A GENERAL ITERATIVE METHOD FOR VARIATIONAL INCLUSION PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES

Ying Liu
College of Mathematics and Computer, Hebei University
Baoding 071002, P.R.China
e-mail: ly_cyh2007@yahoo.com.cn

Abstract

In this paper, we introduce two iterative schemes by the general iterative method for finding a common element of the set of fixed points of a strictly pseudo-contractive mapping and the set of solutions of a variational inclusion for an α-inverse-strongly monotone mapping and a maximal monotone mapping in a Hilbert space. Our results improve and extend the corresponding results announced by many others.

1. Introduction

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H, let $F: C \times C \rightarrow \mathbb{R}$ be a bifunction. Let $A: H \rightarrow H$ be a single-valued mapping and $M: H \rightarrow 2^{H}$ be a multivalued mapping. Then, we consider the following variational inclusion problem which is to find $u \in H$ such that

$$
\begin{equation*}
0 \in A(u)+M(u) . \tag{1.1}
\end{equation*}
$$

The set of solutions of the variational inclusion (1.1) is denoted by $V I(H, A, M)$. Special Cases.

[^0](1) When M is a maximal monotone mapping and A is a strongly monotone and Lipschitz continuous mapping, problem (1.1) has been studied by Huang [8].
(2) If $M=\partial \phi$, where $\partial \phi$ denotes the subdifferential of a proper, convex and lower semi-continuous function $\phi: H \rightarrow \mathbb{R} \bigcup\{+\infty\}$, then problem (1.1) reduces to the following problem: find $u \in H$,such that
\[

$$
\begin{equation*}
\langle A(u), v-u\rangle+\phi(v)-\phi(u) \geq 0, \quad \forall v \in H \tag{1.2}
\end{equation*}
$$

\]

which is called a nonlinear variational inequality and has been studied by many authors; see, for example, [2-3].
(3) If $M=\partial \delta_{C}$, where δ_{C} is the indicator function of C, then problem (1.1) reduces to the following problem: find $u \in C$, such that

$$
\begin{equation*}
\langle A(u), v-u\rangle \geq 0, \quad \forall v \in C \tag{1.3}
\end{equation*}
$$

which is the classical variational inequality; see, e.g., $[7,9]$ and the reference therein. A mapping $A: H \rightarrow H$ is called inverse-strongly monotone if there exists $\alpha>0$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in H
$$

Such a mapping A is also called α-inverse-strongly monotone. If A is an α -inverse-strongly monotone mapping of H to H, then it is obvious that A is $\frac{1}{\alpha}$-Lipschitz continuous. We also have that for all $x, y \in H$, and $\lambda>0$,

$$
\begin{align*}
\|(I-\lambda A) x-(I-\lambda A) y\|^{2}= & \|(x-y)-\lambda(A x-A y)\|^{2} \\
= & \|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle \\
& +\lambda^{2}\|A x-A y\|^{2} \tag{1.4}\\
\leq & \|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} .
\end{align*}
$$

So, if $\lambda \leq 2 \alpha$, then $I-\lambda A$ is a nonexpansive mapping of H into H. See [9] for some examples of inverse-strongly monotone mappings.

A mapping T of C into itself is nonexpansive if $\|T x-T y\| \leq\|x-y\|, \forall x, y \in$ C. Recently, Iiduka and Takahashi [9], Takahashi and Toyoda [15], Chen et al. [6] , Nadezhkina and Takahashi [13], Ceng and Yao [4], Yao and Yao [17] introduced many iterative methods for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequality (1.3) for an α-inverse-strongly monotone mapping, they obtained some weak and strong convergence theorems.

Recall that a self-mapping $f: C \rightarrow C$ is a contraction on C if there is a constant $\beta \in(0,1)$ such that

$$
\|f(x)-f(y)\| \leq \beta\|x-y\|, \quad \forall x, y \in C
$$

An operator B is strongly positive if there exists a constant $\bar{\gamma}>0$ with the property

$$
\begin{equation*}
\langle B x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \forall x \in H \tag{1.5}
\end{equation*}
$$

In 2006, Marino and Xu [12] introduced the general iterative method and proved that for given $x_{0} \in H$, the sequence $\left\{x_{n}\right\}$ generated by the algorithm

$$
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) T x_{n}, \quad n \in \mathbb{N}
$$

where T is a self-nonexpansive mapping on H, f is a contraction of H into itself with $\beta \in(0,1)$ and $\left\{\alpha_{n}\right\} \subseteq(0,1)$ satisfies certain conditions, B is a strongly positive bounded linear operator on H, converges strongly to a fixed point x^{*} of T which is the unique solution to the following variational inequality:

$$
\left\langle(B-\gamma f) x^{*}, x^{*}-x\right\rangle \leq 0, \quad \forall x \in F(T)
$$

and is also the optimality condition for some minimization problem.
A mapping $S: C \rightarrow H$ is said to be k-strictly pseudo-contractive if there exists a constant $k \in[0,1)$ such that

$$
\begin{equation*}
\|S x-S y\|^{2} \leq\|x-y\|^{2}+k\|(I-S) x-(I-S) y\|^{2}, \quad \forall x, y \in C \tag{1.6}
\end{equation*}
$$

Note that the class of k-strict pseudo-contractions strictly includes the class of nonexpansive mappings. That is, S is nonexpansive if and only if S is 0 strictly pseudo-contractive. It is also said to be pseudo-contractive if $k=1$. Clearly, the class of k-strict pseudo-contractions falls into the one between classes of nonexpansive mappings and pseudo-contractions.

The set of fixed points of S is denoted by $F(S)$. Very recently, by using the general approximation method Liu [10] obtained two strong convergence theorems for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a k-strictly pseudo-contractive non-self mapping.

In this paper, motivated and inspired by the above results, we introduce two iteration schemes for finding an element of $V I(H, A, M) \bigcap F(S)$, where $S: H \rightarrow H$ is a k-strict pseudocontraction, and $A: H \rightarrow H$ is an inversestrongly monotone mapping and then obtain two strong convergence theorems.

2. Preliminaries

Throughout this paper, we always let X be a real Banach space with dual space X^{*}, H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and let C be a closed convex subset of H. We write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to $x . x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to x. We denote by \mathbb{N} and \mathbb{R} the sets of positive integers and real numbers, respectively.

