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Abstract. We consider the nonlinear matrix equation (NMEs) of the form U = Q +∑k
i=1A

∗
i ~(U)Ai, where Q is n × n Hermitian positive definite matrices (HPDS), A1, A2,

. . . , Am are n × n matrices, and ~ is a nonlinear self-mappings of the set of all Hermitian
matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring
the existence of a unique positive definite solution of a given NME and demonstrate this
sufficient condition for a NME

U = Q+A∗1(U2/900)A1 +A∗2(U2/900)A2 +A∗3(U2/900)A3.

In order to do this, we define FGw-contractive conditions and derive fixed points results based

on aforesaid contractive condition for a mapping in extended Branciari b-metric distance

followed by two suitable examples. In addition, we introduce weak well-posed property,

weak limit shadowing property and generalized Ulam-Hyers stability in the underlying space

and related results.
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1. Preliminaries

Let R denote the set of real numbers, R+ := [0,+∞), N the set of natural
numbers, and N∗ := N ∪ {0}.

1.1. Positive definite solution of NME. The study of nonlinear matrix
equations (NME) appeared first in the literature concerned with algebraic
Riccati equation. These equations occur in large number of problems in control
theory, dynamical programming, ladder network, stochastic filtering, queuing
theory, statistics and many other applicable areas.

Let H(n) (resp. K(n), P(n)) denote the set of all n × n Hermitian (resp.
positive semi-definite, positive definite) matrices over C and M(n) the set of
all n × n matrices over C. In [31], Ran and Reurings discussed the existence
of solutions of the following equation:

U + B∗~(U)B = Q (1.1)

in K(n), where B ∈M(n), Q is positive definite and ~ is a mapping from K(n)
into M(n). Note that U is a solution of (1.1) if and only if it is a fixed point
of the mapping G(U) = Q− B∗~(U)B.

In [32], they used the notion of partial ordering and established a modifica-
tion of Banach contraction principle, which they applied for solving a class of

NMEs of the form U = Q+
∑k

i=1 B∗i ~(U)Bi using the Ky Fan norm in M(n).

Theorem 1.1. ([32]) Let ~ : H(n)→ H(n) be an order-preserving, continuous
mapping which maps P(n) into itself and Q ∈ P(n). If Bi,B∗i ∈ P(n) and∑k

i=1 BiB∗i < M · In for some M > 0 (In -the unit matrix in M(n)) and if

| tr(~(V)− ~(U))| ≤ 1

M
| tr(Y − X )|,

for all X ,Y ∈ H(n) with U ≤ V, then the equation

U = Q+
k∑
i=1

B∗i ~(U)Bi

has a unique positive definite solution (PDS).

In [34], Sawangsup and Sintunavarat studied the NME of the form U =

Q+
∑k

i=1 B∗i ~(U)Bi using the spectral norm of a matrix, and applied a gener-
alized contraction condition in metric spaces endowed with a transitive binary
relation, they also tested numerically its approximate solutions. In the papers
[3, 14, 15], the authors discussed on PDS’s of a pair of NMEs. Recently, in [12],
Garai and Dey obtained sufficient conditions for the existence and uniqueness
of solution for a system of NMEs, using common fixed point results in Banach
spaces under conditions with a pair of altering distance functions.
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1.2. Generalized metric spaces. The distance notion in the metric fixed
point theory is introduced and generalized in several different ways by many
authors [4, 16, 17, 19, 21, 22]. Bakhtin [2] define the notion of b-metric space
which is further used by Czerwik in [7, 8]. Kamran et al. [17] introduced the
notion of extended b-metric space while Banciari [5] extended the metric space
and introduced the notion of Branciari distance by changing the property of
triangle inequality with quadrilateral one.

Definition 1.2. Let Ξ 6= ∅ be a set and w : Ξ2 → R+\(0, 1). We say that a
function ρe : Ξ2 → R+ is said to be an extended b-metric (ρe-metric, in short)
if it satisfies:

(eb1) ρe(ϑ, ν) = 0 if and only if ϑ = ν;
(eb2) ρe(ϑ, ν) = ρe(ν, ϑ) (symmetry);
(eb3) ρe(ϑ, ν) ≤ w(ϑ, ν)[ρe(ϑ, υ) + ρe(υ, ν)]

for all ϑ, ν, υ ∈ Ξ. The symbol (Ξ, ρe) denotes a ρe-metric space.

Definition 1.3. Let Ξ 6= ∅ be a set and let b : Ξ2 → R+ such that, for all
ϑ, ν ∈ Ξ and all u, v ∈ Ξ\{ϑ, ν},
(bd1) b(ϑ, ν) = 0 if and only if ϑ = ν (self-distance/indistancy);
(bd2) b(ϑ, ν) = b(ν, ϑ) (symmetry);
(bd3) b(ϑ, ν) ≤ b(ϑ, u) + b(u, v) + b(v, ν) (quadrilateral inequality).

The symbol (Ξ, b) denotes Branciari distance space and abbreviated as “BDS”.

Recently Abdeljawad et al. [1] define the notion of extended Branciari b-
distance space by combining, extended b-metric and Branciari distance.

Definition 1.4. Let Ξ 6= ∅ be a set and w : Ξ2 → R+\(0, 1). We say that a
function eb : Ξ2 → R+ is an extended Branciari b-metric (eb-metric, in short)
if it satisfies:

(ebb1) eb(ϑ, υ) = 0 if and only if ϑ = υ,
(ebb2) eb(ϑ, υ) = eb(υ, ϑ),
(ebb3) eb(ϑ, υ) ≤ w(ϑ, υ)[eb(ϑ, ν) + eb(ν, %) + eb(%, υ)]

for all ϑ, υ ∈ S all distinct ν, % ∈ Ξ\{ϑ, υ}. The symbol (Ξ, eb) denotes ex-
tended Branciari b-distance space (EBbDS, in short). For w(ϑ, υ) = 1, (Ξ, eb)
will be called a Branciari b-distance space (BbDS, in short).

Example 1.5. Let Ξ = C([0, 1], R) and define eb : Ξ2 → R+ by

eb(P, Q) =

∫ 1

0
(P (t)−Q(t))2dt

with w(P,Q) = |P (t)|+ |Q(t)|+ 2. Note that eb(P, Q) ≥ 0 for all P, Q ∈ Ξ,
and eb(P, Q) = 0 if and only if P = Q. Also eb(P, Q) = eb(Q, P ). Hence it
is clear that (Ξ, eb) is an EBbDS, but it is neither an BDS nor metric space.
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Definition 1.6. ([1]) Let Ξ 6= ∅ be a set endowed with extended Branciari
b-distance eb.

