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Abstract. In this paper, we introduce two iterative schemes by the general iterative method

for finding a common element of the set of fixed points of a strictly pseudo-contractive map-

ping and the set of solutions of a variational inclusion for an α−inverse-strongly monotone

mapping and a maximal monotone mapping in a Hilbert space. Our results improve and

extend the corresponding results announced by many others.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. Let C be a nonempty closed convex subset of H, let F : C×C → R be a
bifunction. Let A : H → H be a single-valued mapping and M : H → 2H be
a multivalued mapping. Then, we consider the following variational inclusion
problem which is to find u ∈ H such that

0 ∈ A(u) +M(u). (1.1)

The set of solutions of the variational inclusion (1.1) is denoted by V I(H,A,M).
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(1) When M is a maximal monotone mapping and A is a strongly monotone
and Lipschitz continuous mapping, problem (1.1) has been studied by Huang
[8].

(2) If M = ∂φ, where ∂φ denotes the subdifferential of a proper, convex
and lower semi-continuous function φ : H → R

⋃
{+∞}, then problem (1.1)

reduces to the following problem: find u ∈ H,such that

〈A(u), v − u〉+ φ(v)− φ(u) ≥ 0, ∀v ∈ H, (1.2)

which is called a nonlinear variational inequality and has been studied by
many authors; see, for example, [2-3].

(3) If M = ∂δC , where δC is the indicator function of C, then problem (1.1)
reduces to the following problem: find u ∈ C, such that

〈A(u), v − u〉 ≥ 0, ∀v ∈ C, (1.3)

which is the classical variational inequality; see, e.g.,[7,9] and the reference
therein. A mapping A : H → H is called inverse-strongly monotone if there
exists α > 0 such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ H.
Such a mapping A is also called α-inverse-strongly monotone. If A is an α-
inverse-strongly monotone mapping of H to H, then it is obvious that A is
1
α -Lipschitz continuous. We also have that for all x, y ∈ H, and λ > 0,

‖(I − λA)x− (I − λA)y‖2 = ‖(x− y)− λ(Ax−Ay)‖2
= ‖x− y‖2 − 2λ〈x− y,Ax−Ay〉

+λ2‖Ax−Ay‖2
≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2.

(1.4)

So, if λ ≤ 2α, then I −λA is a nonexpansive mapping of H into H. See [9] for
some examples of inverse-strongly monotone mappings.

A mapping T of C into itself is nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖,∀x, y ∈
C. Recently, Iiduka and Takahashi [9], Takahashi and Toyoda [15], Chen et
al. [6] , Nadezhkina and Takahashi [13], Ceng and Yao [4], Yao and Yao [17]
introduced many iterative methods for finding a common element of the set of
fixed points of a nonexpansive mapping and the set of solutions of variational
inequality (1.3) for an α-inverse-strongly monotone mapping, they obtained
some weak and strong convergence theorems.

Recall that a self-mapping f : C → C is a contraction on C if there is a
constant β ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ β‖x− y‖, ∀x, y ∈ C.
An operator B is strongly positive if there exists a constant γ̄ > 0 with the
property

〈Bx, x〉 ≥ γ̄‖x‖2, ∀x ∈ H. (1.5)
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In 2006, Marino and Xu [12] introduced the general iterative method and
proved that for given x0 ∈ H, the sequence {xn} generated by the algorithm

xn+1 = αnγf(xn) + (I − αnB)Txn, n ∈ N,

where T is a self-nonexpansive mapping on H, f is a contraction of H into itself
with β ∈ (0, 1) and {αn} ⊆ (0, 1) satisfies certain conditions, B is a strongly
positive bounded linear operator on H, converges strongly to a fixed point x∗

of T which is the unique solution to the following variational inequality:

〈(B − γf)x∗, x∗ − x〉 ≤ 0, ∀x ∈ F (T ),

and is also the optimality condition for some minimization problem.
A mapping S : C → H is said to be k−strictly pseudo-contractive if there

exists a constant k ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + k‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C. (1.6)

Note that the class of k−strict pseudo-contractions strictly includes the class
of nonexpansive mappings. That is, S is nonexpansive if and only if S is 0-
strictly pseudo-contractive. It is also said to be pseudo-contractive if k = 1.
Clearly, the class of k-strict pseudo-contractions falls into the one between
classes of nonexpansive mappings and pseudo-contractions.

The set of fixed points of S is denoted by F (S). Very recently, by using
the general approximation method Liu [10] obtained two strong convergence
theorems for finding a common element of the set of solutions of an equilibrium
problem and the set of fixed points of a k−strictly pseudo-contractive non-self
mapping.

In this paper, motivated and inspired by the above results, we introduce
two iteration schemes for finding an element of V I(H,A,M)

⋂
F (S), where

S : H → H is a k-strict pseudocontraction, and A : H → H is an inverse-
strongly monotone mapping and then obtain two strong convergence theorems.

