Nonlinear Functional Analysis and Applications Vol. 18, No. 1 (2013), pp. 51-66

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2013 Kyungnam University Press

WEAK SOLUTIONS OF NONLINEAR *p-q* LAPLACIAN EQUATION

V. Bhuvaneswari¹, L. Shangerganesh², K. Balachandran³ and J.K. Kim^4

¹Department of Mathematics, Bharathiar University Coimbatore 641 046, India e-mail: 88bhuvana@gmail.com

²Department of Mathematics, Bharathiar University Coimbatore 641 046, India e-mail: shangerganesh@gmail.com

³Department of Mathematics, Bharathiar University Coimbatore 641 046, India e-mail:kb.maths.bu@gmail.com

⁴Department of Mathematics Education, Kyungnam University Changwon 631-701, Korea e-mail: jongkyuk@kyungnam.ac.kr

Abstract. This paper deals the existence of weak solutions of degenerate parabolic p-q Laplacian equation with Dirichlet boundary condition using Galerkin's approximation method and semi-discretization process.

1. INTRODUCTION

In this paper, we consider the following degenerate parabolic p-q Laplacian equation with Dirichlet boundary condition as follows:

$$\begin{cases} u_t - \Delta_p u + a(x) |u|^{p-2} u - \Delta_q u + b(x) |u|^{q-2} u \\ = f(u) + g(x, t) \text{ in } Q_T, \\ u = 0 \text{ on } \Gamma_T, \\ u(x, 0) = u_0(x) \text{ on } \Omega, \end{cases}$$
(1.1)

⁰Received October 9, 2012. Revised January 28, 2013.

⁰2000 Mathematics Subject Classification: 35D30, 35K65.

⁰Keywords: *p-q* Laplacian, weak solution, Galerkin's method.

where $\Delta_r u = \nabla \cdot (|\nabla u|^{r-2} \nabla u)$ for some integer $r, Q_T = \Omega \times (0, T), \Gamma_T = \partial \Omega \times (0, T), p, q > 2, q < p, \Omega$ is open bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega \in C^1$ and $u_0(x)$ denotes the initial data. Assume that $a(x), b(x) \ge 0$. For some elliptic type equations related to the above equations one can see [12, 13].

The p-q Laplacian equation has been receiving increasing attention during the last decades, for example, one can see [12]-[15] and the references therein. In particular Afrouzi et al. [1] established the existence and multiplicity of solutions of some p-q Laplacian system using Ekeland's variational principle, the mountain pass theorem and the saddle point theorem. Furthermore, Afrouzi et al. [2] studied the existence results for a class of p-q Laplacian system in which the proof depends on the local minimization method. Afrouzi and Rasouli [3] proved the existence of nontrivial nonnegative solutions to a multi-parameter nonlinear elliptic system. Cherfils and Il'yasov [6] analyzed a family of stationary nonlinear equations of p-q Laplacian with Dirichlet boundary conditions which have a wide spectrum of applications in many areas of science. Figueiredo proved the existence of positive solutions to the class of elliptic problems with critical growth on \mathbb{R}^n in [9]. He and Li [10] established the existence of a nontrivial solution to the elliptic problem without the assumption of the Ambrosetti-Rabinowitz condition. The existence of at least three weak solutions is established for a class of quasilinear elliptic systems involving the p-q Laplacian with Dirichlet boundary condition by Li and Tang [11] and also Li et al. established the three solutions for p-q biharmonic systems in [14]. Li and Zhang [13] studied the existence of multiple solutions for the nonlinear elliptic problem of p-q Laplacian type involving the critical Sobolev exponent. Rasouli et al. [15] obtained the existence of positive weak solution for a class of p-q Laplacian system with sign-changing weight by the method of sub-super solutions. It is convenient to mention that the present method and the problem is an extension our previous result in [5]. In contrast to the above mentioned results, in this work, we consider the degenerate parabolic equations with p-q Laplacian and establish the existence of weak solutions using semi-discretization process.

We now recall some function spaces to be used in this work. We suppose that if X is a Banach space, then $L^p(a, b; X)$ denotes the space of all measurable functions u from (a, b) to X such that $||u(\cdot)||_X$ belongs to $L^p(a, b)$. Throughout this work, we use the generic constant C instead of different constants. Finally, the results of the paper are organized as follows. In section 2, we establish the existence of weak solutions of steady-state problem of (1.1) using Galerkin's approximation method. In section 3, we prove the existence of weak solutions of the given problem (1.1) using semi-discretization process.

2. Steady-State Case

In this section, we consider the steady-state case of the original problem (1.1) and establish the existence of weak solutions using Galerkin's approximation method.

The steady-state version of the given parabolic problem (1.1) is as follows:

$$\begin{cases} -\Delta_p u + a(x) |u|^{p-2} u - \Delta_q u + b(x) |u|^{q-2} u = f(u) + g(x) \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega. \end{cases}$$
(2.1)

Definition 2.1. A function $u \in W_0^{1,p}(\Omega) \cap W_0^{1,q}(\Omega)$, is said to be a weak solution of (2.1) if

$$\begin{split} &\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \phi dx + \int_{\Omega} a(x) |u|^{p-2} u \phi dx + \int_{\Omega} |\nabla u|^{q-2} \nabla u \nabla \phi dx \\ &+ \int_{\Omega} b(x) |u|^{q-2} u \phi dx = \int_{\Omega} f(u) \phi dx + \int_{\Omega} g(x) \phi dx, \end{split}$$

holds for each $\phi \in W_0^{1,p}(\Omega) \cap W_0^{1,q}(\Omega)$ with $f(u) \in L^{p'}(\Omega)$ and $g(x) \in L^{q'}(\Omega)$ where p', q' respectively denotes the Hölder conjugate of p and q.

Lemma 2.2. ([4, 8]) Let $F : \mathbb{R}^K \to \mathbb{R}^K$ ($K \in \mathbb{N}$) be a continuous function such that $\langle F(r), r \rangle \geq 0$ on $|r| = \rho$. Then there exists $z \in \overline{B}_{\rho}(0)$ such that F(z) = 0 for sufficiently large ρ .