It is also known that H satisfies Opial's condition [13], i.e., for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $y \neq x$.
A set-valued mapping $M: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H, u \in$ $M x, v \in M y$ imply $\langle x-y, u-v\rangle \geq 0$. A monotone mapping $M: H \rightarrow 2^{H}$ is maximal if the graph $G(M)$ of M is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping M is maximal if and only if for $(x, u) \in H \times H,\langle x-y, u-v\rangle \geq 0$ for every $(y, v) \in G(M)$ implies $u \in M x$.

The following definitions and lemmas are useful for our paper.
Definition 2.1. ([14]) If M is a maximal monotone mapping on H, then the resolvent operator associated with M is defined by

$$
J_{M, \lambda}(u)=(I+\lambda M)^{-1} u, \quad \forall u \in H,
$$

where $\lambda>0$ is a constant and I is the identity operator.

Definition 2.2. ([14]) A single-valued operator $A: H \rightarrow H$ is said to be hemi-continuous if for any fixed $x, y, z \in H$, the function $t \rightarrow\langle A(x+t y), z\rangle$ is continuous at 0^{+}. It is well known that a continuous mapping must be hemi-continuous.

Definition 2.3. ([14]) A set-valued mapping $A: X \rightarrow 2^{X^{*}}$ is said to be bounded if $A(B)$ is bounded for every bounded subset B of X.

Lemma 2.4. ([11]) The resolvent operator $J_{M, \lambda}$ is firmly nonexpansive, that is

$$
\left\langle J_{M, \lambda} u-J_{M, \lambda} v, u-v\right\rangle \geq\left\|J_{M, \lambda} u-J_{M, \lambda} v\right\|^{2}, \quad \forall u, v \in H .
$$

Lemma 2.5. ([14]) If $T: X \rightarrow 2^{X^{*}}$ is a maximal monotone mapping and P : $X \rightarrow X^{*}$ is a hemi-continuous bounded monotone operator with $D(P)=X$, then the sum $S=T+P$ is a maximal monotone mapping.

Lemma 2.6. ([1]) Let $S: C \rightarrow H$ be a k-strict pseudo-contraction. Define $T: C \rightarrow H$ by $T x=\lambda x+(1-\lambda) S x$ for each $x \in C$. Then, as $\lambda \in[k, 1), T$ is a nonexpansive mapping such that $F(T)=F(S)$.

Lemma 2.7. ([16]) Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\delta_{n},
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(i) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) $\limsup _{n \rightarrow \infty} \frac{\delta_{n}}{\gamma_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.
Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.8. ([5]) The following inequality holds in a Hilbert space,

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y,(x+y)\rangle, \quad \forall x, y \in H
$$

Lemma 2.9. The function $u \in H$ is a solution of variational inclusion (1.1) if and only if $u \in H$ satisfies the relation

$$
u=J_{M, \lambda}[u-\lambda A u]
$$

where $\lambda>0$ is a constant, M is a maximal monotone mapping and $J_{M, \lambda}=$ $(I+\lambda M)^{-1}$ is the resolvent operator.
Proof. Using Definition 2.1, we can obtain the desired result.

Lemma 2.10. ([12]) Assume that B is a strongly positive linear bounded operator on a Hilbert space H with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|B\|^{-1}$. Then $\|I-\rho B\| \leq 1-\rho \bar{\gamma}$.

Lemma 2.11. ([12]) Let H be a Hilbert space and $f: H \rightarrow H$ be a contraction with coefficient $0<\beta<1$, and B be a strongly positive linear bounded operator with coefficient $\bar{\gamma}>0$. Then, for $0<\gamma<\frac{\bar{\gamma}}{\beta}$,

$$
\langle x-y,(B-\gamma f) x-(B-\gamma f) y\rangle \geq(\bar{\gamma}-\gamma \beta)\|x-y\|^{2}, \quad \forall x, y \in H
$$

That is, $B-\gamma f$ is strongly monotone with coefficient $\bar{\gamma}-\gamma \beta$.

3. Main Results

Throughout the rest of this paper, we always assume that f is a contraction of H into itself with coefficient $\beta \in(0,1)$, and B is a strongly positive bounded linear operator with coefficient $\bar{\gamma}$ and $0<\gamma<\frac{\bar{\gamma}}{\beta}$. Let $\left\{J_{M, \lambda_{n}}\right\}$ be a sequence of mappings defined as Definition 2.1 and let A be an α-inverse-strongly monotone mapping, where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<2 \alpha$. Define a mapping $S_{n}: H \rightarrow H$ by $S_{n} x=\beta_{n} x+\left(1-\beta_{n}\right) S x, \forall x \in H$, where $\beta_{n} \in[k, 1)$. Then, by Lemma 2.6, S_{n} is nonexpansive.

Consider the following mapping G_{n} on H defined by

$$
G_{n} x=\alpha_{n} \gamma f(x)+\left(I-\alpha_{n} B\right) S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right) x, \quad x \in H, n \in \mathbb{N}
$$

where $\alpha_{n} \in(0,1)$. By (1.4), Lemmas 2.10 and 2.4, we have

$$
\begin{aligned}
\left\|G_{n} x-G_{n} y\right\| \leq & \alpha_{n} \gamma\|f(x)-f(y)\| \\
& +\left(1-\alpha_{n} \bar{\gamma}\right)\left\|J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right) x-J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right) y\right\| \\
\leq & \alpha_{n} \gamma \beta\|x-y\|+\left(1-\alpha_{n} \bar{\gamma}\right)\|x-y\| \\
= & \left(1-\alpha_{n}(\bar{\gamma}-\gamma \beta)\right)\|x-y\| .
\end{aligned}
$$

Since $0<1-\alpha_{n}(\bar{\gamma}-\gamma \beta)<1$, it follows that G_{n} is a contraction. Therefore, by the Banach contraction principle, G_{n} has a unique fixed point $x_{n}^{f} \in H$ such that

$$
x_{n}^{f}=\alpha_{n} \gamma f\left(x_{n}^{f}\right)+\left(I-\alpha_{n} B\right) S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}^{f} .
$$