(a) A sequence {ϑn} in Ξ converges to ϑ if for every ε > 0 there exists
N = N(ε) ∈ N such that eb(ϑn, ϑ) < ε for all n ≥ N . For this
particular case, we write limn→∞ ϑn = ϑ.

(b) A sequence {ϑn} in Ξ is called Cauchy if for every ε > 0 there exists
N = N(ε) ∈ N such that eb(ϑm, ϑn) < ε for all m,n ≥ N .

(c) A eb-metric space (Ξ, eb) is complete if every Cauchy sequence in S is
convergent.

2. FGw-contractive mapping and based results

Definition 2.1. ([25]) The collection of all functions F : R+ → R satisfying:

(F1) F is continuous and strictly increasing;
(F2) for each {ξn} ⊆ R+, lim

n→∞
ξn = 0 iff lim

n→∞
F(ξn) = −∞,

will be denoted by F.

The collection of all pairs of mappings (G, β), where G : R+ → R, β : R+ →
[0, 1), satisfying:

(F3) for each {ξn} ⊆ R+, lim sup
n→∞

G(ξn) ≥ 0 iff lim sup
n→∞

ξn ≥ 1;

(F4) for each {ξn} ⊆ R+, lim sup
n→∞

β(ξn) = 1 implies lim
n→∞

ξn = 0;

(F5) for each {ξn} ⊆ R+,
∑∞

n=1 G(β(ξn)) = −∞,

will be denoted by Gβ.

Definition 2.2. Let (Ξ, eb) be an EBbDS and = : Ξ→ Ξ be a mapping. We
say = is an FGw-contractive mapping if there exist F ∈ F and (G, β) ∈ Gβ,
such that for all ϑ, ν ∈ Ξ and eb(=ϑ,=ν) > 0,

F(w(ϑ, ν)reb(=ϑ,=ν)) ≤ F(Mw(ϑ, ν)) + G(β(Mw(ϑ, ν))), (2.1)

where r ≥ 2 and

Mw(ϑ, ν) = max

{
eb(ϑ, ν), eb(ϑ,=ϑ), eb(ν,=ν),

eb(ν,=ν)[1 + eb(ϑ,=ϑ)]

w(ϑ, ν)[1 + eb(ϑ, ν)]

}
.

(2.2)

The set of all fixed points of a self-mapping = on a set Ξ 6= ∅ will be denoted
by Fix(=).

Theorem 2.3. Let (Ξ, eb) be a complete EBbDS and = : Ξ → Ξ be an FGw-
contractive mapping for F ∈ F, (G, β) ∈ Gβ. Then Fix(=) is a singleton
set. Furthermore, for any ϑ0 ∈ Ξ, the sequence ϑn satisfying ϑn = =ϑn−1 is
convergent.
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Proof. We first show that = has at most one fixed point. Let us suppose that
ϑ and ϑ∗ are two different fixed points of =. That is, =ϑ∗ = ϑ∗ 6= ϑ = =ϑ. It
follows that

eb(=ϑ,=ϑ∗) = eb(ϑ, ϑ
∗) > 0.

Since = : Ξ → Ξ be an FG-contractive for F ∈ F and (G, β) ∈ Gβ, we can
write

F(w(ϑ, ϑ∗)reb(=ϑ,=ϑ∗)) ≤ F(Mw(ϑ, ϑ∗)) + G(β(Mw(ϑ, ϑ∗))), (2.3)

where r ≥ 2 and

Mw(ϑ, ϑ∗) = max

{
eb(ϑ, ϑ

∗), eb(ϑ,=ϑ), eb(ϑ
∗,=ϑ∗),

eb(ϑ∗,=ϑ∗)[1+eb(ϑ,=ϑ)]
w(ϑ,ϑ∗)[1+eb(ϑ,ϑ∗)]

}
= max {eb(ϑ, ϑ∗), 0, 0, 0}
= eb(ϑ, ϑ

∗).

Therefore,

F(eb(ϑ, ϑ
∗)) ≤ F(w(ϑ, ϑ∗)reb(=ϑ,=ϑ∗)) ≤ F(eb(ϑ, ϑ

∗)) + G(β(eb(ϑ, ϑ
∗)))

which implies

G(β(eb(ϑ, ϑ
∗))) ≥ 0,

that is,

β(eb(ϑ, ϑ
∗) ≥ 1,

which is a contradiction. Hence = has at most one fixed point.
Next, we prove the existence of fixed points of =. For any ϑ0 ∈ Ξ we set

ϑn = =ϑn−1. Now, we discuss the two cases:

Case I. Let there exists n0 ∈ N such that ϑn0 = ϑn0−1 then we have =ϑn0−1 =
ϑn0−1. This shows ϑn0−1 a fixed point of =. And the proof is established.

Case II. If ϑn 6= ϑn−1 for all n ∈ N then we have eb(ϑn, ϑn−1) > 0 and so we
can write

F(eb(=ϑn,=ϑn−1)) ≤ F(w(ϑn, ϑn−1)reb(=ϑn,=ϑn−1))

≤ F(Mw(ϑn, ϑn−1)) + G(β(Mw(ϑn, ϑn−1))),

where

Mw(ϑn−1, ϑn) = max

{
eb(ϑn, ϑn−1), eb(ϑn,=ϑn), eb(ϑn−1,=ϑn−1),

eb(ϑn,=ϑn)[1+eb(ϑn−1,=ϑn−1)]
w(ϑn−1,ϑn)[1+eb(ϑn−1,ϑn)]

}

= max

{
eb(ϑn, ϑn−1), eb(ϑn,=ϑn), eb(ϑn−1,=ϑn−1),

eb(ϑn,ϑn+1)
w(ϑn−1,ϑn)

}
≤ max

{
eb(ϑn, ϑn−1), eb(ϑn, ϑn+1)

}
.
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If Mw(ϑn, ϑn−1) = eb(ϑn, ϑn+1), then

F(eb(ϑn, ϑn+1)) ≤ F(eb(ϑn, ϑn+1)) + G(β(eb(ϑn, ϑn+1)))

which implies

G(β(eb(ϑn, ϑn+1))) ≥ 0,

that is,

β(eb(ϑn, ϑn+1)) ≥ 1,

which is a contradiction. Therefore

eb(ϑn, ϑn+1) ≤ eb(ϑn−1, ϑn), ∀n ∈ N

and so

F(eb(ϑn, ϑn+1)) ≤ F((w(ϑn, ϑn−1)reb(ϑn, ϑn+1))

≤ F(eb(ϑn−1, ϑn)) + G(β(eb(ϑn−1, ϑn)))

for all n ∈ N. Consequently, we have

F(eb(ϑn−1, ϑn)) ≤ F(eb(ϑn−2, ϑn−1)) + G(β(eb(ϑn−2, ϑn−1)))

...