Theorem 2.3. Under the assumption for some $a_0, b_0 > 0$ such that $a(x) \ge a_0$, and $b(x) \ge b_0$ and further assume that there exists positive constants M_1, M_2 and m such that $|f(s)| \le M_1 |s|^m + M_2$, where either m < p/p' or $m \le p/p'$ with M_1 small enough. the steady-state problem (2.1) has a weak solution u in the sense of Definition 2.1.

Proof. In order to prove the existence of solutions of the steady-state problem (2.1), we use the Galerkin's method of approximate solutions (see [4]). The material presented here is standard (see [7, 8]), and we have included it just for the sake of completeness. To use the Galerkin's method, we are in need of the specific basis. Let r > 0 be such that $r < p^* = \frac{Np}{N-p}$ and $s \in N$. Then

$$W_0^{s,2}(\Omega) \subset W_0^{1,p}(\Omega) \subset L^r(\Omega) \subset (W_0^{s,2})'(\Omega)$$

with continuous and dense inclusions. Now, let us introduce the spectral problem, find $w \in W_0^{s,2}(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$\begin{aligned} &(w,\phi)_{W_0^{s,2}(\Omega)} &= \lambda(w,\phi)_{L^2(\Omega)}, & \text{for all } \phi \in W_0^{s,2}(\Omega), \\ &w &= 0 & \text{on } \partial\Omega. \end{aligned}$$

where $(\cdot, \cdot)_{W_0^{s,2}(\Omega)}$ and $(\cdot, \cdot)_{L^2(\Omega)}$ denotes the inner products of $W_0^{s,2}(\Omega)$ and $L^2(\Omega)$ respectively. The above problem gives a sequence of non-decreasing eigenvalues $\{\lambda_l\}_{l=1}^{\infty}$ and a sequence of corresponding eigenfunctions $\{e_l\}_{l=1}^{\infty}$, forming an orthogonal basis in $W_0^{s,2}(\Omega)$ and orthonormal basis in $L^2(\Omega)$ (see [16].

For each $n \in \mathbb{N}$, define the subspace $V_n = span\{e_1, \dots, e_n\}$. It is well known that $(V_n, \|\cdot\|)$ and $(\mathbb{R}^n, |\cdot|)$ are isometrically isomorphic by the natural linear map $T: V_n \to \mathbb{R}^n$ given by $z = \sum_{i=1}^n d_i e_i \to T(z) = d = (d_1, \dots, d_n)$ (see [4]). So $\|z\| = |T(z)| = |d|$, where $|\cdot|$ and $\|\cdot\|$ denote the usual norms in \mathbb{R}^N and $V_n(\Omega)$ respectively. We look for the function $u_n \in W_0^{1,p}(\Omega) \cap W_0^{1,q}(\Omega)$ of the form

$$u_n = \sum_{l=1}^n d_{n,l} e_l(x)$$

where we need to determine the co-efficients $r_{n,l}$ so that, for $k = 1, 2, \dots, n$.

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla e_k dx + \int_{\Omega} a(x) |u_n|^{p-2} u_n e_k dx + \int_{\Omega} |\nabla u_n|^{q-2} \nabla u_n \nabla e_k dx + \int_{\Omega} b(x) |u_n|^{q-2} u_n e_k dx = \int_{\Omega} f(u_n) e_k dx + \int_{\Omega} g(x) e_k dx \text{ in } \Omega.$$
(2.2)

Using Hölder's, Poincaré's and Young's inequalities and from the assumption of f(u), we get

$$\begin{aligned} \left| \int_{\Omega} f(u)udx \right| &\leq \|f(u)\|_{L^{p'}(\Omega)} \|u\|_{L^{p}(\Omega)} \\ &\leq c\|f(u)\|_{L^{p'}(\Omega)} \|\nabla u\|_{L^{p}(\Omega)} \\ &\leq c(\epsilon)\|f(u)\|_{L^{p'}(\Omega)} + \epsilon\|\nabla u\|_{L^{p}(\Omega)}^{p} \\ &\leq c(\epsilon)(\int_{\Omega} M_{1}|u|^{m} + M_{2})^{p'}dx + \epsilon\|\nabla u\|_{L^{p}(\Omega)}^{p} \\ &\leq c(\epsilon)M_{1}^{p'}\int_{\Omega} |u|^{mp'}dx + c(\epsilon) + \epsilon\|\nabla u\|_{L^{p}(\Omega)}^{p} \\ &\leq c(\epsilon) + \epsilon\|\nabla u\|_{L^{p}(\Omega)}^{p} \end{aligned}$$

$$(2.3)$$

Now let us consider the following function $G:\mathbb{R}^n\to\mathbb{R}^n$ given by

$$G(d) = (h_1(d), \cdots, h_n(d))$$

where

$$\begin{aligned} h_k(d) &= \int_{\Omega} \left[\left| \sum_{l=1}^n d_{n,l} \nabla e_l(x) \right|^{p-2} \sum_{l=1}^n d_{n,l} \nabla e_l(x) \nabla e_k \\ &+ a(x) \left| \sum_{l=1}^n d_{n,l} e_l(x) \right|^{p-2} \sum_{l=1}^n d_{n,l} e_l(x) e_k \\ &+ \left| \sum_{l=1}^n d_{n,l} \nabla e_l(x) \right|^{q-2} \sum_{l=1}^n d_{n,l} \nabla e_l(x) \nabla e_k \\ &+ b(x) \left| \sum_{l=1}^n d_{n,l} e_l(x) \right|^{q-2} \sum_{l=1}^n d_{n,l} e_l(x) e_k \\ &- f\left(\sum_{l=1}^n d_{n,l} e_l(x) \right) e_k - g e_k \right] dx, \end{aligned}$$

for each point $d = (d_1, \dots, d_n) \in \mathbb{R}^n$. Then from (2.3), we get

$$\begin{split} \langle G(d),d\rangle \geq \int_{\Omega} \bigg(\bigg|\sum_{l=1}^{n} d_{n,l} \nabla e_{l}(x)\bigg|^{p} + a_{0} \bigg|\sum_{l=1}^{n} d_{n,l} e_{l}(x)\bigg|^{p} + \bigg|\sum_{l=1}^{n} d_{n,l} \nabla e_{l}(x)\bigg|^{q} \\ + b_{0} \bigg|\sum_{l=1}^{n} d_{n,l} e_{l}(x)\bigg|^{q} - c(\epsilon) (\|g\|_{L^{q'}}(\Omega) + 1)\bigg) dx. \end{split}$$

