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A GENERAL ITERATIVE METHOD FOR VARIATIONAL
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Abstract. In this paper, we introduce two iterative schemes by the general iterative method
for finding a common element of the set of fixed points of a strictly pseudo-contractive map-
ping and the set of solutions of a variational inclusion for an a—inverse-strongly monotone
mapping and a maximal monotone mapping in a Hilbert space. Our results improve and

extend the corresponding results announced by many others.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and induced norm
|| -]|. Let C' be a nonempty closed convex subset of H, let F': C'x C' — R be a
bifunction. Let A : H — H be a single-valued mapping and M : H — 2H be
a multivalued mapping. Then, we consider the following variational inclusion
problem which is to find u € H such that

0 € Au) + M(u). (1.1)

The set of solutions of the variational inclusion (1.1) is denoted by VI(H, A, M).
Special Cases.
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(1) When M is a maximal monotone mapping and A is a strongly monotone
and Lipschitz continuous mapping, problem (1.1) has been studied by Huang
8].

(2) If M = 0¢, where 0¢ denotes the subdifferential of a proper, convex
and lower semi-continuous function ¢ : H — R|J{+o0}, then problem (1.1)
reduces to the following problem: find u € H ,such that

(A(u),v —u) + ¢(v) — p(u) >0, YveH, (1.2)

which is called a nonlinear variational inequality and has been studied by
many authors; see, for example, [2-3].

(3) If M = 0dc, where é¢ is the indicator function of C, then problem (1.1)
reduces to the following problem: find v € C, such that

(A(u),v —u) >0, Yoved, (1.3)

which is the classical variational inequality; see, e.g.,[7,9] and the reference
therein. A mapping A : H — H is called inverse-strongly monotone if there
exists a > 0 such that

(v —y, Azr — Ay) > af|Az — Ay|®, Va,y e H.

Such a mapping A is also called a-inverse-strongly monotone. If A is an a-

inverse-strongly monotone mapping of H to H, then it is obvious that A is

L_Lipschitz continuous. We also have that for all 2,y € H, and A > 0,

«

(I = XA)z — (I = XA)y[> = |[[(z—y) — MAz — Ay)|]?
= llz—yl* = 2Mz -y, Az — Ay) (1.4)
+)\2HAx — Ay”2 '
<l = yl? + AN — 20)[| Az — Ay,

So, if A < 2a, then I — AA is a nonexpansive mapping of H into H. See [9] for
some examples of inverse-strongly monotone mappings.

A mapping T of C into itself is nonexpansive if | Tz —Ty|| < ||z —y||,Vz,y €
C. Recently, liduka and Takahashi [9], Takahashi and Toyoda [15], Chen et
al. [6] , Nadezhkina and Takahashi [13], Ceng and Yao [4], Yao and Yao [17]
introduced many iterative methods for finding a common element of the set of
fixed points of a nonexpansive mapping and the set of solutions of variational
inequality (1.3) for an a-inverse-strongly monotone mapping, they obtained
some weak and strong convergence theorems.

Recall that a self-mapping f : C — C is a contraction on C' if there is a
constant 8 € (0, 1) such that

1f(2) = FWIl < Bllz —yll, Yo,y eC.

An operator B is strongly positive if there exists a constant 4 > 0 with the

property
(Bz,x) > 7||z|?, Vac H. (1.5)
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In 2006, Marino and Xu [12] introduced the general iterative method and
proved that for given zy € H, the sequence {z,} generated by the algorithm

Tn+l = an’Yf(xn) + (I - OénB)TCCn, n € N,

where T is a self-nonexpansive mapping on H, f is a contraction of H into itself
with 5 € (0,1) and {ay,} C (0,1) satisfies certain conditions, B is a strongly
positive bounded linear operator on H, converges strongly to a fixed point x*
of T" which is the unique solution to the following variational inequality:

(B—~f)a",a" —a) <0, Vae F(T),

and is also the optimality condition for some minimization problem.
A mapping S : C — H is said to be k—strictly pseudo-contractive if there
exists a constant k € [0, 1) such that

IS — Syl2 < o =yl + k(I = S)a — (I = S)yl®. VayeC.  (L6)

Note that the class of k—strict pseudo-contractions strictly includes the class
of nonexpansive mappings. That is, S is nonexpansive if and only if S is 0-
strictly pseudo-contractive. It is also said to be pseudo-contractive if k = 1.
Clearly, the class of k-strict pseudo-contractions falls into the one between
classes of nonexpansive mappings and pseudo-contractions.