≤ F(eb(ϑ0, ϑ1)) +
i=n∑
i=1

G(β(eb(ϑi, ϑi−1))).

Letting n→∞ gives limn→∞F(eb(ϑn−1, ϑn)) = −∞ and F ∈ F gives

lim
n→∞

eb(ϑn−1, ϑn)) = 0. (2.4)

We will now show that the sequence {ϑn} is Cauchy in (Ξ, eb). On the
contrary, we suppose that there exist ζ > 0 and two subsequences {ϑn(j)} and
{ϑm(j)} of {ϑn} such that n(j) is the smallest index for which n(j) > m(j) > j
and

eb(ϑn(j), ϑm(j)) ≥ ζ. (2.5)

This means that m(j) > n(j) > j and

eb(ϑm(j), ϑn(j)−2) < ζ. (2.6)

Letting the upper limit as j →∞, we get

lim sup
j→∞

eb(ϑm(j), ϑn(j)−2) ≤ ζ. (2.7)

On the other hand

eb(ϑn(j), ϑm(j)) ≤ w(ϑm(j), ϑn(j))

 eb(ϑm(j), ϑm(j)+1)
+eb(ϑm(j)+1, ϑn(j)+1)

+eb(ϑn(j)+1, ϑn(j))

 .
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Taking the upper limit as j →∞, and making use of (2.4) and (2.5), we get

ζ

lim supj→∞w(ϑm(j), ϑn(j))
≤ lim sup

j→∞
eb(ϑm(j)+1, ϑn(j)+1). (2.8)

Similarly we have

lim sup
j→∞

eb(ϑm(j), ϑn(j)) ≤ ζ lim sup
j→∞

w(ϑm(j), ϑn(j)). (2.9)

So we can write

Mw(ϑm(j), ϑn(j))

= max

{
eb(ϑm(j), ϑn(j)), eb(ϑm(j),=ϑm(j)), eb(ϑn(j),=ϑn(j)),

eb(ϑn(j),=ϑn(j))[1+eb(ϑm(j),=ϑm(j)]

w(ϑm(j),ϑn(j))[1+eb(ϑm(j),ϑn(j))]

}

= max

{
eb(ϑm(j), ϑn(j)), eb(ϑm(j), ϑm(j)+1), eb(ϑn(j), ϑn(j)+1),

eb(ϑn(j),ϑn(j)+1)[1+eb(ϑm(j),ϑm(j)+1]

w(ϑm(j),ϑn(j))[1+eb(ϑm(j),ϑn(j))]

}
.

Taking upper limit as j →∞ and making use of (2.4), (2.8) and (2.9), we get

lim sup
j→∞

Mw(ϑm(j), ϑn(j)) = lim sup
j→∞

eb(ϑm(j), ϑn(j))

< ζ lim sup
j→∞

w(ϑm(j), ϑn(j)). (2.10)

Therefore, from (2.3), (2.4) and (2.10), we have

F(ζ lim sup
j→∞

w(ϑm(j), ϑn(j)))

≤ F

(
lim sup
j→∞

w(ϑm(j), ϑn(j))
r ζ

lim supj→∞w(ϑm(j), ϑn(j))

)
≤ F(lim sup

j→∞
w(ϑm(j), ϑn(j))

r lim sup
j→∞

eb(ϑm(j)+1, ϑn(j)+1))

≤ lim sup
j→∞

F(Mw(ϑm(j), ϑn(j))) + lim sup
→∞

G(β(Mw(ϑm(j), ϑn(j))))

≤ F(ζ lim sup
j→∞

w(ϑm(j), ϑn(j))) + lim sup
→∞

G(β(Mw(ϑm(j), ϑn(j)))),

which implies that

lim sup
→∞

G(β(Mw((ϑm(j), ϑn(j)))) ≥ 0,

which gives

lim sup
j→∞

β(Mw(ϑm(j), ϑn(j))) ≥ 1,
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and taking in account that β(ξ) < 1 for all ξ ≥ 0, we have

lim sup
→∞

β(Mw(ϑm(j), ϑn(j))) = 1.

Therefore, lim sup
→∞

Mw(ϑm(j), ϑn(j)) = 0, which is a contradiction. Hence,

{ϑn} is a Cauchy sequence in Ξ. The completeness of Ξ implies that there
exists ϑ∗ ∈ Ξ such that limn→∞ eb(ϑn, ϑ

∗) = 0. On the other hand assuming
eb(ϑn, ϑ

∗) > 0 and making use of (F1) with (2.3) we have

F(eb(ϑn+1,=ϑ∗)) ≤ F(w(ϑn, ϑ
∗)reb(=ϑn,=ϑ∗))

≤ F(Mw(ϑ, ϑ∗)) + G(β(Mw(ϑ, ϑ∗))), (2.11)

where r ≥ 2 and

Mw(ϑn, ϑ
∗) = max

{
eb(ϑn, ϑ

∗), eb(ϑn,=ϑn), eb(ϑ
∗,=ϑ∗),

eb(ϑ∗,=ϑ∗)[1+eb(ϑn,=ϑn)]
w(ϑn,ϑ∗)[1+eb(ϑn,ϑ∗)]

}
, (2.12)

that is,
lim
n→∞

Mw(ϑn, ϑ
∗) = eb(ϑ

∗,=ϑ∗).