This shows that $\langle G(d), d \rangle \geq 0$ if $|d| = \rho$ provided $\rho > 0$ sufficiently large enough. Hence it follows from the Lemma 2.2, that for each $n \in N$, there exists $u_n \in V_n$ satisfying $F(u_n) = 0$, $||u_n|| \leq \rho$. This proves that, given absolutely continuous co-efficients $b_{n,l}$, we set $\phi_n = \sum_{l=1}^n b_{n,l}e_l(x)$ such that

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla \phi_n dx + \int_{\Omega} a(x) |u_n|^{p-2} u_n \phi_n dx + \int_{\Omega} |\nabla u_n|^{q-2} \nabla u_n \nabla \phi_n dx + \int_{\Omega} b(x) |u_n|^{q-2} u_n \phi_n dx = \int_{\Omega} f(u_n) \phi_n dx + \int_{\Omega} g(x) \phi_n dx \text{ in } \Omega.$$
(2.4)

holds with $||u_n|| \leq \rho$, for all $n \in N$. Taking $\phi_n = u_n$ in (2.4) and using the Poincare's, Young's inequalities with the assumption of f(u) we get,

$$\|u_n\|_{W_0^{1,p}(\Omega)} + \|u_n\|_{L^p(\Omega)} + \|u_n\|_{W_0^{1,q}(\Omega)} + \|u_n\|_{L^q(\Omega)} \le c.$$

Let us assume that $u \in W_0^{1,p}(\Omega) \cap W_0^{1,q}(\Omega)$ be the weak limit of $\{u_n\}$, then ther exists a subsequence which is also denoted by $\{u_n\}$ such that,

$$u_n \to u \text{ in } L^s(\Omega) \text{ for } 1 < s < \frac{2N}{N-2},$$

$$u_n \rightharpoonup u \text{ weakly in } W_0^{1,p}(\Omega) \cap W_0^{1,q}(\Omega),$$

$$u_n \rightharpoonup u \text{ weakly in } L^p(\Omega) \cap L^q(\Omega),$$

$$|\nabla u_n|^{p-2} \nabla u_n + |\nabla u_n|^{q-2} \nabla u_n \rightharpoonup \zeta_1 \text{ weakly in } L^{p'}(\Omega) \cap L^{q'}(\Omega).$$

Recall the monotonicity property of *p*-Laplacian operator and by adopting the technique proved in [8], one can easily obtain that $\zeta_1 = |\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u$. Then taking limit as $n \to \infty$, we get

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \phi dx + \int_{\Omega} a(x) |u|^{p-2} u \phi dx + \int_{\Omega} |\nabla u|^{q-2} \nabla u \nabla \phi dx$$
$$+ \int_{\Omega} b(x) |u|^{q-2} u \phi dx = \int_{\Omega} f(u) \phi dx + \int_{\Omega} g(x) \phi dx \quad \text{in } \Omega.$$
(2.5)

Equation (2.5) holds for all functions $W_0^{1,p}(\Omega) \cap W_0^{1,q}(\Omega)$, as the function ϕ is dense in the space. This proves that u is a weak solution of the steady-state equation (2.1).

3. PARABOLIC CASE

In this section, first we consider the semi-discretized problem of the original problem (1.1) and establish existence of a weak solution. By using that, one can show the existence of a weak solution of the given problem (1.1).

The semi-discretized problem of the given parabolic problem (1.1) is as follows:

$$\begin{cases} \frac{1}{h}(u_k - u_{k-1}) - \nabla \cdot (|\nabla u_k|^{p-2} \nabla u_k) + a(x) |u_k|^{p-2} u_k \\ -\nabla \cdot (|\nabla u_k|^{q-2} \nabla u_k) + b(x) |u_k|^{q-2} u_k = f(u_{k-1}) + g \text{ in } \Omega, \\ u_k = 0 \quad \text{on } \partial\Omega, \end{cases}$$
(3.1)

where $u_k = u(x, kh)$, h = T/n and $k = 1, 2, \cdots, n$.

Definition 3.1. A function u is defined as a weak solution for the problem (1.1) provided $u \in C([0,T]; L^2(\Omega)) \cap L^p(0,T; W_0^{1,p}(\Omega)) \cap L^q(0,T; W_0^{1,q}(\Omega)), u_t \in L^{p'}(0,T; W^{-1,p'}(\Omega)), \text{ and, for any } \phi \in L^p(0,T; W_0^{1,p}(\Omega)) \cap L^q(0,T; W_0^{1,q}(\Omega)),$

$$\begin{split} \int_0^T \langle \frac{\partial u}{\partial t}, \phi \rangle dt &= -\int_{Q_T} |\nabla u|^{p-2} \nabla u \nabla \phi dx dt - \int_{Q_T} a(x) |u|^{p-2} u \phi dx dt \\ &- \int_{Q_T} |\nabla u|^{q-2} \nabla u \nabla \phi dx dt - \int_{Q_T} b(x) |u|^{q-2} u \phi dx dt \\ &+ \int_{Q_T} (f(u) + g) \phi dx dt \end{split}$$

holds (where $\langle \cdot, \cdot \rangle$ denotes the pair $W^{-1,p'}(\Omega)$ and $W^{1,p}_0(\Omega)$).

Theorem 3.2. Assume that the conditions of Theorem 2.3 are satisfied with $u_0 \in L^2(\Omega) \cap W_0^{1,p}(\Omega)$ and $f(\cdot) \in C^1(\mathbb{R})$. Then the problem (1.1) has a weak solution in the sense of Definition 3.1.