2. Preliminaries

Throughout this paper, we always let X be a real Banach space with dual
space X∗, H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
and let C be a closed convex subset of H. We write xn ⇀ x to indicate that
the sequence {xn} converges weakly to x. xn → x implies that {xn} converges
strongly to x. We denote by N and R the sets of positive integers and real
numbers, respectively.

It is also known that H satisfies Opial’s condition [13], i.e., for any sequence
{xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖
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holds for every y ∈ H with y 6= x.
A set-valued mappingM : H → 2H is called monotone if for all x, y ∈ H,u ∈

Mx, v ∈ My imply 〈x − y, u − v〉 ≥ 0. A monotone mapping M : H → 2H

is maximal if the graph G(M) of M is not properly contained in the graph
of any other monotone mapping. It is known that a monotone mapping M
is maximal if and only if for (x, u) ∈ H × H, 〈x − y, u − v〉 ≥ 0 for every
(y, v) ∈ G(M) implies u ∈Mx.

The following definitions and lemmas are useful for our paper.

Definition 2.1. ([14]) If M is a maximal monotone mapping on H, then the
resolvent operator associated with M is defined by

JM,λ(u) = (I + λM)−1u, ∀u ∈ H,

where λ > 0 is a constant and I is the identity operator.

Definition 2.2. ([14]) A single-valued operator A : H → H is said to be
hemi-continuous if for any fixed x, y, z ∈ H, the function t → 〈A(x + ty), z〉
is continuous at 0+. It is well known that a continuous mapping must be
hemi-continuous.

Definition 2.3. ([14]) A set-valued mapping A : X → 2X
∗

is said to be
bounded if A(B) is bounded for every bounded subset B of X.

Lemma 2.4. ([11]) The resolvent operator JM,λ is firmly nonexpansive, that
is

〈JM,λu− JM,λv, u− v〉 ≥ ‖JM,λu− JM,λv‖2, ∀u, v ∈ H.

Lemma 2.5. ([14]) If T : X → 2X
∗

is a maximal monotone mapping and P :
X → X∗ is a hemi-continuous bounded monotone operator with D(P ) = X,
then the sum S = T + P is a maximal monotone mapping.

Lemma 2.6. ([1]) Let S : C → H be a k-strict pseudo-contraction. Define
T : C → H by Tx = λx+ (1− λ)Sx for each x ∈ C. Then, as λ ∈ [k, 1), T is
a nonexpansive mapping such that F (T ) = F (S).

Lemma 2.7. ([16]) Assume that {an} is a sequence of nonnegative real num-
bers such that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
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(i)
∞∑
n=1

γn =∞; (ii) lim sup
n→∞

δn
γn
≤ 0 or

∞∑
n=1
|δn| <∞.

Then lim
n→∞

an = 0.

Lemma 2.8. ([5]) The following inequality holds in a Hilbert space,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, (x+ y)〉, ∀x, y ∈ H.

Lemma 2.9. The function u ∈ H is a solution of variational inclusion (1.1)
if and only if u ∈ H satisfies the relation

u = JM,λ[u− λAu],

where λ > 0 is a constant, M is a maximal monotone mapping and JM,λ =
(I + λM)−1 is the resolvent operator.

Proof. Using Definition 2.1, we can obtain the desired result. �

Lemma 2.10. ([12]) Assume that B is a strongly positive linear bounded op-
erator on a Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then
‖I − ρB‖ ≤ 1− ργ̄.

Lemma 2.11. ([12]) Let H be a Hilbert space and f : H → H be a contraction
with coefficient 0 < β < 1, and B be a strongly positive linear bounded operator

with coefficient γ̄ > 0. Then, for 0 < γ <
γ̄
β
,

〈x− y, (B − γf)x− (B − γf)y〉 ≥ (γ̄ − γβ)‖x− y‖2, ∀x, y ∈ H.

That is, B − γf is strongly monotone with coefficient γ̄ − γβ.

3. Main Results

Throughout the rest of this paper, we always assume that f is a contraction
of H into itself with coefficient β ∈ (0, 1), and B is a strongly positive bounded
linear operator with coefficient γ̄ and 0 < γ < γ̄

β . Let {JM,λn} be a sequence

of mappings defined as Definition 2.1 and let A be an α−inverse-strongly
monotone mapping, where {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2α.
Define a mapping Sn : H → H by Snx = βnx + (1 − βn)Sx,∀x ∈ H, where
βn ∈ [k, 1). Then, by Lemma 2.6, Sn is nonexpansive.

Consider the following mapping Gn on H defined by

Gnx = αnγf(x) + (I − αnB)SnJM,λn(I − λnA)x, x ∈ H,n ∈ N,
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where αn ∈ (0, 1). By (1.4), Lemmas 2.10 and 2.4, we have

‖Gnx−Gny‖ ≤ αnγ‖f(x)− f(y)‖
+(1− αnγ̄)‖JM,λn(I − λnA)x− JM,λn(I − λnA)y‖

≤ αnγβ‖x− y‖+ (1− αnγ̄)‖x− y‖
=

(
1− αn(γ̄ − γβ)

)
‖x− y‖.