For simplicity we will write x_{n} for x_{n}^{f} provided no confusion occurs. Next we prove the convergence of $\left\{x_{n}\right\}$, while they claim the existence of the $q \in$ $F(S) \bigcap V I(H, A, M)$ which solves the variational inequality

$$
\begin{equation*}
\langle(B-\gamma f) q, p-q\rangle \geq 0, \forall p \in F(S) \bigcap V I(H, A, M) \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let H be a real Hilbert space and let $M: H \rightarrow 2^{H}$ be a maximal monotone mapping. Let A be an α-inverse-strongly monotone mapping of H into H and let S be a k-strictly pseudocontractive mapping on H such that $F(S) \bigcap V I(H, A, M) \neq \emptyset$. Let f be a contraction of H into itself with $\beta \in(0,1)$ and let B be a strongly positive bounded linear operator on H with coefficient $\bar{\gamma}>0$ and $0<\gamma<\frac{\bar{\gamma}}{\beta}$. Let $\left\{x_{n}\right\}$ be sequence generated by

$$
\left\{\begin{array}{l}
u_{n}=J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right) \tag{3.2}\\
y_{n}=\beta_{n} u_{n}+\left(1-\beta_{n}\right) S u_{n} \\
x_{n}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $y_{n}=S_{n} u_{n},\left\{\lambda_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<2 \alpha$. If $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the following conditions:
(i) $\left\{\alpha_{n}\right\} \subset(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0$,
(ii) $0 \leq k \leq \beta_{n} \leq \lambda<1$ and $\lim _{n \rightarrow \infty} \beta_{n}=\lambda$,
then $\left\{x_{n}\right\}$ converges strongly to a point $q \in F(S) \bigcap V I(H, A, M)$, which solves the variational inequality (3.1).
Proof. First, we assume that $\alpha_{n} \in\left(0,\|B\|^{-1}\right)$. By Lemma 2.10, we obtain $\left\|I-\alpha_{n} B\right\| \leq 1-\alpha_{n} \bar{\gamma}$. Take $p \in F(S) \bigcap V I(H, A, M)$. Since $u_{n}=J_{M, \lambda_{n}}\left(x_{n}-\right.$ $\left.\lambda_{n} A x_{n}\right)$ and $p=J_{M, \lambda_{n}}\left(p-\lambda_{n} A p\right)$, then, from (1.4) and Lemma 2.4, we know that, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|u_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2} \tag{3.3}
\end{equation*}
$$

Further, since $S_{n} p=p$, we have

$$
\begin{equation*}
\left\|y_{n}-p\right\|=\left\|S_{n} u_{n}-S_{n} p\right\| \leq\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\| \tag{3.4}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
\left\|x_{n}-p\right\| & =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|\gamma\left(f\left(x_{n}\right)-f(p)\right)+(\gamma f(p)-B p)\right\|+\left\|I-\alpha_{n} B\right\|\left\|y_{n}-p\right\| \\
& \leq \alpha_{n} \gamma \beta\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& =\left(1-\alpha_{n}(\bar{\gamma}-\gamma \beta)\right)\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\| .
\end{aligned}
$$

It follows that $\left\|x_{n}-p\right\| \leq \frac{\|\gamma f(p)-B p\|}{\bar{\gamma}-\gamma \beta}$. Hence $\left\{x_{n}\right\}$ is bounded and we also obtain that $\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{A x_{n}\right\}$ and $\left\{f\left(x_{n}\right)\right\}$ are bounded. We note that

$$
\begin{align*}
\left\|u_{n}-y_{n}\right\| & \leq\left\|u_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\| \\
& =\left\|u_{n}-x_{n}\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-B y_{n}\right\| \tag{3.5}
\end{align*}
$$

Using Lemma 2.8, (3.3) and (3.4), we also have

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2} \leq & \left\|\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B p, x_{n}-p\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|u_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B p, x_{n}-p\right\rangle \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left(\left\|x_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B p, x_{n}-p\right\rangle \\
\leq & \left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right)^{2} a(b-2 \alpha)\left\|A x_{n}-A p\right\|^{2} \\
& +2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B p, x_{n}-p\right\rangle,
\end{aligned}
$$

and hence

$$
\left(1-\alpha_{n} \bar{\gamma}\right)^{2} a(2 \alpha-b)\left\|A x_{n}-A p\right\|^{2} \leq 2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|x_{n}-p\right\|
$$

Since $\alpha_{n} \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-A p\right\|=0 \tag{3.6}
\end{equation*}
$$

Using Lemma 2.4 and (1.4), we have

$$
\begin{aligned}
& \left\|u_{n}-p\right\|^{2} \\
& =\left\|J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-J_{M, \lambda_{n}}\left(p-\lambda_{n} A p\right)\right\|^{2} \\
& \leq\left\langle\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right), u_{n}-p\right\rangle \\
& =\frac{1}{2}\left(\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2}+\left\|u_{n}-p\right\|^{2}\right. \\
& \left.\quad-\left\|\left(x_{n}-u_{n}\right)-\lambda_{n}\left(A x_{n}-A p\right)\right\|^{2}\right) \\
& \leq \frac{1}{2}\left(\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|\left(x_{n}-u_{n}\right)-\lambda_{n}\left(A x_{n}-A p\right)\right\|^{2}\right) \\
& =\frac{1}{2}\left(\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}\right. \\
& \left.\quad+2 \lambda_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle\right) .
\end{aligned}
$$

So, we have

$$
\begin{gather*}
\left\|u_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2} \tag{3.7}\\
+2 \lambda_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle .
\end{gather*}
$$