Lemma 3.3. Assume u_k is a unique weak solution for the semi-discretized problem (3.1). Then there exists a constant C > 0 such that

$$\frac{1}{h} \int_{\Omega} |u_k|^2 dx + \int_{\Omega} |\nabla u_k|^p dx + 2 \int_{\Omega} a(x) |u_k|^p dx + \int_{\Omega} |\nabla u_k|^q dx + 2 \int_{\Omega} b(x) |u_k|^q dx \le \frac{1}{2} \int_{\Omega} |\nabla u_{k-1}|^p dx + \frac{1}{h} \int_{\Omega} |u_{k-1}|^2 dx + C, \quad (3.2)$$

and

$$\int_{\Omega} |u_{i}|^{2} dx + \frac{h}{2} \sum_{k=1}^{i} \int_{\Omega} |\nabla u_{k}|^{p} dx + \frac{h}{2} \int_{\Omega} |\nabla u_{i}|^{p} dx
+ 2h \sum_{k=1}^{i} \int_{\Omega} a(x) |u_{k}|^{p} dx + h \sum_{k=1}^{i} \int_{\Omega} |\nabla u_{k}|^{q} dx + 2h \sum_{k=1}^{i} \int_{\Omega} b(x) |u_{k}|^{q} dx
\leq \int_{\Omega} (|u_{0}|^{2} + \frac{h}{2} |\nabla u_{0}|^{p}) dx + TC,$$
(3.3)

for $k, i = 1, 2, \cdots, n$.

Proof. As in the steady-state case, one can show that there exists a weak solution $u_k \in W_0^{1,p}(\Omega) \cap W_0^{1,q}(\Omega) \cap L^2(\Omega)$ satisfying

$$\frac{1}{h} \int_{\Omega} (u_k - u_{k-1}) \phi dx + \int_{\Omega} |\nabla u_k|^{p-2} \nabla u_k \nabla \phi dx + \int_{\Omega} a(x) |u_k|^{p-2} u_k \phi dx
+ \int_{\Omega} |\nabla u_k|^{q-2} \nabla u_k \nabla \phi dx + \int_{\Omega} b(x) |u_k|^{q-2} u_k \phi dx
= \int_{\Omega} (f(u_{k-1}) + g) \phi dx,$$
(3.4)

for each $\phi \in C_0^{\infty}(\Omega)$. Then taking $\phi = u_k$ as the test function in the above equation, one can obtain

$$\frac{1}{h} \int_{\Omega} |u_k|^2 dx + \int_{\Omega} |\nabla u_k|^p dx + \int_{\Omega} a(x) |u_k|^p dx + \int_{\Omega} |\nabla u_k|^q dx + \int_{\Omega} b(x) |u_k|^q dx \\
\leq \frac{1}{2h} \int_{\Omega} |u_k|^2 dx + \frac{1}{2h} \int_{\Omega} |u_{k-1}|^2 dx + \int_{\Omega} f(u_{k-1}) u_k dx + \int_{\Omega} gu_k dx.$$
(3.5)

Then, by using Hölder's, Poincaré's and Young's inequalities and from the assumption of f(u), we get

$$\left| \int_{\Omega} f(u_{k-1}) u_k dx \right| \le \frac{1}{2} \| \nabla u_k \|_{L^p(\Omega)}^p + \frac{1}{4} \| \nabla u_{k-1} \|_{L^p(\Omega)}^p + C$$

Using the above said inequalities and the assumption of g, it is easy to obtain the following estimate

$$\left| \int_{\Omega} g u_k dx \right| \le \frac{1}{2} \| \nabla u_k \|_{L^q(\Omega)}^q + \frac{1}{2} \| g \|_{L^{q'}(\Omega)}^q$$

Substituting the above two estimates in (3.5), one can easily obtain (3.2). To prove (3.3), take summation from k = 1 to *i* on both sides of the inequality (3.2) to get

$$\frac{1}{h}\sum_{k=1}^{i}\int_{\Omega}|u_{k}|^{2}dx + \sum_{k=1}^{i}\int_{\Omega}|\nabla u_{k}|^{p}dx + 2\sum_{k=1}^{i}\int_{\Omega}a(x)|u_{k}|^{p}dx + \sum_{k=1}^{i}\int_{\Omega}|\nabla u_{k}|^{q}dx + 2\sum_{k=1}^{i}\int_{\Omega}b(x)|u_{k}|^{q}dx \leq \frac{1}{h}\sum_{k=1}^{i}\int_{\Omega}|u_{k-1}|^{2}dx + \frac{1}{2}\sum_{k=1}^{i}\int_{\Omega}|\nabla u_{k-1}|^{p}dx + \sum_{k=1}^{i}C,$$

for $i \in \{1, 2, \dots, n\}$. Noticing that $ih \leq T$ and using simple calculation leads to (3.3).

To prove the uniqueness of the weak solution, let us assume that v_1 and v_2 are two solutions of (3.1). Then the difference of two solutions satisfying the following equation,

$$\begin{split} &\frac{1}{h} \int_{\Omega} (v_1 - v_2) \phi dx + \int_{\Omega} (|\nabla v_1|^{p-2} \nabla v_1 - |\nabla v_2|^{p-2} \nabla v_2) \nabla \phi dx \\ &+ \int_{\Omega} (|\nabla v_1|^{q-2} \nabla v_1 - |\nabla v_2|^{q-2} \nabla v_2) \nabla \phi dx + \int_{\Omega} a(x) (|v_1|^{p-2} v_1 - |v_2|^{p-2} v_2) \phi dx \\ &+ \int_{\Omega} b(x) (|v_1|^{q-2} v_1 - |v_2|^{q-2} v_2) \phi dx \\ &= 0, \end{split}$$

for each $\phi \in C_0^{\infty}(\Omega)$. Then, taking $\phi = v_1 - v_2$ in the above equality and using the monotonicity inequality, one can get, $v_1 = v_2$ a.e in Ω .

Definition 3.4. ([17]) Let us define the first kind of approximate solution as follows:

$$w^{(n)}(x,t) = \sum_{k=1}^{n} \chi_k(t) u_k(x), \qquad (3.6)$$

where $\chi_k(t)$ is the characteristic function of the time interval ((k-1)h, kh], for $k = 1, 2, \dots, n$.