Since 0 < 1− αn(γ̄ − γβ) < 1, it follows that Gn is a contraction. Therefore,

by the Banach contraction principle, Gn has a unique fixed point xfn ∈ H such
that

xfn = αnγf(xfn) + (I − αnB)SnJM,λn(I − λnA)xfn.

For simplicity we will write xn for xfn provided no confusion occurs. Next
we prove the convergence of {xn}, while they claim the existence of the q ∈
F (S)

⋂
V I(H,A,M) which solves the variational inequality

〈(B − γf)q, p− q〉 ≥ 0, ∀p ∈ F (S)
⋂
V I(H,A,M). (3.1)

Theorem 3.1. Let H be a real Hilbert space and let M : H → 2Hbe a maximal
monotone mapping. Let A be an α−inverse-strongly monotone mapping of H
into H and let S be a k−strictly pseudocontractive mapping on H such that
F (S)

⋂
V I(H,A,M) 6= ∅. Let f be a contraction of H into itself with β ∈ (0, 1)

and let B be a strongly positive bounded linear operator on H with coefficient
γ̄ > 0 and 0 < γ < γ̄

β . Let {xn} be sequence generated by un = JM,λn(xn − λnAxn),
yn = βnun + (1− βn)Sun,
xn = αnγf(xn) + (I − αnB)yn, ∀n ∈ N,

(3.2)

where yn = Snun, {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2α. If {αn} and
{βn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞

αn = 0,

(ii) 0 ≤ k ≤ βn ≤ λ < 1 and lim
n→∞

βn = λ,

then {xn} converges strongly to a point q ∈ F (S)
⋂
V I(H,A,M), which solves

the variational inequality (3.1).

Proof. First, we assume that αn ∈ (0, ‖B‖−1). By Lemma 2.10, we obtain
‖I − αnB‖ ≤ 1− αnγ̄. Take p ∈ F (S)

⋂
V I(H,A,M). Since un = JM,λn(xn −

λnAxn) and p = JM,λn(p− λnAp), then, from (1.4) and Lemma 2.4, we know
that, for any n ∈ N,
‖un − p‖2 ≤ ‖xn − p‖2 + λn(λn − 2α)‖Axn −Ap‖2 ≤ ‖xn − p‖2. (3.3)

Further, since Snp = p, we have

‖yn − p‖ = ‖Snun − Snp‖ ≤ ‖un − p‖ ≤ ‖xn − p‖. (3.4)
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Thus, we have

‖xn − p‖ = ‖αn(γf(xn)−Bp) + (I − αnB)(yn − p)‖
≤ αn‖γ(f(xn)− f(p)) + (γf(p)−Bp)‖+ ‖I − αnB‖‖yn − p‖
≤ αnγβ‖xn − p‖+ αn‖γf(p)−Bp‖+ (1− αnγ̄)‖xn − p‖
=

(
1− αn(γ̄ − γβ)

)
‖xn − p‖+ αn‖γf(p)−Bp‖.

It follows that ‖xn− p‖ ≤
‖γf(p)−Bp‖

γ̄ − γβ . Hence {xn} is bounded and we also

obtain that {un}, {yn}, {Axn} and {f(xn)} are bounded. We note that

‖un − yn‖ ≤ ‖un − xn‖+ ‖xn − yn‖
= ‖un − xn‖+ αn‖γf(xn)−Byn‖.

(3.5)

Using Lemma 2.8, (3.3) and (3.4), we also have

‖xn − p‖2 ≤ ‖(I − αnB)(yn − p)‖2 + 2αn〈γf(xn)−Bp, xn − p〉
≤ (1− αnγ̄)2‖un − p‖2 + 2αn〈γf(xn)−Bp, xn − p〉
≤ (1− αnγ̄)2

(
‖xn − p‖2 + λn(λn − 2α)‖Axn −Ap‖2

)
+2αn〈γf(xn)−Bp, xn − p〉

≤ ‖xn − p‖2 + (1− αnγ̄)2a(b− 2α)‖Axn −Ap‖2
+2αn〈γf(xn)−Bp, xn − p〉,

and hence

(1− αnγ̄)2a(2α− b)‖Axn −Ap‖2 ≤ 2αn‖γf(xn)−Bp‖‖xn − p‖.