Then, from Lemma 2.8, (3.4) and (3.7), we have

$$
\begin{aligned}
&\left\|x_{n}-p\right\|^{2} \\
&=\left\|\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)+\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|y_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B p, x_{n}-p\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|u_{n}-p\right\|^{2}+2 \alpha_{n} \gamma\left\langle f\left(x_{n}\right)-f(p), x_{n}-p\right\rangle \\
&+2 \alpha_{n}\left\langle\gamma f(p)-B p, x_{n}-p\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}\right. \\
&\left.+2 \lambda_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle\right)+2 \alpha_{n} \gamma \beta\left\|x_{n}-p\right\|^{2} \\
&+2 \alpha_{n}\|\gamma f(p)-B p\|\left\|x_{n}-p\right\| \\
&=\left(1-2 \alpha_{n}(\bar{\gamma}-\gamma \beta)+\left(\alpha_{n} \bar{\gamma}\right)^{2}\right)\left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2} \\
&-\left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2} \\
&+2 \lambda_{n}\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle+2 \alpha_{n}\|\gamma f(p)-B p\|\left\|x_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|^{2}+\alpha_{n}^{2} \bar{\gamma}^{2}\left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2} \\
&-\left(1-\alpha_{n} \bar{\gamma}\right)^{2} \lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2} \\
&+2 \lambda_{n}\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle+2 \alpha_{n}\|\gamma f(p)-B p\|\left\|x_{n}-p\right\|,
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-u_{n}\right\|^{2} \\
& \leq \alpha_{n}^{2} \bar{\gamma}^{2}\left\|x_{n}-p\right\|^{2}+2 \lambda_{n}\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle \\
& \quad+2 \alpha_{n}\|\gamma f(p)-B p\|\left\|x_{n}-p\right\| .
\end{aligned}
$$

Since $\left\|A x_{n}-A p\right\| \rightarrow 0$ and $\alpha_{n} \rightarrow 0$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

From (3.5), we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Define $T: H \rightarrow H$ by $T x=\lambda x+(1-\lambda) S x$. Then T is nonexpansive with $F(T)=F(S)$ by Lemma 2.6. Notice that

$$
\left\|T u_{n}-u_{n}\right\| \leq\left\|T u_{n}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\| \leq\left|\lambda-\beta_{n}\right|\left\|u_{n}-S u_{n}\right\|+\left\|y_{n}-u_{n}\right\| .
$$

By (3.9) and $\beta_{n} \rightarrow \lambda$, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T u_{n}-u_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Consider a subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$. Since $\left\{u_{n_{i}}\right\}$ is bounded, there exists a subsequence $\left\{u_{n_{i_{j}}}\right\}$ of $\left\{u_{n_{i}}\right\}$ which converges weakly to q. Next, we show that $q \in F(S) \bigcap V I(H, A, M)$. Without loss of generality, we can assume that $u_{n_{i}} \rightharpoonup q$. From $\left\|T u_{n}-u_{n}\right\| \rightarrow 0$, we obtain $T u_{n_{i}} \rightharpoonup q$. Let us show $q \in F(T)$. Assume $q \bar{\in} F(T)$. Since $u_{n_{i}} \rightharpoonup q$ and $q \neq T q$, it follows from the Opial's
condition that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left\|u_{n_{i}}-q\right\| & <\liminf _{n \rightarrow \infty}\left\|u_{n_{i}}-T q\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left(\left\|u_{n_{i}}-T u_{n_{i}}\right\|+\left\|T u_{n_{i}}-T q\right\|\right) \\
& \leq \liminf _{n \rightarrow \infty}\left\|u_{n_{i}}-q\right\|
\end{aligned}
$$

This is a contradiction. So, we get $q \in F(T)$ and hence $q \in F(S)$.
We shall show $q \in V I(H, A, M)$. Since A is $\frac{1}{\alpha}$-Lipschitz continuous monotone and $D(A)=H$, by Lemma $2.5, M+A$ is a maximal monotone mapping. Let $(v, f) \in G(M+A)$. Since $f-A v \in M v$ and $\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-u_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right) \in$ $M u_{n_{i}}$, we have

$$
\left\langle v-u_{n_{i}},(f-A v)-\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-u_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)\right\rangle \geq 0
$$

Therefore, we have

$$
\begin{aligned}
\left\langle v-u_{n_{i}}, f\right\rangle \geq & \left\langle v-u_{n_{i}}, A v+\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-u_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)\right\rangle \\
= & \left\langle v-u_{n_{i}}, A v-A x_{n_{i}}\right\rangle+\left\langle v-u_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-u_{n_{i}}\right)\right\rangle \\
= & \left\langle v-u_{n_{i}}, A v-A u_{n_{i}}\right\rangle+\left\langle v-u_{n_{i}}, A u_{n_{i}}-A x_{n_{i}}\right\rangle \\
& +\left\langle v-u_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-u_{n_{i}}\right)\right\rangle \\
\geq & \left\langle v-u_{n_{i}}, A u_{n_{i}}-A x_{n_{i}}\right\rangle+\left\langle v-u_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-u_{n_{i}}\right)\right\rangle .
\end{aligned}
$$

Let $i \rightarrow \infty$, we obtain $\langle v-q, f\rangle \geq 0$. Since $A+M$ is maximal monotone, we have $0 \in A q+M q$ and hence $q \in V I(H, A, M)$. Therefore, $q \in$ $F(S) \bigcap V I(H, A, M)$. On the other hand, we note that

$$
x_{n}-q=\alpha_{n}\left(\gamma f\left(x_{n}\right)-B q\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-q\right)
$$

It follows that

$$
\begin{aligned}
\left\|x_{n}-q\right\|^{2} & =\alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B q, x_{n}-q\right\rangle+\left\langle\left(I-\alpha_{n} B\right)\left(y_{n}-q\right), x_{n}-q\right\rangle \\
& \leq \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B q, x_{n}-q\right\rangle+\left\|I-\alpha_{n} B\right\|\left\|y_{n}-q\right\|\left\|x_{n}-q\right\| \\
& \leq \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B q, x_{n}-q\right\rangle+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-q\right\|^{2} .
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
\left\|x_{n}-q\right\|^{2} & \leq \frac{1}{\bar{\gamma}}\left\langle\gamma f\left(x_{n}\right)-B q, x_{n}-q\right\rangle \\
& =\frac{1}{\bar{\gamma}}\left(\gamma\left\langle f\left(x_{n}\right)-f(q), x_{n}-q\right\rangle+\left\langle\gamma f(q)-B q, x_{n}-q\right\rangle\right) \\
& \leq \frac{1}{\bar{\gamma}}\left(\gamma \beta\left\|x_{n}-q\right\|^{2}+\left\langle\gamma f(q)-B q, x_{n}-q\right\rangle\right) .
\end{aligned}
$$

This implies that

$$
\left\|x_{n}-q\right\|^{2} \leq \frac{\left\langle\gamma f(q)-B q, x_{n}-q\right\rangle}{\bar{\gamma}-\gamma \beta}
$$