Lemma 3.5. Let $u_0 \in L^2(\Omega) \cap W_0^{1,p}(\Omega)$ and $f(\cdot) \in C^1(\mathbb{R})$. Then the approximate solution (3.6) satisfies the following estimate

$$\begin{split} \|w^{(n)}\|_{L^{\infty}(0,T;L^{2}(\Omega))} + \|w^{(n)}\|_{L^{p}(0,T;W_{0}^{1,p}(\Omega))} + \|w^{(n)}\|_{L^{q}(0,T;W_{0}^{1,q}(\Omega))} \\ + \|f(w^{(n)})\|_{L^{p'}(Q_{T})} + \|w^{(n)}\|_{L^{p}(0,T;L^{p}(\Omega))} + \|w^{(n)}\|_{L^{q}(0,T;L^{q}(\Omega))} \\ + \||\nabla w^{(n)}|^{p-2} \nabla w^{(n)}\|_{L^{p'}(Q_{T})} + \||\nabla w^{(n)}|^{q-2} \nabla w^{(n)}\|_{L^{q'}(Q_{T})} \leq C. \quad (3.7) \end{split}$$

Proof. For any $t \in (0,T)$, there exists some $k \in \{1, 2, \dots, n\}$ such that $t \in ((k-1)h, kh]$. By using the definition of approximate solution (3.6) and from steady-state case one can have $\|w^{(n)}\|_{L^2(\Omega)}^2 = \sum_{k=1}^n \|u_k(x)\|_{L^2(\Omega)}^2 \leq C$ which leads to $\|w^{(n)}\|_{L^\infty(0,T;L^2(\Omega))} \leq C$. Taking i = n in the inequality (3.3), we obtain

$$\int_{\Omega} |u_n|^2 dx + \frac{h}{2} \sum_{k=1}^n \int_{\Omega} |\nabla u_k|^p dx + \frac{h}{2} \int_{\Omega} |\nabla u_n|^p dx$$
$$+ 2h \sum_{k=1}^n \int_{\Omega} a(x) |u_k|^p dx + h \sum_{k=1}^n \int_{\Omega} |\nabla u_k|^q dx + 2h \sum_{k=1}^n \int_{\Omega} b(x) |u_k|^q dx$$
$$\leq \int_{\Omega} |u_0|^2 dx + \frac{h}{2} \int_{\Omega} |\nabla u_0|^p dx + TC.$$

From the above inequality,

$$\int_{Q_T} |\nabla w^{(n)}|^p dx dt = \sum_{k=1}^n \int_{\Omega} |\nabla u_k|^p dx \le C$$

The above inequality shows the following result,

$$\|w^{(n)}\|_{L^p(0,T;W^{1,p}_0(\Omega))} \le C$$

Similarly one can prove

$$\|w^{(n)}\|_{L^p(0,T;L^p(\Omega))} \le C, \qquad \|w^{(n)}\|_{L^q(0,T;W_0^{1,q}(\Omega))} \le C$$

V. Bhuvaneswari, L. Shangerganesh, K. Balachandran and J.K. Kim

and

$$||w^{(n)}||_{L^q(0,T;L^q(\Omega))} \le C.$$

From the assumption of f(u) it is easy to understand that

$$||f(w^{(n)})||_{L^{p'}(Q_T)} \le C.$$

Taking $\phi = u_k$ as test function in (3.4) and the definition of $w^{(n)}$, we get

$$\begin{split} &\frac{1}{2} \int_{Q_T} |w^{(n)}|^2 dx dt - \frac{1}{2} \int_{\Omega} |u_0|^2 dx + \int_{Q_T} |\nabla w^{(n)}|^{p-2} \nabla w^{(n)} \nabla w^{(n)} dx dt \\ &+ \int_{Q_T} a(x) |w^{(n)}|^p dx dt + \int_{Q_T} |\nabla w^{(n)}|^{q-2} \nabla w^{(n)} \nabla w^{(n)} dx dt \\ &+ \int_{Q_T} b(x) |w^{(n)}|^q dx dt \\ &= \int_{Q_T} f(w^{(n)}) w^{(n)} dx dt + \int_{Q_T} g w^{(n)} dx dt. \end{split}$$

Hence, from the above inequality, it is easy to obtain the results

$$\||\nabla w^{(n)}|^{p-2} \nabla w^{(n)}\|_{L^{p'}(Q_T)} \le C \text{ and } \||\nabla w^{(n)}|^{q-2} \nabla w^{(n)}\|_{L^{q'}(Q_T)} \le C.$$

Definition 3.6. ([17]) The second kind of approximate solution is defined as follows:

$$u^{(n)}(x,t) = \sum_{k=1}^{n} \chi_k(t) [\lambda_k(t)u_k(x) + (1 - \lambda_k(t))u_{k-1}(x)], \quad (3.8)$$

where $\lambda_k(t) = \begin{cases} \frac{t}{h} - (k-1), & t \in ((k-1)h, kh], \\ 0, & \text{otherwise.} \end{cases}$

Lemma 3.7. Let $u_0 \in L^2(\Omega) \cap W_0^{1,p}(\Omega)$ and $f(\cdot) \in C^1(\mathbb{R})$. Then there exists a constant C > 0 such that the following estimate

$$\left\|\frac{\partial u^{(n)}}{\partial t}\right\|_{L^{p'}(0,T;W^{-1,p'}(\Omega))} + \left\|u^{(n)}\right\|_{L^{\infty}(0,T;L^{2}(\Omega))} \leq C, \qquad (3.9)$$

holds, for $u^{(n)}$ in (3.8).