Since αn → 0, we have

lim
n→∞

‖Axn −Ap‖ = 0. (3.6)

Using Lemma 2.4 and (1.4), we have

‖un − p‖2
= ‖JM,λn(xn − λnAxn)− JM,λn(p− λnAp)‖2
≤ 〈(xn − λnAxn)− (p− λnAp), un − p〉
= 1

2

(
‖(xn − λnAxn)− (p− λnAp)‖2 + ‖un − p‖2

−‖(xn − un)− λn(Axn −Ap)‖2
)

≤ 1
2

(
‖xn − p‖2 + ‖un − p‖2 − ‖(xn − un)− λn(Axn −Ap)‖2

)
= 1

2

(
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2 − λ2

n‖Axn −Ap‖2
+2λn〈xn − un, Axn −Ap〉

)
.

So, we have

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 − λ2
n‖Axn −Ap‖2

+2λn〈xn − un, Axn −Ap〉.
(3.7)
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Then, from Lemma 2.8, (3.4) and (3.7), we have

‖xn − p‖2
= ‖(I − αnB)(yn − p) + αn(γf(xn)−Bp)‖2
≤ (1− αnγ̄)2‖yn − p‖2 + 2αn〈γf(xn)−Bp, xn − p〉
≤ (1− αnγ̄)2‖un − p‖2 + 2αnγ〈f(xn)− f(p), xn − p〉

+2αn〈γf(p)−Bp, xn − p〉
≤ (1− αnγ̄)2

(
‖xn − p‖2 − ‖xn − un‖2 − λ2

n‖Axn −Ap‖2
+2λn〈xn − un, Axn −Ap〉

)
+ 2αnγβ‖xn − p‖2

+2αn‖γf(p)−Bp‖‖xn − p‖
=
(
1− 2αn(γ̄ − γβ) + (αnγ̄)2

)
‖xn − p‖2 − (1− αnγ̄)2‖xn − un‖2

−(1− αnγ̄)2λ2
n‖Axn −Ap‖2

+2λn(1− αnγ̄)2〈xn − un, Axn −Ap〉+ 2αn‖γf(p)−Bp‖‖xn − p‖
≤ ‖xn − p‖2 + α2

nγ̄
2‖xn − p‖2 − (1− αnγ̄)2‖xn − un‖2

−(1− αnγ̄)2λ2
n‖Axn −Ap‖2

+2λn(1− αnγ̄)2〈xn − un, Axn −Ap〉+ 2αn‖γf(p)−Bp‖‖xn − p‖,

and hence

(1− αnγ̄)2‖xn − un‖2
≤ α2

nγ̄
2‖xn − p‖2 + 2λn(1− αnγ̄)2〈xn − un, Axn −Ap〉

+2αn‖γf(p)−Bp‖‖xn − p‖.

Since ‖Axn −Ap‖ → 0 and αn → 0, it follows that

lim
n→∞

‖xn − un‖ = 0. (3.8)

From (3.5), we know that

lim
n→∞

‖un − yn‖ = 0. (3.9)

Define T : H → H by Tx = λx + (1 − λ)Sx. Then T is nonexpansive with
F (T ) = F (S) by Lemma 2.6. Notice that

‖Tun − un‖ ≤ ‖Tun − yn‖+ ‖yn − un‖ ≤ |λ− βn|‖un − Sun‖+ ‖yn − un‖.

By (3.9) and βn → λ, we obtain that

lim
n→∞

‖Tun − un‖ = 0. (3.10)

Consider a subsequence {uni} of {un}. Since {uni} is bounded, there exists
a subsequence {unij

} of {uni} which converges weakly to q. Next, we show

that q ∈ F (S)
⋂
V I(H,A,M). Without loss of generality, we can assume that

uni ⇀ q. From ‖Tun − un‖ → 0, we obtain Tuni ⇀ q. Let us show q ∈ F (T ).
Assume q∈̄F (T ). Since uni ⇀ q and q 6= Tq, it follows from the Opial’s
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condition that

lim inf
n→∞

‖uni − q‖ < lim inf
n→∞

‖uni − Tq‖
≤ lim inf

n→∞

(
‖uni − Tuni‖+ ‖Tuni − Tq‖

)
≤ lim inf

n→∞
‖uni − q‖.

This is a contradiction. So, we get q ∈ F (T ) and hence q ∈ F (S).
We shall show q ∈ V I(H,A,M). Since A is 1

α−Lipschitz continuous mono-
tone and D(A) = H, by Lemma 2.5, M +A is a maximal monotone mapping.
Let (v, f) ∈ G(M + A). Since f − Av ∈ Mv and 1

λni
(xni − uni − λniAxni) ∈

Muni , we have

〈v − uni , (f −Av)− 1

λni

(xni − uni − λniAxni)〉 ≥ 0.

Therefore, we have

〈v − uni , f〉 ≥ 〈v − uni , Av + 1
λni

(xni − uni − λniAxni)〉
= 〈v − uni , Av −Axni〉+ 〈v − uni ,

1
λni

(xni − uni)〉
= 〈v − uni , Av −Auni〉+ 〈v − uni , Auni −Axni〉

+〈v − uni ,
1
λni

(xni − uni)〉
≥ 〈v − uni , Auni −Axni〉+ 〈v − uni ,

1
λni

(xni − uni)〉.