In particular, we have

$$
\begin{equation*}
\left\|x_{n_{i}}-q\right\|^{2} \leq \frac{\left\langle\gamma f(q)-B q, x_{n_{i}}-q\right\rangle}{\bar{\gamma}-\gamma \beta} \tag{3.11}
\end{equation*}
$$

Since $x_{n_{i}} \rightharpoonup q$, it follows from (3.11) that $x_{n_{i}} \rightarrow q$ as $i \rightarrow \infty$. Next, we show that q solves the variational inequality (3.1). Since

$$
\begin{aligned}
x_{n} & =\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n} \\
& =\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}
\end{aligned}
$$

we have

$$
(B-\gamma f) x_{n}=-\frac{1}{\alpha_{n}}\left(I-\alpha_{n} B\right)\left(I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)\right) x_{n}
$$

It follows that for $p \in F(S) \bigcap V I(H, A, M)$,

$$
\begin{align*}
&\left\langle(B-\gamma f) x_{n}, x_{n}-p\right\rangle \\
&=-\frac{1}{\alpha_{n}}\left\langle\left(I-\alpha_{n} B\right)\left(I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)\right) x_{n}, x_{n}-p\right\rangle \\
&=-\frac{1}{\alpha_{n}}\left\langle\left(I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)\right) x_{n}\right. \tag{3.12}\\
&\left.-\left(I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)\right) p, x_{n}-p\right\rangle \\
&+\left\langle B\left(I-S_{n} J_{\lambda_{n}}\left(I-\lambda_{n} A\right)\right) x_{n}, x_{n}-p\right\rangle \\
& \leq\left\langle B\left(I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)\right) x_{n}, x_{n}-p\right\rangle .
\end{align*}
$$

Since $I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)$ is monotone (i.e. $\left\langle x-y,\left(I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)\right) x-\right.$ $\left.\left(I-S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)\right) y\right\rangle \geq 0$ for all $x, y \in H$. This is due to the nonexpansivity of $S_{n} J_{M, \lambda_{n}}\left(I-\lambda_{n} A\right)$). Now replacing n in (3.12) with n_{i} and letting $i \rightarrow \infty$, we have

$$
\begin{align*}
\langle(B-\gamma f) q, q-p\rangle & =\lim _{i \rightarrow \infty}\left\langle(B-\gamma f) x_{n_{i}}, x_{n_{i}}-p\right\rangle \\
& \leq \lim _{i \rightarrow \infty}\left\langle B\left(x_{n_{i}}-y_{n_{i}}\right), x_{n_{i}}-p\right\rangle=0 \tag{3.13}
\end{align*}
$$

That is, $q \in F(S) \bigcap V I(H, A, M)$ is a solution of (3.1). To show that the sequence $\left\{x_{n}\right\}$ converges to q, assume $x_{n_{k}} \rightarrow \hat{x}$. By the same as the proof above, we have $\hat{x} \in F(S) \bigcap V I(H, A, M)$. Moreover, it follows from the inequality (3.13) that

$$
\begin{equation*}
\langle(B-\gamma f) q, q-\hat{x}\rangle \leq 0 \tag{3.14}
\end{equation*}
$$

Interchange q and \hat{x} to obtain

$$
\begin{equation*}
\langle(B-\gamma f) \hat{x}, \hat{x}-q\rangle \leq 0 . \tag{3.15}
\end{equation*}
$$

Adding these two inequalities yields

$$
(\bar{\gamma}-\gamma \beta)\|q-\hat{x}\|^{2} \leq\langle q-\hat{x},(B-\gamma f) q-(B-\gamma f) \hat{x}\rangle \leq 0
$$

by Lemma 2.11. Hence $q=\hat{x}$ and therefore $x_{n} \rightarrow q$ as $n \rightarrow \infty$.
Theorem 3.2. Let H be a real Hilbert space and let $M: H \rightarrow 2^{H}$ be a maximal monotone mapping. Let A be an α-inverse-strongly monotone mapping of H into H and let S be a k-strictly pseudocontractive mapping on H such that $F(S) \bigcap V I(H, A, M) \neq \emptyset$. Let f be a contraction of H into itself with $\beta \in(0,1)$ and let B be a strongly positive bounded linear operator on H with coefficient
$\bar{\gamma}>0$ and $0<\gamma<\frac{\bar{\gamma}}{\beta}$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
u_{n}=J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
y_{n}=\beta_{n} u_{n}+\left(1-\beta_{n}\right) S u_{n} \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $y_{n}=S_{n} u_{n}$. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ satisfy the following conditions:
(i) $\left\{\alpha_{n}\right\} \subset(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$,
(ii) $0 \leq k \leq \beta_{n} \leq \lambda<1$ and $\lim _{n \rightarrow \infty} \beta_{n}=\lambda, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$,
(iii) $\left\{\lambda_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<2 \alpha, \sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$, then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to a point $q \in F(S) \bigcap V I(H, A, M)$, which solves the variational inequality (3.1).
Proof. Since $\alpha_{n} \rightarrow 0$, we may assume that $\alpha_{n} \in\left(0,\|B\|^{-1}\right)$. By Lemma 2.10, we obtain $\left\|I-\alpha_{n} B\right\| \leq 1-\alpha_{n} \bar{\gamma}$. We now observe that $\left\{x_{n}\right\}$ is bounded. Indeed, pick any $p \in F(S) \bigcap V I(H, A, M)$ to obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|+\left\|I-\alpha_{n} B\right\|\left\|y_{n}-p\right\| \\
& \leq \alpha_{n} \gamma\left\|f\left(x_{n}\right)-f(p)\right\|+\alpha_{n}\|\gamma f(p)-B p\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& \leq \alpha_{n} \gamma \beta\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& =\left(1-\alpha_{n}(\bar{\gamma}-\gamma \beta)\right)\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\| .
\end{aligned}
$$