Applying n→∞ in (2.11) and (2.12), we get

F(eb(ϑ,=ϑ∗)) ≤ F(eb(ϑ
∗,=ϑ∗) + G(β(eb(ϑ

∗,=ϑ∗)),
which gives

G(lim sup
n→∞

β(eb(ϑ
∗,=ϑ∗)) ≥ 1,

and taking in account that β(ξ) < 1 for all ξ ≥ 0, we have

β(eb(ϑ
∗,=ϑ∗) ≥ 1,

which is a contradiction. So eb(ϑ
∗,=ϑ∗) = 0, that is, ϑ∗ = =ϑ∗. �

Example 2.4. Let Ξ = K ∪ L, where K = {1
2 ,

1
3 ,

1
4 ,

1
5} and L = [1, 2]. Define

eb : Ξ2 → R+ such that eb(ϑ, ν) = eb(ν, ϑ) for all ϑ, ν ∈ Ξ, and

eb(
1

2
,
1

3
) = 0.06, eb(

1

2
,
1

4
) = 0.02, eb(

1

2
,
1

5
) = 0.02,

eb(
1

3
,
1

4
) = 0.03, eb(

1

3
,
1

5
) = 0.01, eb(

1

5
,
1

4
) = 0.01,

eb(ϑ, ν) = (ϑ−ν)2 otherwise. Then (Ξ, eb) is a EBbDS with w(ϑ, ν) = ϑ+ν+2
but it is not a BDS (Ξ, b) and metric space (Ξ, d) as well. For instances

eb(
1

2
,
1

3
) = 0.06 6≤ 0.05 = eb(

1

2
,
1

4
) + eb(

1

4
,
1

3
)

and

eb(
1

2
,
1

3
) = 0.06 6≤ 0.04 = eb(

1

2
,
1

4
) + eb(

1

4
,
1

5
) + eb(

1

5
,
1

3
)
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but

eb(
1

2
,
1

4
) = 0.06 ≤ 0.1133 = w(ϑ, υ)

[
eb(

1

2
,
1

4
) + eb(

1

4
,
1

5
) + eb(

1

5
,
1

3
)

]
.

Consider the self-mapping = on Ξ given by

=(ϑ) =

{
1
4 , if ϑ ∈ K,
1
5 , if ϑ ∈ L.

Taking F(ζ) = ln ζ, β(ζ) = e−τ , G(ζ) = ln ζ (ζ > 0), τ = ln( 1
k ), where r > 2

and k < 1 are chosen so that (2.3) would be of the form

25

16

(9

2

)r 1

50
< k (2.13)

(it is easy to see that such coefficients exist). That is, we have to check that(9

2

)r
eb(=ν,=ϑ) < kMw(ν, ϑ) (2.14)

holds whenever eb(=ϑ,=ν) > 0.

We will check that = satisfy (2.14). There are two non-trivial possible cases
when eb(=ν,=ϑ) > 0. Here w(ϑ, ν) ∈ [16

5 ,
9
2 ].

Case 1. ϑ = 1
2 , ν = 2. Then eb(=ϑ,=ν) = 0.01 and

Mw(ϑ, ν) = max

{
9

4
, 0.06,

81

25
, 0.23483

}
=

81

25
,

and it is easily seen that (2.14) is fulfilled.

Case 2. ϑ = 1
2 , ν = 1. Then eb(=ϑ,=ν) = 0.01 and

Mw(ϑ, ν) = max

{
1

4
, 0.06,

16

25
, 0.1206

}
=

16

25
,

and again (2.14) holds true.
Thus, all the conditions are fulfilled and the = have a unique fixed point,

which is ϑ∗ = 1
3 .

Example 2.5. Consider Ξ = [0, 1] and define eb : Ξ2 → R+ by eb(ϑ, ν) =
|ϑ − ν|2. Then (Ξ, eb) is a EBbDS with w(ϑ, ν) = ϑ + ν + 5

2 but it is not a
BDS (Ξ, b) and metric space (Ξ, d) as well. For instances

eb(0, 1) = 1 6≤ 1

2
= eb(0,

1

2
) + eb(

1

2
, 1)

and

eb(0, 1) = 1 6≤ 0.4902 = eb(0,
1

2
) + eb(

1

2
, 0.99) + eb(0.99, 1)
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but

eb(ϑ, ν) = |ϑ− ν|2

= |ϑ− µ+ µ− υ + υ − ν|2

≤ |ϑ− µ|2 + |µ− υ|2 + |υ − ν|2 + 2|ϑ− µ||µ− υ|
+ 2|µ− υ||υ − ν|+ 2|υ − ν||ϑ− µ|

≤
(
ϑ+ ν +

5

2

)
[|ϑ− µ|2 + |µ− υ|2 + |υ − ν|2]

= w(ϑ, ν)[eb(ϑ, µ) + eb(µ, υ) + eb(υ, ν)]

for all ϑ, ν, µ, υ ∈ Ξ.

Consider the self-mapping = on Ξ given by =(ϑ) = ϑ
5 . Taking β(ζ) = e−τ ,

G(ζ) = ln ζ and F(ζ) = −1/
√
ζ (ζ > 0) in (2.3), then we have to check that

w(ϑ, ν)reb(=ϑ,=ν) ≤ Mw(ϑ, ν)

[1 + τMw(ϑ, ν)]2
(2.15)

holds whenever eb(=ϑ,=ν) > 0.

For ϑ 6= ν, eb(=ϑ,=ν) = |ϑ−ν|2
25 > 0 and

Mw(ϑ, ν) = max

{
|ϑ− ν|2, |ϑ−=ϑ|2, |ν −=ν|2, |ν−=ν|

2[1 + |ϑ−=ϑ|]
(ϑ+ν+ 5

2)[1 + |ϑ− ν|2]

}
= |ϑ− ν|2, for all ϑ, ν ∈ Ξ.

Then (2.15) will be(
ϑ+ ν +

5

2

)r |ϑ− ν|2
25

≤ |ϑ− ν|2

[1 + τ |ϑ− ν|2]
,

that is, (
ϑ+ ν +

5

2

)r
[1 + τ |ϑ− ν|2] ≤ 25,

which is true for any ϑ, ν ∈ Ξ, and for some r > 2 and τ > 0. Thus, all the
conditions are fulfilled and the Fix(=) = {0} is a singleton set.

Several results can be obtained from Theorem 2.3 by taking various possible
choices for functions F , G and β.

Corollary 2.6. Let all the conditions of Theorem 2.3 be satisfied, except that
the FGw-contractive condition is replaced by Geraghty-type [10, 13] condition
of the form : for all ν, ϑ ∈ Ξ, eb(=ϑ,=ν) > 0,

w(ϑ, ν)reb(=ϑ,=ν) ≤ β(Mw(ϑ, ν))Mw(ϑ, ν) (2.16)

where r ≥ 2, and Mw(ϑ, ν) is given in (2.4) holds. Then Fix(=) is a singleton.
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Proof. It is enough to take F(ξ) = G(ξ) = ln ξ (ξ > 0) in (2.3). �

Similar type of corollaries can be constructed for Corollary 2.3.

3. Weak well-posed, weak limit shadowing,
generalized w-Ulam-Hyers stability

The notion of well-posedness of a fixed point problem (fpp) has evoked much
interest of several mathematicians, for example, Popa [27, 28] and other [30].
In the paper [6], authors defined a weak well-posed (wwp) property in BbDS.
In the following, we extend this notion to EBbDS.