Proof. Differentiating the second kind of approximate solution with respect to t, we get

$$\frac{\partial u^{(n)}}{\partial t} = \frac{1}{h} \sum_{k=1}^{n} \chi_k (u_k(x) - u_{k-1}(x)).$$
(3.10)

Substituting (3.10) in (3.1), we get

$$\begin{split} \langle \frac{\partial u^{(n)}}{\partial t}, \phi \rangle \\ &= -\sum_{k=1}^{n} \chi_{k}(t) \int_{\Omega} |\nabla u_{k}|^{p-2} \nabla u_{k} \nabla \phi dx - \sum_{k=1}^{n} \chi_{k}(t) \int_{\Omega} a(x) |u_{k}|^{p-2} u_{k} \phi dx \\ &- \sum_{k=1}^{n} \chi_{k}(t) \int_{\Omega} |\nabla u_{k}|^{q-2} \nabla u_{k} \nabla \phi dx - \sum_{k=1}^{n} \chi_{k}(t) \int_{\Omega} b(x) |u_{k}|^{q-2} u_{k} \phi dx \\ &+ \sum_{k=1}^{n} \chi_{k}(t) \int_{\Omega} f(u_{k-1}) \phi dx + \sum_{k=1}^{n} \chi_{k}(t) \int_{\Omega} g \phi dx. \end{split}$$

For any $\phi \in C_0^{\infty}(\Omega)$, from the Lemma 3.5, we get

$$\left\|\frac{\partial u^{(n)}}{\partial t}\right\|_{L^{p'}(0,T;W^{-1,p'}(\Omega))} \leq C.$$

Then, from the definition of the second kind of approximate solution $u^{(n)}$ and (3.3), we have

$$\begin{aligned} \|u^{(n)}\|_{L^{r}(0,T;L^{2}(\Omega))}^{r} &\leq C^{r} \int_{0}^{T} \Big(\int_{\Omega} |u^{(n)}|^{2} \mathrm{d}x\Big)^{r/2} \mathrm{d}t \\ &= C^{r} \int_{0}^{T} \Big(\int_{\Omega} \Big|\sum_{k=1}^{n} \chi_{k}(t) [\lambda_{k}(t)u_{k}(x) + (1 - \lambda_{k}(t))u_{k-1}(x)]\Big|^{2} \mathrm{d}x\Big)^{r/2} \mathrm{d}t \\ &= C^{r} \sum_{k=1}^{n} \int_{(k-1)h}^{kh} \Big(\int_{\Omega} \Big| [\lambda_{k}(t)u_{k}(x) + (1 - \lambda_{k}(t))u_{k-1}(x)]\Big|^{2} \mathrm{d}x\Big)^{r/2} \mathrm{d}t \\ &\leq C^{r} \sum_{k=1}^{n} h\Big(\int_{\Omega} (|u_{k}(x)|^{2} + |u_{k-1}(x)|^{2}) \mathrm{d}x\Big)^{r/2} \\ &\leq C^{r+\frac{r}{2}}T, \end{aligned}$$

where C > 0 is independent of r > 1. Therefore one can have

$$\|u^{(n)}\|_{L^{\infty}(0,T;L^{2}(\Omega))} = \lim_{r \to \infty} \|u^{(n)}\|_{L^{r}(0,T;L^{2}(\Omega))} \leq C.$$

Proof of Theorem 3.2. By the Lemma 3.5, there exists a subsequence of $w^{(n)}$ (which is also denoted by $w^{(n)}$), $\zeta \in L^{p'}(Q_T) \cap L^{q'}(Q_T)$ such that

$$w^{(n)} \rightharpoonup u$$
 weakly* in $L^{\infty}(0,T;L^2(\Omega))$

and

$$|\nabla w^{(n)}|^{p-2} \nabla w^{(n)} + |\nabla w^{(n)}|^{q-2} \nabla w^{(n)} \rightharpoonup \zeta \text{ weakly in } L^{p'}(Q_T) \cap L^{q'}(Q_T),$$

as $n \to \infty$. From the Lemma 3.7, we can find an integer s > 0 such that $W^{-1,p'}(\Omega) \hookrightarrow H^{-s}(\Omega)$ (for more details see [18]) and from Aubin's type lemma with the compact imbedding $H_0^1(\Omega) \hookrightarrow L^2(\Omega) \hookrightarrow H^{-s}(\Omega)$, we can conclude that there exists a subsequence of $u^{(n)}$ (which is also denoted by $u^{(n)}$) such that

$$\begin{array}{lll} \frac{\partial u^{(n)}}{\partial t} & \rightharpoonup & \frac{\partial \rho}{\partial t} \text{ weakly in } L^{p'}(0,T;W^{-1,p'}(\Omega)), \\ u^{(n)} & \rightharpoonup & \rho \text{ weakly* in } L^{\infty}(0,T;L^{2}(\Omega)), \\ u^{(n)} & \to & \rho \text{ strongly in } C([0,T];L^{2}(\Omega)), \text{ and} \\ u^{(n)} & \to & \rho \text{ a.e in } Q_{T}, \end{array}$$

as $n \to \infty$. Further, from the definitions (3.6) and (3.8), we have

$$\begin{split} \left| \int_{Q_T} (w^{(n)} - u^{(n)}) \phi \mathrm{d}x \mathrm{d}t \right| \\ &= \left| \int_{Q_T} \sum_{k=1}^n \chi_k(t) (1 - \lambda_k(t)) (u_k - u_{k-1}) \phi \mathrm{d}x \mathrm{d}t \right| \\ &\leq h \int_0^T \left(\left| \int_{\Omega} |\nabla w^{(n)}|^{p-2} \nabla w^{(n)} \nabla \phi \mathrm{d}x \right| + \left| \int_{\Omega} a(x) |w^{(n)}|^{p-2} w^{(n)} \phi \mathrm{d}x \right| \\ &+ \left| \int_{\Omega} |\nabla w^{(n)}|^{q-2} \nabla w^{(n)} \nabla \phi \mathrm{d}x \right| + \left| \int_{\Omega} b(x) |w^{(n)}|^{q-2} w^{(n)} \phi \mathrm{d}x \right| \\ &+ \left| \int_{\Omega} f(w^{(n)}) \phi \mathrm{d}x \right| + \left| \int_{\Omega} f(u_o) \phi \mathrm{d}x \right| + \left| \int_{\Omega} g \phi \mathrm{d}x \right| \right) \mathrm{d}t \end{split}$$

for any $\phi \in C_0^{\infty}(Q_T)$. From Lemma 3.5, we get

$$\left| \int_{Q_T} (w^{(n)} - u^{(n)}) \phi \mathrm{d}x \mathrm{d}t \right| \le Ch \to 0 \text{ as } n \to \infty.$$

This shows that $\rho = u$ a.e in Q_T . Therefore $f(w^{(n)}) \to f(u)$ a.e in Q_T due to the continuity of f. Also we have $\|f(w^{(n)})\|_{L^{p'}(Q_T)} < \infty$, by Lemma 3.5, so we get

$$f(w^{(n)}) \rightharpoonup f(u)$$
 weakly in $L^{p'}(Q_T)$.

