo for each n € N. We denote d,, = d(xn,xn+1) for
n € N. Then, by (3.4) we have

@(dn) S p(‘ro(dnfl) + @(dn)),
it implies that
(1 =p)e(dn) < pp(dn-1).

Since l—p > p,p < % and ¢ is strictly increasing, we get d,, < d,,—1, this show
that {d,} is a strictly decreasing sequence of non negative real numbers and
hence convergent. Since X is T-orbitally compact, so {x,} has a convergent
subsequence {zy, } with limy z,, =u

lilgn dp, = lilgn d(Tnys Tnyyy) = d(lilgn xnk,liin Tp,,,) = 0.

Therefore, lim,, o d,, = 0.
We have for n,m € N,

o(d(@n, Tm)) < ple(d(Tn-1,2n)) + P(d(Tm-1,Tm)))

= p(@(dn-1) + ¢(dm-1))
—0 as n,m — oo,

this implies d(xy,zmy) — 0 as n — oo. This means that {z,} is a Cauchy
sequence and x, — u as n — oco. Also we have

(d(, Tu)) < @(b(d(t, 0) + d(@ns Tps1) + d(wni1, Tu)))
< bp(d(u, zn)) + bplp(d(zn-1,2n)) + ©(d(2n, Tny1))
=+ (P(d(xm mn—f—l) + @(d(uv TU’)))]
This implies that
(1= bp)p(d(u, Tu)) < bp(d(u, zn)) + bple(d(zn-1,2n))

+ @(d(2n, ny1)) + (d(@n, Tpi1)]
—0 asn— co.

Therefore, Tu = u.
Next, let «* be an another fixed point of T'. Then, we have

1
d(u,u*) = d(Tu, Tu*) < §(d(u,Tu) +d(Tu*,Tu")) <0,

which is a contradiction. Hence, T" has a unique fixed point. O

1
Let us point out that Theorem 3.14 does not hold for p > 3

To find a solution we assume that 7" is an asymptotically regular mapping,
that is, lim,, oo d(T"z, T"2) = 0.
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Theorem 3.15. Let (X,d) be a complete rectangular b-metric space and T :
X — X be an asymptotically reqular mapping satisfying (3.4) for some p with
bp < 1. Then T has a unique fived point.

Proof. Let x € X and define the sequence x, = T"x, n € N. Since T is an
asymptotically regular mapping, we get for m > n,

p(d(T" e, T ) < plo(d(Te, T x)) + o(d(T™e, T )
— 0 asn — oo,
it implies that
d(T™ e, T™ ) — 0 as n — oo.

Thus {z,} is a Cauchy sequence and convergent in X with lim, . z, = u.
Hence, we have

o(d(u, Tu)) < o(bld(u, T"z) + d(T"z, T" M z) + d(T" 'z, Tu)))
< bp(d(u, T"x)) + bp(d(T™z, T" ) + bp(d(T™ z, Tu)))
< bp(d(u, T"x)) + bp[p(d(T™ Y2, T"z)) + p(d(T™z, T" 'z))
+ (d(T"z, T" M x)) 4+ ¢(d(u, Tu)),
this implies that
(1 = bp)p(d(u, Tu)) < bp(d(u, T"x))
+ bp[p(d(T" e, Tx)) + 20(d(T"z, T ).

When n — oo, we obtain d(u, Tu) = 0. Therefore, u is a fixed point of T'.
Let u* be an another fixed point of 7. Then

d(u,v*) = d(Tu,Tu*) < P(d(u,Tu) + d(Tu*,Tu*)) =0,

which is a contradiction. Hence T has a unique fixed point. O

Example 3.16. Let (X, d) be a complete rectangular b-metric space and T :
X — X be an asymptotically regular mapping satisfying Tx = % for all

1
r € X and d(x,y) = |z —y|*>, b=2and p < 3 Then for (t) = v/t, we have
|z — y| < 2(]z| + |y|). Therefore, T has a unique fixed point z = 0.

Theorem 3.17. Let (X,d) be a complete rectangular b-metric space and T :
X — X be an asymptotically reqular mapping satisfying:

p(d(Tz, Ty)) < ple(d(z,y)) + (d(z, Tz)) + ¢(d(y, Ty))], Vz,y € X
for some p with bp < 1. Then T has a unique fixed point.
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Proof. Let x € X and define the sequence x,, = T"x, n € N. Since T is an
asymptotically regular mapping, we get for m > n,

(T2, T a)) < ple(d(T "z, T™x)) + e(d(T"x, T" ')
+o(d(T"z, T z)))
—0 asn— co.

Thus, {z,} is a Cauchy sequence and convergent in X with lim, . z, = u.
Also, we have

o(d(u, Tw)) < (bld(u, T"z) + d(T"x, T" M z) + d(T" 2, Tu)))
< bo(d(u, T"z)) 4+ bo(d(T"z, T x)) + bp(d(T" 2, Tw)))
< bp(d(u, T"2)) + bplp(d(T" \, T"2))
+ o(d(T" 2, T"x)) + o(d(T"x, T" ™ x))
+@(d(T 2, u) + (d(T"z, T" ) + p(d(u, Tu))],
this implies that
(1 — bp)pld(us, Tw)) < b(1 + p)p(d(u, T")) + 2bplip(d(T™ 2, T"z))
T 20(d(T"s, T 1)),
When n — oo, we obtain d(u,Tu) = 0. Therefore, u is a fixed point of T'.
Let u*(# u) be an another fixed point of 7. Then
d(u,u*) = d(Tu, Tu*) < P(d(u, Tu) + d(Tu*,Tu*)) = 0,
which is a contradiction. Hence, T" has a unique fixed point. O
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