Definition 3.1. Let (Ξ, eb) be a complete EBbDS and = : Ξ → Ξ be a
mapping. The fpp of = is said to be wwp if it satisfies:

(1) ϑ∗ ∈ Fix(=) is a singleton set in Ξ;
(2) for any sequence {ϑp} in Ξ with limp→∞ eb(ϑp,=(ϑp)) = 0 and

limp,q→∞ eb(=(ϑp),=(ϑq)) = 0, one has

lim
p→∞

eb(ϑp, ϑ
∗) = 0.

Theorem 3.2. Let (Ξ, eb) be a complete EBbDS and = : Ξ → Ξ be an
FGw-contractive mapping for F ∈ F, (G, β) ∈ Gβ with {ϑn} in Ξ such that
limn→∞ eb(ϑn,=ϑn) = 0, limn,m→∞ eb(=ϑn,=ϑm) = 0 and ϑ∗ ∈ Fix(=).
Then the fpp of = is wwp.

Proof. Let {ϑn} be a sequence in Ξ such that limn→∞ eb(ϑn,=(ϑn)) = 0 and
limn,m→∞ eb(=ϑn,=ϑm) = 0, for m > n we obtain from (ebb3) that

eb(ϑn, ϑ
∗) ≤ w(ϑn, ϑ

∗){eb(ϑn,=ϑm) + eb(=ϑm,=ϑn) + eb(=ϑn, ϑ∗)}.
Taking limit n→∞

lim
n→∞

eb(ϑn, ϑ
∗) ≤ lim

n→∞
w(ϑn, ϑ

∗){eb(ϑn,=ϑm) + eb(=ϑn, ϑ∗)}. (3.1)

Without loss of generality, we can assume that there exists a distinct sub-
sequence {=ϑnk

} of {=ϑn}. Otherwise, there exists ϑ0 ∈ Ξ and n1 ∈ N
such that =ϑn = ϑ0 for n ≥ n1. Since limn→∞ eb(ϑn,=ϑn) = 0, we get
limn→∞ eb(ϑn, ϑ0) = 0. If ϑ0 6= ϑ∗, then ϑ0 6= =ϑ0 duo to uniqueness of the
fixed point of =. For n ≥ n1, we obtain ϑ0 = =ϑn 6= =ϑ0. So we have

eb(ϑ0,=ϑ0) = eb(=ϑn,=ϑ0) ≤ w(ϑn, ϑ0)eb(=ϑn,=ϑ0).

Since F is non-dcreasing and continuous, we get

F(eb(ϑ0,=ϑ0)) ≤ F(w(ϑn, ϑ0)d(=ϑn,=ϑ0))

≤ F(w(ϑn, ϑ0)rd(=ϑn,=ϑ0))

≤ F(Mw(ϑn, ϑ0) + G(β(Mw(ϑn, ϑ0)),
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where

Mw(ϑn, ϑ0) = max

{
eb(ϑn, ϑ0), eb(ϑn,=ϑn), eb(ϑ0,=ϑ0),

eb(ϑ0,=ϑ0)[1+eb(ϑn,=ϑn)]
w(ϑn,ϑ0)[1+eb(ϑn,ϑ0)]

}
,

implies
lim
n→∞

Mw(ϑn, ϑ0) = eb(ϑ0,=ϑ0).

Therefore,

F( lim
n→∞

eb(ϑ0,=ϑ0)) ≤ F( lim
n→∞

eb(ϑ0,=ϑ0)) + lim
n→∞

G(β(eb(ϑ0,=ϑ0)) (3.2)

which gives
lim
n→∞

G(β(eb(ϑ0,=ϑ0)) ≥ 0

or
G(β(eb(ϑ0,=ϑ0)) ≥ 0.

This yields to
β(eb(ϑ0,=ϑ0) ≥ 1

and since β(ξ) < 1 for all ξ ≥ 0, we have

β(eb(ϑ0,=ϑ0)) = 1.

So eb(ϑ0,=ϑ0) = 0, that, ϑ0 = =ϑ0, which is a contradiction. Hence, there
exist m, q, n > n0 (m > q > n) such that

=ϑm 6= =ϑq 6= =ϑn 6= ϑn.

Then

eb(ϑn,=ϑm) ≤ w(ϑn,=ϑm){eb(ϑn,=ϑn) + eb(=ϑn,=ϑq) + eb(=ϑq,=ϑm)}
→ 0, as n→∞. (3.3)

On replacing the value in (3.1), we get

lim
n→∞

eb(ϑn, ϑ
∗) ≤ lim

n→∞
w(ϑn, ϑ

∗)eb(=ϑn, ϑ∗). (3.4)

Since F is non-decreasing and continuous, we have

lim
n→∞

F(eb(ϑn, ϑ
∗)) ≤ lim

n→∞
F(w(ϑn, ϑ

∗)eb(=ϑn,=ϑ∗))

≤ lim
n→∞

F(w(ϑn, ϑ
∗)reb(=ϑn,=ϑ∗))

≤ lim
n→∞

F(Mw(ϑn, ϑ
∗) + lim

n→∞
G(β(Mw(ϑn, ϑ

∗)),

where

Mw(ϑn, ϑ
∗) = max

{
eb(ϑn, ϑ

∗), eb(ϑn,=ϑn), eb(ϑ
∗,=ϑ∗),

eb(ϑ∗,=ϑ∗)[1+eb(ϑn,=ϑn)]
w(ϑn,ϑ∗)[1+eb(ϑn,ϑ∗)]

}
, (3.5)

implies
lim
n→∞

Mw(ϑn, ϑ
∗) = lim

n→∞
eb(ϑn, ϑ

∗).
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Then

F( lim
n→∞

eb(ϑn, ϑ
∗)) ≤ F( lim

n→∞
eb(ϑn, ϑ

∗)) + lim
n→∞

G(β(eb(ϑn, ϑ
∗)), (3.6)

which gives
lim
n→∞

G(β(eb(ϑn, ϑ
∗)) ≥ 0.

This yields to
lim
n→∞

β(eb(ϑn, ϑ
∗) ≥ 1

and since β(ξ) < 1 for all ξ ≥ 0, we have

lim
n→∞

β(eb(ϑn, ϑ
∗)) = 1.

Therefore limn→∞ eb(ϑn, ϑ
∗) = 0. This completes the proof. �

The limit shadowing property of fixed point problems has been discussed
in the papers [24, 33]. We define weak limit shadowing property (wlsp) in
EBbDS.