From (3.10) and (3.6), we have

$$\begin{split} &\int_{0}^{T} < \frac{\partial u^{(n)}}{\partial t}, \phi > dt \\ &\leq -\int_{Q_{T}} |\nabla w^{(n)}|^{p-2} \nabla w^{(n)} \nabla \phi dx dt - \int_{Q_{T}} a(x) |w^{(n)}|^{p-2} w^{(n)} \phi dx dt \\ &-\int_{Q_{T}} |\nabla w^{(n)}|^{q-2} \nabla w^{(n)} \nabla \phi dx dt - \int_{Q_{T}} b(x) |w^{(n)}|^{q-2} w^{(n)} \phi dx dt \\ &+ \int_{Q_{T}} (f(w^{(n)}) + g) \phi dx dt + h \int_{\Omega} f(u_{0}) \phi dx - \int_{(n-1)h}^{T} \int_{\Omega} f(u_{n}) \phi dx dt, \end{split}$$

for any $\phi \in C_0^{\infty}(Q_T)$. Letting $n \to \infty$, we get

$$\begin{split} \int_0^T \langle \frac{\partial u}{\partial t}, \phi \rangle dt &= -\int_{Q_T} \zeta \nabla \phi dx dt - \int_{Q_T} a(x) |u|^{p-2} u \phi dx dt \\ &- \int_{Q_T} b(x) |u|^{q-2} u \phi dx dt + \int_{Q_T} f(u) \phi dx dt \\ &+ \int_{Q_T} g \phi dx dt. \end{split}$$

Next we will show that $\zeta = |\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u$. For that take $\phi = u$ as the test function in (3.4), to obtain

$$\begin{split} \frac{1}{h} \int_{\Omega} &(u_k - u_{k-1}) u dx + \int_{\Omega} |\nabla u_k|^{p-2} \nabla u k \nabla u dx + \int_{\Omega} a(x) |u_k|^{p-2} u_k u dx \\ &+ \int_{\Omega} |\nabla u_k|^{q-2} \nabla u_k \nabla u dx + \int_{\Omega} b(x) |u_k|^{q-2} u_k u dx \\ &= \int_{\Omega} f(u_{k-1}) u dx + \int_{\Omega} g u dx. \end{split}$$

Multiply by $\chi_k(t)$, take summation on both sides over the limits k = 1 to n and use the definition of $w^{(n)}$ to get

$$\begin{split} \frac{1}{h} \int_{Q_T} (w^{(n)} - u_0) u dx dt &+ \int_{Q_T} |\nabla w^{(n)}|^{p-2} \nabla w^{(n)} \nabla u dx dt \\ &+ \int_{Q_T} a(x) |w^{(n)}|^{p-2} w^{(n)} u dx dt + \int_{Q_T} |\nabla w^{(n)}|^{q-2} \nabla w^{(n)} \nabla u dx dt \\ &+ \int_{Q_T} b(x) |w^{(n)}|^{q-2} w^{(n)} u dx dt \\ &= \int_{Q_T} f(w^{(n)}) u dx dt + h \int_{\Omega} f(u_0) u_0 dx \end{split}$$

V. Bhuvaneswari, L. Shangerganesh, K. Balachandran and J.K. Kim

$$-\int_{(n-1)h}^{T} \int_{\Omega} f(u_n) u_n dx dt + \int_{Q_T} gu dx dt.$$
(3.11)

Taking limit as $n \to \infty$, we have

$$\frac{1}{2} \int_{\Omega} |u(x,T)|^2 dx - \frac{1}{2} \int_{\Omega} |u_0|^2 dx + \int_{Q_T} \zeta \nabla u dx dt
+ \int_{Q_T} a(x) |u|^p dx dt + \int_{Q_T} b(x) |u|^q dx dt
= \int_{Q_T} f(u) u dx dt + \int_{Q_T} g u dx dt.$$
(3.12)

Putting $u = w^{(n)}$ in (3.11), one can obtain

$$\frac{1}{2} \int_{\Omega} |w^{(n)}(x,T)|^2 dx - \frac{1}{2} \int_{\Omega} |u_0|^2 dx + \int_{Q_T} |\nabla w^{(n)}|^p dx dt \\
+ \int_{Q_T} a(x) |w^{(n)}|^p dx dt + \int_{Q_T} |\nabla w^{(n)}|^q dx dt + \int_{Q_T} b(x) |w^{(n)}|^q dx dt \\
= \int_{Q_T} (f(w^{(n)}) + g) w^{(n)} dx dt + h \int_{\Omega} f(u_0) u_0 dx \\
- \int_{(n-1)h}^T \int_{\Omega} f(u_n) u_n dx dt.$$
(3.13)

Consider the elementary inequality [7] as follows:

$$\int_0^T \int_\Omega \Big[((|\alpha|^{p-2}\alpha - |\beta|^{p-2}\beta)(\alpha - \beta)) + ((|\gamma|^{q-2}\gamma - |\delta|^{q-2}\delta)(\gamma - \delta)) \Big] dxdt$$

$$\geq 0,$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{R}^n$. In the above inequality, substitute $\alpha = \gamma = \nabla w^{(n)}$ and $\beta = \delta = \nabla (u - \epsilon \phi)$, to get

$$\begin{split} &\int_{Q_T} (|\nabla w^{(n)}|^{p-2} \nabla w^{(n)} - |\nabla (u - \epsilon \phi)|^{p-2} \nabla (u - \epsilon \phi)) (\nabla w^{(n)} - \nabla (u - \epsilon \phi)) \\ &+ (|\nabla w^{(n)}|^{q-2} \nabla w^{(n)} - |\nabla (u - \epsilon \phi)|^{q-2} \nabla (u - \epsilon \phi)) (\nabla w^{(n)} - \nabla (u - \epsilon \phi)) dx dt \\ &\geq 0. \end{split}$$