It follows from induction that

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{1}{\bar{\gamma}-\gamma \beta}\|\gamma f(p)-B p\|\right\}, \quad n \in \mathbb{N}
$$

and hence $\left\{x_{n}\right\}$ is bounded. From (3.3) and (3.4), we also obtain that $\left\{u_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Next, we show that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$. We have

$$
\begin{align*}
& \| x_{n+1}-x_{n} \| \\
&=\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}-\left(\alpha_{n-1} \gamma f\left(x_{n-1}\right)+\left(I-\alpha_{n-1} B\right) y_{n-1}\right)\right\| \\
&= \| \alpha_{n} \gamma f\left(x_{n}\right)-\alpha_{n} \gamma f\left(x_{n-1}\right)+\alpha_{n} \gamma f\left(x_{n-1}\right)-\alpha_{n-1} \gamma f\left(x_{n-1}\right) \\
& \quad+\left(I-\alpha_{n} B\right) y_{n}-\left(I-\alpha_{n} B\right) y_{n-1}+\left(I-\alpha_{n} B\right) y_{n-1} \\
& \quad-\left(I-\alpha_{n-1} B\right) y_{n-1} \| \tag{3.16}\\
& \leq \alpha_{n} \gamma \beta\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right| \gamma\left\|f\left(x_{n-1}\right)\right\| \\
& \quad+\left\|I-\alpha_{n} B\right\|\left\|y_{n}-y_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|B y_{n-1}\right\| \\
& \leq \alpha_{n} \gamma \beta\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right| \gamma K \\
& \quad+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-y_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right| K
\end{align*}
$$

where $K=\sup \left\{\left\|f\left(x_{n}\right)\right\|+\left\|B y_{n}\right\|: n \in \mathbb{N}\right\}<\infty$. On the other hand, we note that

$$
\begin{align*}
\left\|y_{n}-y_{n-1}\right\| & =\left\|S_{n} u_{n}-S_{n-1} u_{n-1}\right\| \\
& \leq\left\|S_{n} u_{n}-S_{n} u_{n-1}\right\|+\left\|S_{n} u_{n-1}-S_{n-1} u_{n-1}\right\| \tag{3.17}\\
& \leq\left\|u_{n}-u_{n-1}\right\|+\left\|S_{n} u_{n-1}-S_{n-1} u_{n-1}\right\|
\end{align*}
$$

Putting $v_{n}=x_{n}-\lambda_{n} A x_{n}$, from $u_{n+1}=J_{M, \lambda_{n+1}} v_{n+1}$ and $u_{n}=J_{M, \lambda_{n}} v_{n}$, we have

$$
\begin{equation*}
v_{n+1}-u_{n+1} \in \lambda_{n+1} M u_{n+1} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}-u_{n} \in \lambda_{n} M u_{n} \tag{3.19}
\end{equation*}
$$

Since M is monotone, we have

$$
\left\langle u_{n+1}-u_{n}, \frac{u_{n}-v_{n}}{\lambda_{n}}-\frac{u_{n+1}-v_{n+1}}{\lambda_{n+1}}\right\rangle \geq 0
$$

and hence

$$
\left\langle u_{n+1}-u_{n}, u_{n}-u_{n+1}+u_{n+1}-v_{n}-\frac{\lambda_{n}}{\lambda_{n+1}}\left(u_{n+1}-v_{n+1}\right)\right\rangle \geq 0
$$

Then, we have

$$
\begin{aligned}
\left\|u_{n+1}-u_{n}\right\|^{2} & \leq\left\langle u_{n+1}-u_{n}, v_{n+1}-v_{n}+\left(1-\frac{\lambda_{n}}{\lambda_{n+1}}\right)\left(u_{n+1}-v_{n+1}\right)\right\rangle \\
& \leq\left\|u_{n+1}-u_{n}\right\|\left\{\left\|v_{n+1}-v_{n}\right\|+\left|1-\frac{\lambda_{n}}{\lambda_{n+1}}\right|\left\|u_{n+1}-v_{n+1}\right\|\right\}
\end{aligned}
$$

and hence

$$
\begin{align*}
\left\|u_{n+1}-u_{n}\right\| & \leq\left\|v_{n+1}-v_{n}\right\|+\frac{1}{\lambda_{n+1}}\left|\lambda_{n+1}-\lambda_{n}\right|\left\|u_{n+1}-v_{n+1}\right\| \tag{3.20}\\
& \leq\left\|v_{n+1}-v_{n}\right\|+\frac{1}{a}\left|\lambda_{n+1}-\lambda_{n}\right| L
\end{align*}
$$

where $L=\sup \left\{\left\|u_{n}-v_{n}\right\|: n \in N\right\}$. Since $I-\lambda_{n} A$ is nonexpansive, we also have

$$
\begin{align*}
\left\|v_{n+1}-v_{n}\right\| & =\left\|x_{n+1}-\lambda_{n+1} A x_{n+1}-\left(x_{n}-\lambda_{n} A x_{n}\right)\right\| \\
& \leq \| x_{n+1}-\lambda_{n+1} A x_{n+1}-\left(x_{n}-\lambda_{n+1} A x_{n}\right) \tag{3.21}\\
& \leq-\lambda_{n+1} A x_{n}+\lambda_{n} A x_{n} \| \\
& \left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A x_{n}\right\| .
\end{align*}
$$

From (3.21) and (3.20), we have

$$
\begin{equation*}
\left\|u_{n}-u_{n-1}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+\left|\lambda_{n}-\lambda_{n-1}\right|\left(\frac{L}{a}+\left\|A x_{n-1}\right\|\right) \tag{3.22}
\end{equation*}
$$

Next, we estimate $\left\|S_{n} u_{n-1}-S_{n-1} u_{n-1}\right\|$. Notice that

$$
\begin{align*}
\left\|S_{n} u_{n-1}-S_{n-1} u_{n-1}\right\|= & \|\left(\beta_{n} u_{n-1}+\left(1-\beta_{n}\right) S u_{n-1}\right) \\
& -\left(\beta_{n-1} u_{n-1}+\left(1-\beta_{n-1}\right) S u_{n-1}\right) \| \tag{3.23}\\
\leq & \left|\beta_{n}-\beta_{n-1}\right|\left\|u_{n-1}-S u_{n-1}\right\| .
\end{align*}
$$