Definition 3.3. Let (Ξ, eb) be a complete EBbDS and = : Ξ → Ξ be a
mapping. The fpp of = is said to have wlsp in Ξ if assuming that {ϑn} in Ξ
satisfies eb(ϑn,=ϑn) → 0 as n → ∞ and eb(=ϑn,=ϑm) → 0, it follows that
there exists ϑ ∈ Ξ such that eb(ϑn,=nϑ)→ 0 as n→∞.

Theorem 3.4. Let (Ξ, eb) be a complete EBbDS and = : Ξ → Ξ be an
FGw-contractive mapping for F ∈ F, (G, β) ∈ Gβ with {ϑn} in Ξ such that
limn→∞ eb(ϑn,=ϑn) = 0, limn,m→∞ eb(=ϑn,=ϑm) = 0 and ϑ∗ ∈ Fix(=).
Then = has the wlsp.

Proof. Since ϑ∗ is a fixed point of =, we have eb(ϑ
∗,=ϑ∗) = 0 and let {ϑn} in

Ξ such that limn→∞ eb(ϑn,=ϑn) = 0, limn,m→∞ eb(=ϑn,=ϑm) = 0. Then by
virtue of Theorem 3.2, we have limn→∞ eb(ϑn, ϑ

∗) = 0 and therefore we can
gete limn→∞ eb(ϑn,=nϑ∗) = 0. �

Next, we define generalized w-Ulam-Hyers stability (GwUHS) of fpp in
EBbDS as an extension of b-metric space discussed in [11, 26] (see also [18,
20, 23]).

Definition 3.5. Let (Ξ, eb) be a complete EBbDS and = : Ξ → Ξ be a
mapping. The fixed point equation (FPE)

ϑ = =ϑ, ϑ ∈ Ξ (3.7)

is called Gw-UHS in the setting of EBbDS if there exists an increasing function
φ : R+ → R+, continuous at 0 with φ(0) = 0, such that for each ε > 0 and an
ε-solution υ ∈ Ξ, that is,

eb(υ,=υ) ≤ ε,
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there exists a solution ϑ∗ ∈ Ξ of (3.7) such that

eb(υ, ϑ
∗) ≤ φ(w(ϑ∗, υ)ε). (3.8)

If φ(ξ) = αξ for all ξ ∈ R+, where α > 0, then FPE (3.7) is said to be w-UHS
in the setting of EBbDS.

Remark 3.6. If w(ϑ, υ) = 1, then Definition 3.5 converted to the notion of
GUHS in BDS. Also, if φ(ξ) = αξ for all α ∈ R+, where α > 0, then it
converted to the notion of UHS in BDS. Also if eb(ϑ, υ) = |ϑ − υ|, then it is
reduced to the classical UHS.

Theorem 3.7. Let (Ξ, eb) be a complete EBbDS and = : Ξ → Ξ be an
Geraghty-type (2.16) contractive mapping for β ∈ (G, β) ∈ Gβ, and also that
the function ϕ : R+ → R+ defined by ϕ(ξ) := ξ[1− β(ξ)] is strictly increasing
and onto. Then the FPE (3.7) is Gw-UHS.

Proof. From Theorem 3.4, we have =ϑ∗ = ϑ∗, that is, ϑ∗ ∈ Ξ is a solution of
the FPE (3.7) with eb(ϑ

∗, ϑ∗) = 0. Let ε > 0 and υ∗ ∈ Ξ be an ε-solution of
FPE (3.7), that is,

eb(υ
∗,=υ∗) ≤ ε.

Since eb(ϑ
∗,=ϑ∗) = eb(ϑ

∗, ϑ∗) = 0 ≤ ε, ϑ∗ and υ∗ are ε-solutions. Since we
have w(ϑ∗, υ∗) ≥ 1 and so

eb(ϑ
∗, υ∗) ≤ w(ϑ∗, υ∗)[eb(ϑ

∗,=ϑ∗) + eb(=ϑ∗,=υ∗) + eb(=υ∗, υ∗)]
≤ w(ϑ∗, υ∗)eb(=ϑ∗,=υ∗) + εw(ϑ∗, υ∗)

≤ w(ϑ∗, υ∗)reb(=ϑ∗,=υ∗) + εw(ϑ∗, υ∗)

≤ β(Mw(ϑ∗, υ∗))Mw(ϑ∗, υ∗) + εw(ϑ∗, υ∗), (3.9)

where

Mw(ϑ∗, υ∗) = max

{
eb(ϑ

∗, υ∗), eb(ϑ
∗,=ϑ∗), eb(υ∗,=υ∗),

eb(υ∗,=υ∗)[1+eb(ϑ∗,=ϑ∗)]
w(ϑ∗,υ∗)[1+eb(ϑ∗,υ∗)]

}
≤ max

{
eb(ϑ

∗, υ∗), 0, ε, ε
w(ϑ∗,υ∗)[1+eb(ϑ∗,υ∗)]

}
= max

{
eb(ϑ

∗, υ∗), ε
}
.

Let us discuss the two possible cases.

Case I. If Mw(ϑ∗, υ∗) = eb(ϑ
∗, υ∗), then we get

eb(ϑ
∗, υ∗) ≤ β(eb(ϑ

∗, υ∗))eb(ϑ
∗, υ∗) + w(ϑ∗, υ∗)ε,

that is,

eb(ϑ
∗, υ∗)[1− β(eb(ϑ

∗, υ∗))] ≤ w(ϑ∗, υ∗)ε.
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Since ϕ(ξ) = ξ[1− β(ξ)], we have

ϕ(eb(ϑ
∗, υ∗)) ≤ w(ϑ∗, υ∗)ε,

which implies that

eb(ϑ
∗, υ∗) ≤ φ(w(ϑ∗, υ∗)ε),

where φ := ϕ−1 : R+ → R+ exists, is increasing, continuous at 0 and ϕ−1(0) =
0. Since 0 ≤ β(ξ) < 1, it is 0 ≤ ϕ(ξ) ≤ ξ, and so φ(ξ) ≥ ξ for ξ ∈ R+.

Case II. If Mw(ϑ∗, υ∗) = ε, then (3.9) gives that

eb(ϑ
∗, υ∗) ≤ ε ≤ w(ϑ∗, υ∗)ε ≤ φ(w(ϑ∗, υ∗)ε).

It shows that the inequality (3.8) is true for all cases and, thus the FPE (3.7)
is Gw-UHS. This completes the proof. �

4. Application to nonlinear matrix equations

Denote s(U), any singular value of a matrix U , and the trace norm of U will
be denoted by s+(U) = ‖U‖. We will use the standard partial order on H(n)
given by U � V if and only if U − V is a positive semi-definite matrix.