Further, doing simple calculations and using (3.13), we obtain

$$\begin{split} &-\frac{1}{2}\int_{\Omega}|w^{(n)}(x,T)|^{2}dx+\frac{1}{2}\int_{\Omega}|u_{0}|^{2}dx-\int_{Q_{T}}a(x)|w^{(n)}|^{p}dxdt\\ &-\int_{Q_{T}}b(x)|w^{(n)}|^{q}dxdt+\int_{Q_{T}}f(w^{(n)})w^{(n)}dxdt+h\int_{\Omega}f(u_{0})u_{0}dx\\ &-\int_{(n-1)h}^{T}\int_{\Omega}f(u_{n})u_{n}dxdt+\int_{Q_{T}}gw^{(n)}dxdt\\ &-\int_{Q_{T}}(|\nabla(u-\epsilon\phi)|^{p-2}\nabla(u-\epsilon\phi)+|\nabla(u-\epsilon\phi)|^{q-2}\nabla(u-\epsilon\phi))\nabla w^{(n)}dxdt\\ &+\int_{Q_{T}}|\nabla(u-\epsilon\phi)|^{p}dxdt+\int_{Q_{T}}|\nabla(u-\epsilon\phi)|^{q}dxdt\\ &-\int_{Q_{T}}(|\nabla w^{(n)}|^{p-2}\nabla w^{(n)}+|\nabla w^{(n)}|^{q-2}\nabla w^{(n)})\nabla(u-\epsilon\phi)dxdt\geq 0. \end{split}$$

Taking limit as $n \to \infty$ in the above inequality, using (3.12) and simple calculation lead to

$$\begin{split} &-\int_{Q_T} \zeta \nabla u dx dt - \int_{Q_T} |\nabla (u - \epsilon \phi)|^p dx dt - \int_{Q_T} |\nabla (u - \epsilon \phi)|^q dx dt \\ &+ \int_{Q_T} |\nabla (u - \epsilon \phi)|^p dx dt + \int_{Q_T} |\nabla (u - \epsilon \phi)|^q dx dt \\ &+ \epsilon \int_{Q_T} |\nabla (u - \epsilon \phi)|^{p-2} \nabla (u - \epsilon \phi) \nabla \phi dx dt + \int_{Q_T} \zeta \nabla u dx dt \\ &+ \epsilon \int_{Q_T} |\nabla (u - \epsilon \phi)|^{q-2} \nabla (u - \epsilon \phi) \nabla \phi dx dt - \epsilon \int_{Q_T} \zeta \nabla \phi dx dt \leq 0. \end{split}$$

Taking ϵ sufficiently small and simplifying, we get

$$\int_{Q_T} (|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u - \zeta) \nabla \phi dx dt \le 0$$

For any $\phi \in C_0^{\infty}(Q_T)$, we get

$$|\nabla u|^{p-2}\nabla u + |\nabla u|^{q-2}\nabla u = \zeta$$
 a.e in Q_T .

References

- G.A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Existence of multiple solutions for a class of p-q Laplacian systems, Nonlinear Anal., 72 (2010), 2243-2250.
- [2] G.A. Afrouzi and M. Mirzapour, Existence results for a class of p-q Laplacian systems, Nonlinear Anal. Model. Control, 15 (2010), 397-403.

- [3] G.A. Afrouzi and S.H. Rasouli, A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system, Nonlinear Anal., 71 (2009), 445-455.
- [4] C.O. Alves and D.G. Figureiredo, Nonvariational elliptic systems via Galerkin methods, function spaces, differential operators and nonlinear analysis, Birkhauser Berlag Base, 1 (2003), 475-489.
- [5] V. Bhuvaneswari, L. Shangerganesh and K. Balachandran, Weak solutions for p-Laplacian equation, Adv. Nonlinear Anal., in press.
- [6] L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equation with p-q Laplacian, Comm. Pure Appl. Anal., 4 (2005), 9-22.
- [7] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
- [8] L.C. Evans, *Partial Differential Equations*, American Mathematical Society, Providence, 1998.
- [9] G.M. Figueiredo, Existence of positive solutions for a class of p&q elliptic problems with critical growth on Rⁿ, J. Math. Anal. Appl., **378** (2011), 507-518.
- [10] C. He and G. Li, The existence of a nontrivial solution to the p-q Laplacian problem with nonlinearity asymptotic to u^{p-1} at infinity in \mathbb{R}^n , Nonlinear Anal., **68** (2008), 1100-1119.
- [11] C. Li and C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the p-q Laplacian, Nonlinear Anal., 69 (2008), 3322-3329.
- [12] G. Li and X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of p-q Laplacian type on \mathbb{R}^n , Nonlinear Anal., **71** (2009), 2316-2334.
- [13] G. Li and G. Zhang, Multiple solutions for the p&q Laplacian problem with critical exponent, Acta Math. Sci., 29 (2009), 903-918.
- [14] L. Li and C.-L. Tang, Existence of three solutions for p-q biharmonic systems, Nonlinear Anal., 73 (2010), 796-805.
- [15] S.H. Rasouli, Z. Halimi and Z. Mashhadban, A remark on the existence of positive weak solution for a class of p-q Laplacian nonlinear system with sign-changing weight, Nonlinear Anal., 73 (2010), 385-389.
- [16] M. Renardy and R.C. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag, New York, 2004.
- [17] B. Liang and S. Zheng, Existence and asymptotic behavior of solutions to a nonlinear parabolic equation of fourth order, J. Math. Anal. Appl., 348 (2008), 234-243.
- [18] M. Xu and S. Zhou, Existence and uniqueness of weak solutions for a generalized thin film equation, Nonlinear Anal., 60 (2005), 755-774.