Let i → ∞, we obtain 〈v − q, f〉 ≥ 0. Since A + M is maximal mono-
tone, we have 0 ∈ Aq + Mq and hence q ∈ V I(H,A,M). Therefore, q ∈
F (S)

⋂
V I(H,A,M). On the other hand, we note that

xn − q = αn(γf(xn)−Bq) + (I − αnB)(yn − q).
It follows that

‖xn − q‖2 = αn〈γf(xn)−Bq, xn − q〉+ 〈(I − αnB)(yn − q), xn − q〉
≤ αn〈γf(xn)−Bq, xn − q〉+ ‖I − αnB‖‖yn − q‖‖xn − q‖
≤ αn〈γf(xn)−Bq, xn − q〉+ (1− αnγ̄)‖xn − q‖2.

Hence, we obtain

‖xn − q‖2 ≤ 1
γ̄ 〈γf(xn)−Bq, xn − q〉

= 1
γ̄

(
γ〈f(xn)− f(q), xn − q〉+ 〈γf(q)−Bq, xn − q〉

)
≤ 1

γ̄

(
γβ‖xn − q‖2 + 〈γf(q)−Bq, xn − q〉

)
.

This implies that

‖xn − q‖2 ≤
〈γf(q)−Bq, xn − q〉

γ̄ − γβ
.

In particular, we have

‖xni − q‖2 ≤
〈γf(q)−Bq, xni − q〉

γ̄ − γβ
. (3.11)
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Since xni ⇀ q, it follows from (3.11) that xni → q as i → ∞. Next, we show
that q solves the variational inequality (3.1). Since

xn = αnγf(xn) + (I − αnB)yn

= αnγf(xn) + (I − αnB)SnJM,λn(I − λnA)xn,

we have

(B − γf)xn = − 1

αn
(I − αnB)(I − SnJM,λn(I − λnA))xn.

It follows that for p ∈ F (S)
⋂
V I(H,A,M),

〈(B − γf)xn, xn − p〉
= − 1

αn 〈(I − αnB)(I − SnJM,λn(I − λnA))xn, xn − p〉
= − 1

αn 〈(I − SnJM,λn(I − λnA))xn
−(I − SnJM,λn(I − λnA))p, xn − p〉
+〈B(I − SnJλn(I − λnA))xn, xn − p〉

≤ 〈B(I − SnJM,λn(I − λnA))xn, xn − p〉.

(3.12)

Since I−SnJM,λn(I−λnA) is monotone
(
i.e.〈x−y, (I−SnJM,λn(I−λnA))x−

(I−SnJM,λn(I−λnA))y〉 ≥ 0 for all x, y ∈ H. This is due to the nonexpansivity
of SnJM,λn(I − λnA)

)
. Now replacing n in (3.12) with ni and letting i→∞,

we have

〈(B − γf)q, q − p〉 = lim
i→∞
〈(B − γf)xni , xni − p〉

≤ lim
i→∞
〈B(xni − yni), xni − p〉 = 0.

(3.13)

That is, q ∈ F (S)
⋂
V I(H,A,M) is a solution of (3.1). To show that the

sequence {xn} converges to q, assume xnk
→ x̂. By the same as the proof above,

we have x̂ ∈ F (S)
⋂
V I(H,A,M). Moreover, it follows from the inequality

(3.13) that
〈(B − γf)q, q − x̂〉 ≤ 0. (3.14)

Interchange q and x̂ to obtain

〈(B − γf)x̂, x̂− q〉 ≤ 0. (3.15)

Adding these two inequalities yields

(γ̄ − γβ)‖q − x̂‖2 ≤ 〈q − x̂, (B − γf)q − (B − γf)x̂〉 ≤ 0

by Lemma 2.11. Hence q = x̂ and therefore xn → q as n→∞. �

Theorem 3.2. Let H be a real Hilbert space and let M : H → 2Hbe a maximal
monotone mapping. Let A be an α−inverse-strongly monotone mapping of H
into H and let S be a k−strictly pseudocontractive mapping on H such that
F (S)

⋂
V I(H,A,M) 6= ∅. Let f be a contraction of H into itself with β ∈ (0, 1)

and let B be a strongly positive bounded linear operator on H with coefficient
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γ̄ > 0 and 0 < γ < γ̄
β . Let {xn} and {un} be sequences generated by x1 ∈ H

and  un = JM,λn(xn − λnAxn),
yn = βnun + (1− βn)Sun,
xn+1 = αnγf(xn) + (I − αnB)yn, ∀n ∈ N,

where yn = Snun. If {αn}, {βn} and {λn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,
∞∑
n=1
|αn+1 − αn| <∞,

(ii) 0 ≤ k ≤ βn ≤ λ < 1 and lim
n→∞

βn = λ,
∞∑
n=1
|βn+1 − βn| <∞,

(iii) {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2α,
∞∑
n=1
|λn − λn+1| <∞,

then {xn} and {un} converge strongly to a point q ∈ F (S)
⋂
V I(H,A,M),

which solves the variational inequality (3.1).