Theorem 4.1. Consider the system

U = Q+

k∑
i=1

A∗i ~(U)Ai, (4.1)

where Q ∈ P(n), Ai ∈ M(n), i = 1, . . . , k, and the operator ~ : P(n) → P(n)
is continuous in the trace norm. Let, for some M,N1 ∈ R, and for any
U ∈ P(n) with ‖U‖ ≤M , s(~(U)) ≤ N1 hold for all singular values of ~(U).

Assume that:

(1) ‖Q‖,≤M −NN1n, where
k∑
i=1
‖A∗i ‖ ‖Ai‖ = N ;

(2) for any W ∈ P(n) with ‖W‖ ≤M ,
∑k

i=1A∗i ~(W)Ai � O holds;

(3) for any W ∈ P(n) with ‖W‖ ≤M , W � Q+
∑k

i=1A∗i ~(W)Ai holds;
(4) there exist w(U ,V) ≥ 1, p > 1, r ≥ 2 and τ > 0,

2NN1 ≤
1

nw(U ,V)r/p
Υ(U ,V) (4.2)
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holds, where

Υ(U ,V)

= max



|s+(
∑k

i=1A∗i ~(U)Ai+Q−U)|[
1+τ |s+(

∑k
i=1A∗i ~(U)Ai+Q−U)|p/2

]2/p ,
|s+(

∑k
i=1A∗i ~(V)Ai+Q−V)|[

1+τ |s+(
∑k

i=1A∗i ~(V)Ai+Q−V)|p/2
]2/p ,

s+(X−Y)[
1+τ |s+(X−Y)|p/2

]2/p ,
|s+(

∑k
i=1A

∗
i ~(V)Ai+Q−V)|[1+|s+(

∑k
i=1A

∗
i ~(U)Ai+Q−U)|]

w(U,V)r/p[1+|s+(X−Y)|]1+τ

∣∣∣∣∣ |s+(
∑k

i=1A∗i ~(V)Ai+Q−V)|[1+|s+(
∑k

i=1A∗i ~(U)Ai+Q−U)|]
w(U ,V)r/p[1+|s+(X−Y)|]

∣∣∣∣∣
p/2
2/p



,

(4.3)

for all U ,V ∈ P(n) with ‖U‖, ‖V‖ ≤M , U � V and
k∑
i=1
A∗i ~(U)Ai 6=

k∑
i=1
A∗i ~(V)Ai.

Then the system (4.1) has a unique solution Û ∈ P(n) with ‖Û‖ ≤M . Further,
the solution can be obtained as the limit of the iterative sequence {Un}, where
for j ≥ 0,

Uj+1 = Q+
k∑
i=1

A∗i ~(Uj)Ai (4.4)

and U0 is an arbitrary element of P(n) satisfying ‖U0‖ ≤M .

Proof. Denote Λ := {U ∈ P(n) : ‖U‖ ≤ M}, being a closed subset of P(n).
According to (2), any solution of (4.1) in Λ has to be positive definite. We
have, for any U ∈ Λ,

‖Q+
k∑
i=1

A∗i ~(U)Ai‖

≤ ‖Q‖+ ‖
k∑
i=1

A∗i ~(U)Ai‖

≤ ‖Q‖+
k∑
i=1

‖A∗i ‖ ‖Ai‖ ‖~(U)‖

= ‖Q‖+N‖~(U)‖. (4.5)
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Since, for all s(~(U)) ≤ N1, it follows that ‖~(U)‖ ≤ N1n. Thus, (4.5) implies

‖Q+
k∑
i=1

A∗i ~(U)Ai‖ ≤ ‖Q‖+NN1n

≤M −NN1n+NN1n = M.

Define now an operator = : Λ→ Λ by

=(U) = Q+

k∑
i=1

A∗i ~(U)Ai,

for U ∈ Λ. Then it is clear that finding positive definite solution(s) of the
equation (4.1) is equivalent to finding fixed point(s) of =.

Now, for any U , V ∈ Λ with U � V, we have

‖=(U)−=(V)‖ = ‖Q+
k∑
i=1

A∗i ~(U)Ai −Q−
k∑
i=1

A∗i ~(V)Ai‖

≤ ‖
k∑
i=1

A∗i ~(U)Ai −
k∑
i=1

A∗i ~(V)Ai‖

≤
k∑
i=1

‖A∗i ~(U)Ai −A∗i ~(V)Ai‖

≤
k∑
i=1

‖A∗i ‖ ‖Ai‖ ‖~(U)− ~(V)‖

≤ N(‖~(U)‖+ ‖~(V)‖)
≤ N(N1n+N1n)

= 2NN1n.

Thus, for any U , V ∈ Λ with U � V, we have

‖=(U)−=(V)‖ ≤ 2NN1n. (4.6)

For some fixed U ,V ∈ Λ with U � V, from (4.2) and (4.3), if

Υ(U ,V) =

∣∣∣s+(
∑k

i=1A∗i ~(U)Ai +Q− U)
∣∣∣[

1 + τ
∣∣∣s+(

∑k
i=1A∗i ~(U)Ai +Q− U)

∣∣∣p/2]2/p
,

then we have



726 Reena Jain, Hemant Kumar Nashine and J. K. Kim

2NN1 ≤
1

nw(U ,V)r/p
·

∣∣∣s+(
∑k

i=1A∗i ~(U)Ai +Q− U)
∣∣∣[

1 + τ
∣∣∣s+(

∑k
i=1A∗i ~(U)Ai +Q)− U

∣∣∣p/2]2/p

=
1

nw(U ,V)r/p
·

∥∥∥∑k
i=1A∗i ~(U)Ai +Q− U

∥∥∥[
1 + τ

∥∥∥∑k
i=1A∗i ~(U)Ai +Q− U

∥∥∥p/2]2/p

=
1

nw(U ,V)r/p
· ‖=(U)− U‖[

1 + τ‖=(U)− U‖p/2
]2/p ,

that is,

2NN1n ≤
1

w(U ,V)r/p
· ‖=(U)− U‖[

1 + τ‖=(U)− U‖p/2
]2/p .