The set of fixed points of S is denoted by F(S). Very recently, by using
the general approximation method Liu [10] obtained two strong convergence
theorems for finding a common element of the set of solutions of an equilibrium
problem and the set of fixed points of a k—strictly pseudo-contractive non-self
mapping.

In this paper, motivated and inspired by the above results, we introduce
two iteration schemes for finding an element of VI(H, A, M) F(S), where
S : H — H is a k-strict pseudocontraction, and A : H — H is an inverse-
strongly monotone mapping and then obtain two strong convergence theorems.

2. PRELIMINARIES

Throughout this paper, we always let X be a real Banach space with dual
space X*, H be a real Hilbert space with inner product (-,-) and norm || - ||,
and let C' be a closed convex subset of H. We write x,, — z to indicate that
the sequence {z,,} converges weakly to x. x, — z implies that {z,,} converges
strongly to x. We denote by N and R the sets of positive integers and real
numbers, respectively.

It is also known that H satisfies Opial’s condition [13], i.e., for any sequence
{z,} with z,, — z, the inequality

liminf ||z, — z| < liminf ||z, — y||
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holds for every y € H with y # x.

A set-valued mapping M : H — 2 is called monotone if for all z,y € H,u €
Mz,v € My imply (z —y,u —v) > 0. A monotone mapping M : H — 2H
is maximal if the graph G(M) of M is not properly contained in the graph
of any other monotone mapping. It is known that a monotone mapping M
is maximal if and only if for (z,u) € H x H,(x — y,u —v) > 0 for every
(y,v) € G(M) implies v € M.

The following definitions and lemmas are useful for our paper.

Definition 2.1. ([14]) If M is a maximal monotone mapping on H, then the
resolvent operator associated with M is defined by

Jua(u) = (I +AM) "y, Yu e H,

where A > 0 is a constant and [ is the identity operator.

Definition 2.2. ([14]) A single-valued operator A : H — H is said to be
hemi-continuous if for any fixed x,y,z € H, the function t — (A(x + ty), z)
is continuous at 07. It is well known that a continuous mapping must be
hemi-continuous.

Definition 2.3. ([14]) A set-valued mapping A : X — 2% is said to be
bounded if A(B) is bounded for every bounded subset B of X.

Lemma 2.4. ([11]) The resolvent operator Jys x is firmly nonexpansive, that
18

(Jarau — Jaav,u —v) > || Iarau — Jaravl?, Vu,v € H.

Lemma 2.5. ([14]) If T : X — 2X" is a mazimal monotone mapping and P :
X — X* is a hemi-continuous bounded monotone operator with D(P) = X,
then the sum S =T 4+ P is a maximal monotone mapping.

Lemma 2.6. ([1]) Let S : C — H be a k-strict pseudo-contraction. Define
T:C— HbyTx=Mx+ (1—X)Sx for each x € C. Then, as X € [k,1), T is
a nonexpansive mapping such that F(T) = F(S).

Lemma 2.7. ([16]) Assume that {ay} is a sequence of nonnegative real num-
bers such that

apt1 < (1 - r)/n)an + 6na

where {y,} is a sequence in (0,1) and {0,} is a sequence such that
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S 0
(1) > v = oo; (i) limsup 2= < 0 or 3 [6,] < oc.
n=1 n—oo " n=1
Then lim a, = 0.
n—oo

Lemma 2.8. ([5]) The following inequality holds in a Hilbert space,
|z +ylI* < ||zl + 2(y, (z +v)), Va,y € H.

Lemma 2.9. The function w € H is a solution of variational inclusion (1.1)
if and only if u € H satisfies the relation

u = Jyalu— NAu],
where A > 0 is a constant, M 1is a mazrimal monotone mapping and Jyr ) =

(I +AM)~! is the resolvent operator.

Proof. Using Definition 2.1, we can obtain the desired result. O

Lemma 2.10. ([12]) Assume that B is a strongly positive linear bounded op-
erator on a Hilbert space H with coefficient ¥ > 0 and 0 < p < ||B||~'. Then
I —pB|| <1-p7.

Lemma 2.11. ([12]) Let H be a Hilbert space and f : H — H be a contraction
with coefficient 0 < 8 < 1, and B be a strongly positive linear bounded operator

with coefficient ¥ > 0. Then, for 0 <y < %,

(@ =y, (B=7f)z—(B=~f)y) > (T =8z —yl> Vo,yeH
That is, B — v f is strongly monotone with coefficient ¥ — vf.