Proof. Since αn → 0, we may assume that αn ∈ (0, ‖B‖−1). By Lemma 2.10,
we obtain ‖I−αnB‖ ≤ 1−αnγ̄. We now observe that {xn} is bounded. Indeed,
pick any p ∈ F (S)

⋂
V I(H,A,M) to obtain

‖xn+1 − p‖ = ‖αn(γf(xn)−Bp) + (I − αnB)(yn − p)‖
≤ αn‖γf(xn)−Bp‖+ ‖I − αnB‖‖yn − p‖
≤ αnγ‖f(xn)− f(p)‖+ αn‖γf(p)−Bp‖+ (1− αnγ̄)‖xn − p‖
≤ αnγβ‖xn − p‖+ αn‖γf(p)−Bp‖+ (1− αnγ̄)‖xn − p‖
=

(
1− αn(γ̄ − γβ)

)
‖xn − p‖+ αn‖γf(p)−Bp‖.

It follows from induction that

‖xn − p‖ ≤ max{‖x1 − p‖,
1

γ̄ − γβ
‖γf(p)−Bp‖}, n ∈ N,

and hence {xn} is bounded. From (3.3) and (3.4), we also obtain that {un}
and {yn} are bounded. Next, we show that ‖xn+1 − xn‖ → 0. We have

‖xn+1 − xn‖
= ‖αnγf(xn)+(I−αnB)yn−(αn−1γf(xn−1)+(I−αn−1B)yn−1)‖
= ‖αnγf(xn)− αnγf(xn−1) + αnγf(xn−1)− αn−1γf(xn−1)

+ (I − αnB)yn − (I − αnB)yn−1 + (I − αnB)yn−1

− (I − αn−1B)yn−1‖
≤ αnγβ‖xn − xn−1‖+ |αn − αn−1|γ‖f(xn−1)‖

+ ‖I − αnB‖‖yn − yn−1‖+ |αn − αn−1|‖Byn−1‖
≤ αnγβ‖xn − xn−1‖+ |αn − αn−1|γK

+ (1− αnγ̄)‖yn − yn−1‖+ |αn − αn−1|K,

(3.16)
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where K = sup{‖f(xn)‖+ ‖Byn‖ : n ∈ N} <∞. On the other hand, we note
that

‖yn − yn−1‖ = ‖Snun − Sn−1un−1‖
≤ ‖Snun − Snun−1‖+ ‖Snun−1 − Sn−1un−1‖
≤ ‖un − un−1‖+ ‖Snun−1 − Sn−1un−1‖.

(3.17)

Putting vn = xn − λnAxn, from un+1 = JM,λn+1vn+1 and un = JM,λnvn, we
have

vn+1 − un+1 ∈ λn+1Mun+1 (3.18)

and
vn − un ∈ λnMun. (3.19)

Since M is monotone, we have

〈un+1 − un,
un − vn
λn

− un+1 − vn+1

λn+1
〉 ≥ 0

and hence

〈un+1 − un, un − un+1 + un+1 − vn −
λn
λn+1

(un+1 − vn+1)〉 ≥ 0.

Then, we have

‖un+1 − un‖2 ≤ 〈un+1 − un, vn+1 − vn + (1− λn
λn+1

)(un+1 − vn+1)〉

≤ ‖un+1 − un‖
{
‖vn+1 − vn‖+ |1− λn

λn+1
|‖un+1 − vn+1‖

}
and hence

‖un+1 − un‖ ≤ ‖vn+1 − vn‖+ 1
λn+1

|λn+1 − λn|‖un+1 − vn+1‖

≤ ‖vn+1 − vn‖+ 1
a |λn+1 − λn|L,

(3.20)

where L = sup{‖un − vn‖ : n ∈ N}. Since I − λnA is nonexpansive, we also
have

‖vn+1 − vn‖ = ‖xn+1 − λn+1Axn+1 − (xn − λnAxn)‖
≤ ‖xn+1 − λn+1Axn+1 − (xn − λn+1Axn)
−λn+1Axn + λnAxn‖

≤ ‖xn+1 − xn‖+ |λn − λn+1|‖Axn‖.