Therefore, from (4.6) we have

‖=(U)−=(V)‖ ≤ 1

w(U ,V)r/p
· ‖=(U)− U‖[

1 + τ‖=(U)− U‖p/2
]2/p ,

that is,

w(U ,V)r‖=(U)−=(V)‖p ≤ ‖=(U)− U‖p[
1 + τ‖=(U)− U‖p/2

]2 . (4.7)

By similar arguments, using (4.2), (4.3), (4.6), we have, for any U ,V ∈ Λ with
U � V,

w(U ,V)r‖=(U)−=(V)‖p ≤ ‖=(V)− V‖p[
1 + τ‖=(V)− V‖p/2

]2 , (4.8)

w(U ,V)r‖=(U)−=(V)‖p ≤ ‖U − V‖p[
1 + τ‖U − V‖p/2

]2 (4.9)

and

w(U ,V)r‖=(U)−=(V)‖p ≤
‖V−=(V)‖p[1+‖U−=(U)‖p]

w(U ,V)[1+‖U−V‖p][
1 + τ

[
‖V−=(V)‖p[1+‖U−=(U)‖p]

w(U ,V)[1+‖U−V‖p]

]p/2]2 . (4.10)

Let eb : P(n)× P(n)→ R+ be defined by

eb(U ,V) = ‖U − V‖p for all U ,V ∈ P(n).
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Then (P(n), eb) is a complete extended Branciari b-distance space with coef-
ficient w(U ,V) = ‖U‖+ ‖V‖+ 3p−1. It follows from (4.7)–(4.9) that

w(U ,V)reb(=(U),=(V))

≤ max


eb(U ,V)[

1+τ
√
eb(U ,V)

]2 , eb(=(U),U)[
1+τ
√
eb(=(U),U)

]2 ,
eb(=(V),V)[

1+τ
√
eb(=(V),V)

]2 ,
eb(V,=(V))[1+eb(U,=(U))]

w(U,V)[1+eb(U,V)][
1+τ

√
eb(V,=(V))[1+eb(U,=(U))]

w(U,V)[1+eb(U,V)]

]2

 ,

that is,

w(U ,V)reb(=(U),=(V)) ≤ Mw(U ,V)

[1 + τ
√
Mw(U ,V)]2

, (4.11)

where

Mw(U ,V) := max



eb(U ,V)[
1+τ
√
eb(U ,V)

]2 , eb(=(U),U)[
1+τ
√
eb(=(U),U)

]2 ,
eb(=(V),V)[

1+τ
√
eb(=(V),V)

]2 ,
eb(V,=(V))[1+eb(U,=(U))]

w(U,V)[1+eb(U,V)][
1+τ

√
eb(V,=(V))[1+eb(U,=(U))]

w(U,V)[1+eb(U,V)]

]2


.

Let β(ζ) = e−τ (τ > 0), G(ζ) = ln ζ and F(ζ) = −1/
√
ζ (ζ > 0) in (4.11).

Then the formulated results follow from Theorem 2.3. �

Example 4.2. Consider the system (4.1) for k = 3, n = 3, with ~(U) =
U2/900, that is,

U = Q1 +A∗1(U2/900)A1 +A∗2(U2/900)A2 +A∗3(U2/900)A3, (4.12)

where

A1 =

 2.25 0 9.98
−6.32 0.469 −5.85
3.25 −1.87 0.896

 , A2 =

−2.66 0 8.59
0.279 −2.45 8.25
−3.62 0.98 −5.36

 ,
A3 =

−5.45 −0.586 0.827
0 0.324 −0.552

0.996 −2.36 0.256

 , Q =

1 0 0
0 1 0
0 0 1

 .
After calculations, we get ‖Q1‖ = 3, N = 8.079768372577067 × 1002, N1 =
1.5625× 10−05.

Let M = 1.030042042174708× 102, r = 3, τ = 0.001, p = 3, and w(U ,V) =
‖U‖+‖V‖+ 3p−1. The conditions of Theorem 4.1 can be checked numerically,
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taking various special values for matrices involved. For example, they can be
tested (and verified to be true) for

U=

0.125 0 0
0 0.125 0
0 0 0.125

 , V=1002 ×

 0.705164 0.236584 −0.520859
0.236584 1.303675 0.348708
−0.520859 0.348708 1.142139

 ,
W=

0.040 0 0
0 0.040 0
0 0 0.040

 ,
where

‖U‖ = 0.375, ‖V‖ = 315.0977999999999, ‖W‖ = 0.12.

To see the convergence of the sequence {Un} defined in (4.4), we start with
initial value

U0 =

 1.87561 0.791132 −0.220904
0.791132 0.990034 −0.068062
−0.220904 −0.068062 0.17869

 with ‖U0‖=3.044334000000001,

and after 10 iterations, we have the following approximation of the unique
PDS of NME (4.12)

Û ≈ U10

=

1.8977068424646789 −0.29908302956523 0.11479043330130
−0.29908302956523 1.034166978513196 −0.054450928984136
0.11479043330130 −0.054450928984136 1.457646671310517


with ‖Û‖ = 3.681584334070510.

The graphical representation of convergence of {Un} is shown below:

1 2 3 4 5 6 7 8 9 10
-10

-8

-6

-4

-2

0

2
Convergence behaviours, log plot

convergence of T



Positive solutions for a nonlinear matrix equation 729

Acknowledgment: The second author is thankful to SERB, INDIA for pro-
viding fund under the project-CRG/2018/000615, and the third author was
supported by the Basic Science Research Program through the National Re-
search Foundation(NRF) Grant funded by Ministry of Education of the re-
public of Korea (2018R1D1A1B07045427).

References

[1] T. Abdeljawad, E. Karapinar, S.K. Panda and N. Mlaiki, Solutions of boundary value
problems on extended-Branciari b-distance, J. Ineq. Appl., 2020 (2020), Art. number
103, 1–16.

[2] I.A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funkc. Anal.
Ulianowsk Gos. Ped. Inst., 30 (1999), 243–253.

[3] S. Bose, Sk.M. Hossein and K. Paul, Solution of a class of nonlinear matrix equations,
Linear Algebra Appl., 530 (2017), 109–126.

[4] R. Bouhafs, A. Tallafha and W. Shatanawi, Fixed point theorems in ordered b-metric
spaces with alternating distance functions, Nonlinear Funct. Anal. Appl., 26(3) (2021),
581–600.

[5] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condi-
tion of integral type, Int. J. Math. Math. Sci., 29(9) (2002), 531-536.

[6] L. Chen, S. Huang, C. Li and Y. Zhao, Several fixed-point theorems for F -contractions
in complete Branciari b-metrics, and applications, J. Funct. Spaces, 2020 (2020), Art.
Number 7963242, 1–10.

[7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Os-
traviensis, 5 (1993), 5–11.

[8] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem.
Mat. Fis. Univ. Modena, 46 (1998), 263–276.
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