Substituting (3.22) and (3.23) into (3.17), we have

$$
\begin{align*}
& \left\|y_{n}-y_{n-1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\left|\lambda_{n}-\lambda_{n-1}\right|\left(\frac{L}{a}+\left\|A x_{n-1}\right\|\right) \tag{3.24}\\
& \quad+\left|\beta_{n}-\beta_{n-1}\right|\left\|u_{n-1}-S u_{n-1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\left|\lambda_{n}-\lambda_{n-1}\right| M_{1}+\left|\beta_{n}-\beta_{n-1}\right| M_{1}
\end{align*}
$$

where M_{1} is an appropriate constant such that

$$
M_{1} \geq \frac{L}{a}+\left\|A x_{n-1}\right\|+\left\|u_{n-1}-S u_{n-1}\right\|, \quad \forall n \in \mathbb{N}
$$

From (3.16) and (3.24), we have

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\| \\
& \leq \alpha_{n} \gamma \beta\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right| K(\gamma+1) \\
& \quad+\left(1-\alpha_{n} \bar{\gamma}\right)\left(\left\|x_{n}-x_{n-1}\right\|+\left|\lambda_{n}-\lambda_{n-1}\right| M_{1}+\left|\beta_{n}-\beta_{n-1}\right| M_{1}\right) \tag{3.25}\\
& \leq\left[1-\alpha_{n}(\bar{\gamma}-\gamma \beta)\right]\left\|x_{n}-x_{n-1}\right\| \\
& \quad+M\left(\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\lambda_{n}-\lambda_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|\right),
\end{align*}
$$

where $M=\max \left\{K(\gamma+1), M_{1}\right\}$. Hence, by Lemma 2.7, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.26}
\end{equation*}
$$

From (3.22), (3.24), $\left|\lambda_{n+1}-\lambda_{n}\right| \rightarrow 0$ and $\left|\beta_{n+1}-\beta_{n}\right| \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n+1}-u_{n}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 \tag{3.27}
\end{equation*}
$$

Since $x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}$, it follows that

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-B y_{n}\right\| .
\end{aligned}
$$

From $\alpha_{n} \rightarrow 0$ and (3.26), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.28}
\end{equation*}
$$

For $p \in F(S) \bigcap V I(H, A, M)$, from (3.3) and (3.4), we have

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
& =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|y_{n}-p\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2} \\
& \quad+2 \alpha_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\| \\
& \leq\left\|y_{n}-p\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2} \tag{3.29}\\
& \quad+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2} \\
& \quad+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2}+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|^{2}+a(b-2 \alpha)\left\|A x_{n}-A p\right\|^{2} \\
& \quad+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2}+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\|,
\end{align*}
$$

and hence

$$
\begin{aligned}
& -a(b-2 \alpha)\left\|A x_{n}-A p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \\
& \quad+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2}+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\| .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0$ and $\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-A p\right\|=0 . \tag{3.30}
\end{equation*}
$$

Using Lemma 2.4, we have

$$
\begin{aligned}
& \left\|u_{n}-p\right\|^{2} \\
& =\left\|J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-J_{M, \lambda_{n}}\left(p-\lambda_{n} A p\right)\right\|^{2} \\
& \leq\left\langle\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right), u_{n}-p\right\rangle \\
& =\frac{1}{2}\left(\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2}+\left\|u_{n}-p\right\|^{2}\right. \\
& \left.-\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)-\left(u_{n}-p\right)\right\|^{2}\right) \\
& \leq \frac{1}{2}\left(\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|\left(x_{n}-u_{n}\right)-\lambda_{n}\left(A x_{n}-A p\right)\right\|^{2}\right) \\
& =\frac{1}{2}\left(\left\|x_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right. \\
& \left.\quad-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle\right) .
\end{aligned}
$$

So, we have

$$
\begin{gather*}
\left\|u_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2} \\
+2 \lambda_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle . \tag{3.31}
\end{gather*}
$$

Then, from (3.4) and (3.31), we have

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|^{2} \\
& =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|y_{n}-p\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2} \\
& \quad+2 \alpha_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\| \\
& \leq\left\|u_{n}-p\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2}+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-u_{n}, A x_{n}-A p\right\rangle \\
& \quad+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-B p\right\|^{2}+2 \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|\left\|y_{n}-p\right\| .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0,\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$ and $\left\|A x_{n}-A p\right\| \rightarrow 0$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.32}
\end{equation*}
$$

From (3.28) and (3.32), we have

$$
\begin{equation*}
\left\|u_{n}-y_{n}\right\| \leq\left\|u_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\| \rightarrow 0, \text { as } n \rightarrow \infty . \tag{3.33}
\end{equation*}
$$

Define $T: H \rightarrow H$ by $T x=\lambda x+(1-\lambda) S x$. Then T is nonexpansive with $F(T)=F(S)$ by Lemma 2.6. Notice that

$$
\begin{aligned}
\left\|T u_{n}-u_{n}\right\| & \leq\left\|T u_{n}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\| \\
& \leq \mid \lambda-\beta_{n}\left\|u_{n}-S u_{n}\right\|+\left\|y_{n}-u_{n}\right\| .
\end{aligned}
$$

By (3.33) and $\beta_{n} \rightarrow \lambda$, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T u_{n}-u_{n}\right\|=0 \tag{3.34}
\end{equation*}
$$

Next, we show that $\limsup _{n \rightarrow \infty}\left\langle(B-\gamma f) q, q-x_{n}\right\rangle \leq 0$, where q is the unique solution of the variational inequality (3.1). To show this inequality, we choose a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\lim _{i \rightarrow \infty}\left\langle(B-\gamma f) q, q-x_{n_{i}}\right\rangle=\limsup _{n \rightarrow \infty}\left\langle(B-\gamma f) q, q-x_{n}\right\rangle
$$

Since $\left\{u_{n_{i}}\right\}$ is bounded, there exists a subsequence $\left\{u_{n_{i_{j}}}\right\}$ of $\left\{u_{n_{i}}\right\}$ which converges weakly to w. Without loss of generality, we can assume that $u_{n_{i}} \rightharpoonup$ w. From (3.32) and (3.34), we obtain $x_{n_{i}} \rightharpoonup w$, and $T u_{n_{i}} \rightharpoonup w$. By the same argument as in the proof of Theorem 3.1, we have $w \in F(S) \bigcap V I(H, A, M)$. Since q is the unique solution of the variational inequality (3.1), it follows that