3. MAIN RESULTS

Throughout the rest of this paper, we always assume that f is a contraction
of H into itself with coefficient 5 € (0,1), and B is a strongly positive bounded
linear operator with coefficient ¥ and 0 < v < % Let {Jum ., } be a sequence
of mappings defined as Definition 2.1 and let A be an a—inverse-strongly
monotone mapping, where {\,} C [a,b] for some a,b with 0 < a < b < 2a.
Define a mapping S, : H — H by Sp,x = Sz + (1 — 8,)Sx, Vo € H, where
B € [k,1). Then, by Lemma 2.6, S,, is nonexpansive.

Consider the following mapping G, on H defined by
Gnr = apyf(x) + (I — anB)Sndmr, (I — \A)x, x € Hyn €N,
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where o, € (0,1). By (1.4), Lemmas 2.10 and 2.4, we have
|G = Gryll < eyl f(2) = FW)l
+(1 = )| Jarx, (I = AnA)z — Jarn, (I = A A)y||
anyBlz =yl + (1 = an?)llz -y
(1= an(y =98))llz — yl.

Since 0 < 1 — ay, (§ —vB) < 1, it follows that G,, is a contraction. Therefore,

I IA

by the Banach contraction principle, GG,, has a unique fixed point :c£ € H such
that
af = anyf(al) + (I — anB)S, Iy, (I — A\yA)zd.

For simplicity we will write z,, for zd provided no confusion occurs. Next

we prove the convergence of {z,}, while they claim the existence of the ¢ €
F(S)VI(H, A, M) which solves the variational inequality

(B=7f)a.p—q) > 0,Yp e F(S)(|VI(H, A M). (3.1)

Theorem 3.1. Let H be a real Hilbert space and let M : H — 27 be a mazimal
monotone mapping. Let A be an a—inverse-strongly monotone mapping of H
into H and let S be a k—strictly pseudocontractive mapping on H such that
F(S)YNVI(H,A,M) # 0. Let f be a contraction of H into itself with 5 € (0,1)
and let B be a strongly positive bounded linear operator on H with coefficient
¥>0and 0 <y < % Let {xy,} be sequence generated by

Up = Jyn, (Tn — AnAxy),
Yn = Bnln + (1 - Bn)suna (32)
Tn = O‘n’)/f(xn) + (I - anB)yn7 Vn € N,

where yp, = Spun, {An} C [a,b] for some a,b with 0 < a < b < 2a. If {a,} and
{Bn} satisfy the following conditions:

(i) {an} C(0,1), li_)m ap =0,
(i) 0<Ek<B,<A<1and li_>m Bn = A,
then {x,,} converges strongly to a point ¢ € F(S)(\VI(H,A, M), which solves

the variational inequality (3.1).

Proof. First, we assume that o, € (0,]B|~!). By Lemma 2.10, we obtain
|I —onBl <1—ayy. Take p € F(S)\VI(H, A, M). Since u, = Jpz, (zn —
AAxy) and p = Jpya, (p — AnAp), then, from (1.4) and Lemma 2.4, we know
that, for any n € N,

lun = plI* < 2 = Pl + Xa(An = 20) [ Azn — Ap||* < [lzn —pl*. (3.3)
Further, since S,p = p, we have

[yn = Pl = [1Sntn = Supl| < [un = pl| < [l2n = pll- (3-4)
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Thus, we have

|zn —pll = llan(vf(2n) — Bp) + (I — anB)(yn — )|
< anlly(f(zn) = f(p) + (vf(p) — Bp)|| + |1 — anB||||lyn — p||
< apyBllzn — pll + anllvf(p) — Bpll + (1 — an¥)||lzn — pl|

(1= (¥ =) llzn — bl + anllvf(p) — Bpl.

It follows that ||z, — p|| < H”yfﬁ(pl—;ﬁBpH Hence {z,,} is bounded and we also
obtain that {uy}, {yn}, {Az,} and {f(z,)} are bounded. We note that

[[un = ynl

I IA

un = znll + |20 — Yul| (3.5)
l|n — an + anl|vf(2n) — Bynl|.

Using Lemma 2.8, (3.3) and (3.4), we also have

(I — anB)(yn — p)H2 + 20, (v f(70) — Bp, w0 — p)
(1 = an¥)?|lun — plI* + 200 (v f (2n) — Bp, xn — p)
(1= an¥)? (I — plI* + An(An — 20)|| Az, — Ap||?)
+2an<7f(xn) - Bp, Tn — p>

[2n — plI? + (1 — any)?a(b — 20) || Az, — Apl|?
+2an(vf(2n) — Bp, zn — p),

lzn — pI?

ININIA

IN

and hence
(1—any)?a(20 = b)||Azy — Apl|* < 2anlvf (2n) — Bp||||zn — .

Since o, — 0, we have
lim ||Az, — Ap|| = 0. (3.6)
n—oo

Using Lemma 2.4 and (1.4), we have

[, — pl|?