(3.21)

From (3.21) and (3.20), we have

‖un − un−1‖ ≤ ‖xn − xn−1‖+ |λn − λn−1|
(
L

a
+ ‖Axn−1‖

)
. (3.22)

Next, we estimate ‖Snun−1 − Sn−1un−1‖. Notice that

‖Snun−1 − Sn−1un−1‖ = ‖(βnun−1 + (1− βn)Sun−1)
−(βn−1un−1 + (1− βn−1)Sun−1)‖

≤ |βn − βn−1|‖un−1 − Sun−1‖.
(3.23)
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Substituting (3.22) and (3.23) into (3.17), we have

‖yn − yn−1‖

≤ ‖xn − xn−1‖+ |λn − λn−1|
(
L
a + ‖Axn−1‖

)
+|βn − βn−1|‖un−1 − Sun−1‖

≤ ‖xn − xn−1‖+ |λn − λn−1|M1 + |βn − βn−1|M1,

(3.24)

where M1 is an appropriate constant such that

M1 ≥
L

a
+ ‖Axn−1‖+ ‖un−1 − Sun−1‖, ∀n ∈ N.

From (3.16) and (3.24), we have

‖xn+1 − xn‖
≤ αnγβ‖xn − xn−1‖+ |αn − αn−1|K(γ + 1)

+(1− αnγ̄)(‖xn − xn−1‖+ |λn − λn−1|M1 + |βn − βn−1|M1)
≤ [1− αn(γ̄ − γβ)]‖xn − xn−1‖

+M(|αn − αn−1|+ |λn − λn−1|+ |βn − βn−1|),

(3.25)

where M = max{K(γ + 1),M1}. Hence, by Lemma 2.7, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.26)

From (3.22), (3.24), |λn+1 − λn| → 0 and |βn+1 − βn| → 0, we have

lim
n→∞

‖un+1 − un‖ = 0 and lim
n→∞

‖yn+1 − yn‖ = 0. (3.27)

Since xn+1 = αnγf(xn) + (I − αnB)yn, it follows that

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖
= ‖xn − xn+1‖+ αn‖γf(xn)−Byn‖.

From αn → 0 and (3.26), we have

lim
n→∞

‖xn − yn‖ = 0. (3.28)

For p ∈ F (S)
⋂
V I(H,A,M), from (3.3) and (3.4), we have

‖xn+1 − p‖2
= ‖αn(γf(xn)−Bp) + (I − αnB)(yn − p)‖2
≤ (1− αnγ̄)2‖yn − p‖2 + α2

n‖γf(xn)−Bp‖2
+2αn(1− αnγ̄)‖γf(xn)−Bp‖‖yn − p‖
≤ ‖yn − p‖2 + α2

n‖γf(xn)−Bp‖2
+2αn‖γf(xn)−Bp‖‖yn − p‖
≤ ‖xn − p‖2 + λn(λn − 2α)‖Axn −Ap‖2

+α2
n‖γf(xn)−Bp‖2 + 2αn‖γf(xn)−Bp‖‖yn − p‖

≤ ‖xn − p‖2 + a(b− 2α)‖Axn −Ap‖2
+α2

n‖γf(xn)−Bp‖2 + 2αn‖γf(xn)−Bp‖‖yn − p‖,

(3.29)
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and hence

−a(b− 2α)‖Axn −Ap‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+α2
n‖γf(xn)−Bp‖2 + 2αn‖γf(xn)−Bp‖‖yn − p‖.

Since αn → 0 and ‖xn − xn+1‖ → 0, we have

lim
n→∞

‖Axn −Ap‖ = 0. (3.30)

Using Lemma 2.4, we have

‖un − p‖2
= ‖JM,λn(xn − λnAxn)− JM,λn(p− λnAp)‖2
≤ 〈(xn − λnAxn)− (p− λnAp), un − p〉
= 1

2

(
‖(xn − λnAxn)− (p− λnAp)‖2 + ‖un − p‖2

−‖(xn − λnAxn)− (p− λnAp)− (un − p)‖2
)

≤ 1
2

(
‖xn − p‖2 + ‖un − p‖2 − ‖(xn − un)− λn(Axn −Ap)‖2

)
= 1

2

(
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2

−λ2
n‖Axn −Ap‖2 + 2λn〈xn − un, Axn −Ap〉

)
.

So, we have

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 − λ2
n‖Axn −Ap‖2

+2λn〈xn − un, Axn −Ap〉.
(3.31)

Then, from (3.4) and (3.31), we have

‖xn+1 − p‖2
= ‖αn(γf(xn)−Bp) + (I − αnB)(yn − p)‖2
≤ (1− αnγ̄)2‖yn − p‖2 + α2

n‖γf(xn)−Bp‖2
+2αn(1− αnγ̄)‖γf(xn)−Bp‖‖yn − p‖
≤ ‖un − p‖2 + α2

n‖γf(xn)−Bp‖2 + 2αn‖γf(xn)−Bp‖‖yn − p‖
≤ ‖xn − p‖2 − ‖xn − un‖2 − λ2

n‖Axn −Ap‖2 + 2λn〈xn − un, Axn −Ap〉
+α2

n‖γf(xn)−Bp‖2 + 2αn‖γf(xn)−Bp‖‖yn − p‖.