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle(B-\gamma f) q, q-x_{n}\right\rangle & =\lim _{i \rightarrow \infty}\left\langle(B-\gamma f) q, q-x_{n_{i}}\right\rangle \tag{3.35}\\
& =\langle(B-\gamma f) q, q-w\rangle \leq 0 .
\end{align*}
$$

From $x_{n+1}-q=\alpha_{n}\left(\gamma f\left(x_{n}\right)-B q\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-q\right)$, we have

$$
\begin{aligned}
&\left\|x_{n+1}-q\right\|^{2} \\
& \leq\left\|\left(I-\alpha_{n} B\right)\left(y_{n}-q\right)\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B q, x_{n+1}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \gamma\left\langle f\left(x_{n}\right)-f(q), x_{n+1}-q\right\rangle \\
& \quad+2 \alpha_{n}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \gamma \beta\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\| \\
&+2 \alpha_{n}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+\alpha_{n} \gamma \beta\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right) \\
&+2 \alpha_{n}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle \\
& \leq\left(\left(1-\alpha_{n} \bar{\gamma}\right)^{2}+\alpha_{n} \gamma \beta\right)\left\|x_{n}-q\right\|^{2} \\
&+\alpha_{n} \gamma \beta\left\|x_{n+1}-q\right\|^{2}+2 \alpha_{n}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\| & x_{n+1}-q \|^{2} \\
\leq & \frac{1-2 \alpha_{n} \bar{\gamma}+\left(\alpha_{n} \bar{\gamma}\right)^{2}+\alpha_{n} \gamma \beta}{1-\alpha_{n} \gamma \beta}\left\|x_{n}-q\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma \beta}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle \\
= & \left(1-\frac{2(\bar{\gamma}-\gamma \beta) \alpha_{n}}{1-\alpha_{n} \gamma \beta}\right)\left\|x_{n}-q\right\|^{2} \\
& +\frac{\left(\alpha_{n} \bar{\gamma}\right)^{2}}{1-\alpha_{n} \gamma \beta}\left\|x_{n}-q\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma \beta}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle \\
\leq & \left(1-\frac{2(\bar{\gamma}-\gamma \beta) \alpha_{n}}{1-\alpha_{n} \gamma \beta}\right)\left\|x_{n}-q\right\|^{2} \\
& +\frac{2(\bar{\gamma}-\gamma \beta) \alpha_{n}}{1-\alpha_{n} \gamma \beta}\left\{\frac{\left(\alpha_{n} \bar{\gamma}^{2}\right) M^{*}}{2(\bar{\gamma}-\gamma \beta)}+\frac{1}{\bar{\gamma}-\gamma \beta}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle\right\} \\
= & \left(1-\gamma_{n}\right)\left\|x_{n}-q\right\|^{2}+\gamma_{n} \delta_{n},
\end{aligned}
$$

where

$$
M^{*}=\sup \left\{\left\|x_{n}-q\right\|^{2}: n \in \mathbb{N}\right\}, \quad \gamma_{n}=\frac{2(\bar{\gamma}-\gamma \beta) \alpha_{n}}{1-\alpha_{n} \gamma \beta}
$$

and

$$
\delta_{n}=\frac{\left(\alpha_{n} \bar{\gamma}^{2}\right) M^{*}}{2(\bar{\gamma}-\gamma \beta)}+\frac{1}{\bar{\gamma}-\gamma \beta}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle .
$$

It is easily to see that $\gamma_{n} \rightarrow 0, \sum_{n=1}^{\infty} \gamma_{n}=\infty$ and $\limsup _{n \rightarrow \infty} \delta_{n} \leq 0$ by (3.35). Hence, by Lemma 2.7, the sequence $\left\{x_{n}\right\}$ converges strongly to q.

Remark 3.3. Theorem 3.2 improves Proposition 3.1 of [6] in the following senses:
(1) We generalize classical variational inequality (1.3) considered by [6] to variational inclusion (1.1).
(2) We generalize a nonexpansive mapping considered by [6] to a strictly pseudocontractive mapping.
(3) We generalize the iterative algorithm from viscosity approximation methods proposed by [6] to general iterative methods.

Remark 3.4. Theorems 3.1 and 3.2 are also development of the iterative algorithms of [10] in different directions.

References

[1] F. Browder and W. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.
[2] L. Ceng, Existence and algorithm of solutions for general multivalued mixed implicit quasi-variational inequalities, Appl. Math. Mech., 24 (2003), 1324-1333.
[3] L. Ceng, Perturbed proximal point algorithm for generalized nonlinear set-valued mixed quasi-variational inclusions, Acta. Math. Sin., 47 (2004), 11-18.
[4] L. Ceng and J. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math., 10 (2006), 1293-1303.
[5] S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. TMA, 30 (1997), 4197-4208.
[6] J. Chen, L. Chang and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl., 334 (2007), 1450-1461.
[7] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inequalities, J. Math. Anal. Appl., 185 (1994), 706-712.
[8] N. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Computers Math. Applic., 35 (1998), 9-14.
[9] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., 61 (2005), 341-350.
[10] Y. Liu, A general iterative method for equilibrium problems and strict pseudocontractions in Hilbert spaces, Nonlinear Anal., 71 (2009), 4852-4861.
[11] Y. Liu and Y. Chen, The Common Solution for the Question of Fixed Point and the Question of Variational Inclusion, J. Math. Res. Exposition, 29 (2009), 477-484.
[12] G. Marino and H. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43-52.
[13] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191-201.
[14] D. Pascali, Nonlinear mappings of monotone type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn (1978).
[15] W. Takahashi and M. Toyoda, SWeak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428.
[16] H. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291.
[17] Y. Yao and J. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput., 186 (2007), 1551-1558.

[^0]: ${ }^{0}$ Received October 11, 2012. Revised February 2, 2013.
 ${ }^{0} 2000$ Mathematics Subject Classification: 47H09, 47H05, 47H06, 47J25, 47 J 05.
 ${ }^{0}$ Keywords: Fixed point, variational inclusion, strictly pseudo-contractive mapping, inverse-strongly monotone mapping, maximal monotone mapping.
 ${ }^{0}$ This work was financially supported by the Natural Science Foundation of Hebei Education Commission(2010110), the Natural Science Foundation of Hebei Province(A2011201053) and the National Natural Science Foundation of China(11101115).