= HJM,)\n(xn - )\nA$n) - JM,)\n(p - )\nAp)HZ

< <(35n - )‘nAxn) - (p - )\nAp), Un — p)

= 3 (I(@n = MuAzn) — (0 — M AP)| + [y — p]?
—[[(#n — un) = An(Azn — Ap)||?)

< %(llxn —pl* + lJun = plI* = (20 — un) — An(Azy, — Ap)|]?)
= 5 (lzn = pII* + llun = plI* = 20 — uall® = A2 || Az, — Ap|?
+2X\, (T, — Uy, Axy, — Ap)).

So, we have

lun = plI* < llzn = plI* = l2n — unl|* = AZ|| Az — Apl|?

+2An (xp — U, Az, — Ap). (3.7)
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Then, from Lemma 2.8, (3.4) and (3.7), we have

|zn — pl|?
= |(I = anB)(yn — p) + an(vf(zn) — Bp)|?
< (1= an¥)?|lyn — plI* + 200 (v f (2n) — Bp, 2n — p)
< (1= an¥)?[|un = plI* + 2000y f (1) — f(p), T — D)
+2a, (v f(p) — Bp, xn — )
< (L= an)?*(lzn — plI* = 20 — unll* = N2 || Az, — Apl|?
+2)\n<xn — Up, ATy — Ap>) + 2an'7/8||$n - pH2
+2an|lvf(p) — Bplll|zn — pl|
= (1= 200(y =9B) + (an¥)?)[|n — plI> = (1 — an¥)?||2n — unl?
—(1 — an¥)? N2 || Az, — Apl|?
+2)‘n(1 - an7)2<xn — Up, ATy — Ap> + 20‘n||'7f(P) - BP||||93n - pH
<Nz = plI* + 02320 — plI* — (1 — )|z — un|?
—(1 — any)? N2 || Ay, — Apl?
+2X (1 — an¥) (@0 — Un, Azy — Ap) + 200|17.f (p) — Bpl|||zn — pll,

and hence

(1 - an:)/)2”xn - un”2
< a?L;y2||xn - pH2 + 2)‘n(1 - O‘n:}’)2<xn — Up, Azp — Ap>
+2an[|vf(p) — Bp|llzn — p-

Since ||Azy, — Ap|| — 0 and «,, — 0, it follows that

nlg]go |zn, — upl| = 0. (3.8)
From (3.5), we know that
Tim s — g} = 0. (3.9)

Define T': H — H by Tx = Ax + (1 — X\)Sxz. Then T is nonexpansive with
F(T) = F(S) by Lemma 2.6. Notice that

[T — unll < [[Tup = ynll + [[yn — unll < IA = Bulllun — Sun || + lyn — unl-
By (3.9) and /3, — A, we obtain that
lim || Tu, — uy|| = 0. (3.10)

n—o0
Consider a subsequence {u,,} of {u,}. Since {u,,} is bounded, there exists
a subsequence {unzj} of {uy,} which converges weakly to ¢. Next, we show
that ¢ € F(S)NVI(H, A, M). Without loss of generality, we can assume that
Up,; — ¢. From ||T'u,, — uy|| — 0, we obtain T'u,, — ¢q. Let us show ¢ € F(T).
Assume ¢eF(T). Since u,, — ¢q and ¢ # Tgq, it follows from the Opial’s
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condition that
liminf ||u,, —¢|| < Uminf |ju,, — Tq||
< liminf (Hum = Tun, || + [|Tun, — TQH)
n—oo
<

lim inf ||u,, — q||.
n—oo

This is a contradiction. So, we get ¢ € F/(T') and hence ¢ € F(S5).

We shall show g € VI(H, A, M). Since A is é—Lipschitz continuous mono-
tone and D(A) = H, by Lemma 2.5, M + A is a maximal monotone mapping.
Let (v, f) € G(M + A). Since f — Av € Mv and ﬁ(xm — Up, — A\p, Ay, €
Muy,;, we have

1
<U = Uny, (f - AU) - )\7($m — Un; — AniAxni)> = 0.
n;
Therefore, we have

<v_um7f> > U_UHNAU—F)\%L_(‘I,M_uni_)‘nz‘Axm»

= <U - uni’AU - Axm) + <U = Uny, ﬁ(l‘m - unz»

= (v —up;, Av — Auy,) + (v — up,, Aup, — Axy,)

+<U = Uny,s %nl(xnl - unz)>

> <U - uni’Auni - Axni) + <U = Un;, ﬁ($m - u”z))
Let ¢ — oo, we obtain (v — ¢, f) > 0. Since A + M is maximal mono-
tone, we have 0 € Aq + Mq and hence ¢ € VI(H, A, M). Therefore, q €
F(S)NVI(H,A,M). On the other hand, we note that

Tp —q=an(vf(2n) — Bq) + (I — anB)(yn — q).
It follows that

”xn - QH2 = O‘n<’7f(xn) — Bq,xy, — Q> + <(I - anB)(yn - Q)a Tpn — Q>
< an(vf(zn) = Bg,2n — q) + |1 — anB|[|lyn — Q|2|H90n —q|
< an(vf(zn) — Bg,zn — q) + (1 — an?)lzn — ql*.