Since αn → 0, ‖xn − xn+1‖ → 0 and ‖Axn −Ap‖ → 0, we obtain

lim
n→∞

‖xn − un‖ = 0. (3.32)

From (3.28) and (3.32), we have

‖un − yn‖ ≤ ‖un − xn‖+ ‖xn − yn‖ → 0, as n→∞. (3.33)

Define T : H → H by Tx = λx + (1 − λ)Sx. Then T is nonexpansive with
F (T ) = F (S) by Lemma 2.6. Notice that

‖Tun − un‖ ≤ ‖Tun − yn‖+ ‖yn − un‖
≤ |λ− βn|‖un − Sun‖+ ‖yn − un‖.
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By (3.33) and βn → λ, we obtain that

lim
n→∞

‖Tun − un‖ = 0. (3.34)

Next, we show that lim sup
n→∞

〈(B − γf)q, q − xn〉 ≤ 0, where q is the unique

solution of the variational inequality (3.1). To show this inequality, we choose
a subsequence {xni} of {xn} such that

lim
i→∞
〈(B − γf)q, q − xni〉 = lim sup

n→∞
〈(B − γf)q, q − xn〉.

Since {uni} is bounded, there exists a subsequence {unij
} of {uni} which

converges weakly to w. Without loss of generality, we can assume that uni ⇀
w. From (3.32) and (3.34), we obtain xni ⇀ w, and Tuni ⇀ w. By the same
argument as in the proof of Theorem 3.1, we have w ∈ F (S)

⋂
V I(H,A,M).

Since q is the unique solution of the variational inequality (3.1), it follows that

lim sup
n→∞

〈(B − γf)q, q − xn〉 = lim
i→∞
〈(B − γf)q, q − xni〉

= 〈(B − γf)q, q − w〉 ≤ 0.
(3.35)

From xn+1 − q = αn(γf(xn)−Bq) + (I − αnB)(yn − q), we have

‖xn+1 − q‖2
≤ ‖(I − αnB)(yn − q)‖2 + 2αn〈γf(xn)−Bq, xn+1 − q〉
≤ (1− αnγ̄)2‖xn − q‖2 + 2αnγ〈f(xn)− f(q), xn+1 − q〉

+2αn〈γf(q)−Bq, xn+1 − q〉
≤ (1− αnγ̄)2‖xn − q‖2 + 2αnγβ‖xn − q‖‖xn+1 − q‖

+2αn〈γf(q)−Bq, xn+1 − q〉
≤ (1− αnγ̄)2‖xn − q‖2 + αnγβ

(
‖xn − q‖2 + ‖xn+1 − q‖2

)
+2αn〈γf(q)−Bq, xn+1 − q〉
≤
(
(1− αnγ̄)2 + αnγβ

)
‖xn − q‖2

+αnγβ‖xn+1 − q‖2 + 2αn〈γf(q)−Bq, xn+1 − q〉.
This implies that

‖xn+1 − q‖2

≤ 1−2αnγ̄+(αnγ̄)2+αnγβ
1− αnγβ ‖xn−q‖2+ 2αn

1− αnγβ 〈γf(q)−Bq, xn+1−q〉

=
(
1− 2(γ̄ − γβ)αn

1− αnγβ
)
‖xn − q‖2

+
(αnγ̄)2

1− αnγβ ‖xn − q‖
2 + 2αn

1− αnγβ 〈γf(q)−Bq, xn+1 − q〉

≤
(
1− 2(γ̄ − γβ)αn

1− αnγβ
)
‖xn − q‖2

+
2(γ̄ − γβ)αn

1− αnγβ

{
(αnγ̄

2)M∗

2(γ̄ − γβ)
+ 1
γ̄ − γβ 〈γf(q)−Bq, xn+1 − q〉

}
= (1− γn)‖xn − q‖2 + γnδn,
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where

M∗ = sup{‖xn − q‖2 : n ∈ N}, γn =
2(γ̄ − γβ)αn

1− αnγβ
and

δn =
(αnγ̄

2)M∗

2(γ̄ − γβ)
+

1

γ̄ − γβ
〈γf(q)−Bq, xn+1 − q〉.

It is easily to see that γn → 0,
∞∑
n=1

γn =∞ and lim sup
n→∞

δn ≤ 0 by (3.35). Hence,

by Lemma 2.7, the sequence {xn} converges strongly to q. �

Remark 3.3. Theorem 3.2 improves Proposition 3.1 of [6] in the following
senses:

(1) We generalize classical variational inequality (1.3) considered by [6] to vari-
ational inclusion (1.1).

(2) We generalize a nonexpansive mapping considered by [6] to a strictly pseu-
docontractive mapping.

(3) We generalize the iterative algorithm from viscosity approximation methods
proposed by [6] to general iterative methods.

Remark 3.4. Theorems 3.1 and 3.2 are also development of the iterative
algorithms of [10] in different directions.
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