Hence, we obtain

lzn —qlI* < %mﬂ%ﬂ—B%xn—w
= ?hﬁwm—f@%%fﬂ%+Wﬂ®—B%%rﬂ»
< S(Blzn —al? + (vf(q) — Bg,2n — a))-
This implies that
H-’En o q||2 S <7f(q) __ Bann - (]>.
¥ =B
In particular, we have
\WW—QW§<mﬂ®fB%%“_®. (3.11)

¥ =B



76 Y. Liu

Since z,, — ¢, it follows from (3.11) that x,, — ¢ as ¢ — oo. Next, we show
that ¢ solves the variational inequality (3.1). Since

Tp = an’}/f(xn) + ([ - anB)yn
= an’}/f(xn) + ([ - anB)SnJM,)\n (I - /\nA)wm

we have

(B=7f)zn = —ai(l — . B)(I = Spdan, (I — ApA))a,.

n

It follows that for p € F(S)N\VI(H, A, M),

(B =~f)&n, zn — D)

= — (I = anB)(I = Sn s, (I = AnA))2, 20 — p)

= — @ (I = Sudara, (I = AnA))ay (3.12)
—(I = Spdmn, (I — AA))p,xp — p)
+<B(I - SnJ)\n(I - )\nA))xna Tn — p>
< (B — Spdmx, (I —NA))xn, zn — p).
Since I — SpJarz, (I — AnA) is monotone (i.e.(x—y, (I —SpJarn, (I — A A))z—
(I=Sndmn, I =AnA))y) > 0forall z,y € H. This is due to the nonexpansivity
of SpJan, (I — AyA)). Now replacing n in (3.12) with n; and letting i — oo,
we have
(B =7f)a,q—p) = lm (B —7f)an;, 2n, = p)
< lim (B(zp;, — Yn,)s Tn, —p) = 0.

1—00

(3.13)

That is, ¢ € F(S)(\VI(H,A, M) is a solution of (3.1). To show that the
sequence {zy, } converges to ¢, assume x,, — Z. By the same as the proof above,
we have ¢ € F(S)NVI(H, A, M). Moreover, it follows from the inequality
(3.13) that

(B=7f)g.q— 1) <0. (3.14)
Interchange ¢ and & to obtain
(B=7f)2,2—q) <0. (3.15)

Adding these two inequalities yields

(T =vB)lle =2 < (g =, (B—7f)g— (B—~f)i) <0
by Lemma 2.11. Hence ¢ = & and therefore x,, — q¢ as n — oc. O

Theorem 3.2. Let H be a real Hilbert space and let M : H — 27 be a mazimal
monotone mapping. Let A be an a—inverse-strongly monotone mapping of H
into H and let S be a k—strictly pseudocontractive mapping on H such that
F(S)NVI(H,A, M) # 0. Let f be a contraction of H into itself with 5 € (0,1)
and let B be a strongly positive bounded linear operator on H with coefficient
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¥>0and 0 <y < % Let {x,} and {u,} be sequences generated by 1 € H
and

Up = JM,)\n (xn - AnAxn)7

Yn = 5nun + (1 - Bn)Suny

Tny1 = anYf(zn) + (I — nB)yn, Yn €N,

where Yy, = Spun. If {an}, {Bn} and {\,} satisfy the following conditions:
(i) {an} C (0,1), 1i_>m an =0, an =00, > |apt1 — ap| < oo,
n—00 n=1 n=1

(i) 0<k < B, <A<1and h_>m Brn =X 22 [Bns1 — Bul < o0,
n—oo n=1
(iii) {\n} C [a,b] for some a,b with 0 < a < b < 2, > [Ny — Apt1] < 00,
n=1

then {x,} and {u,} converge strongly to a point ¢ € F(S)\VI(H,A, M),
which solves the variational inequality (3.1).

Proof. Since oy, — 0, we may assume that «,, € (0, B||™!). By Lemma 2.10,
we obtain ||I—ay, Bl < 1—a,7. We now observe that {z,,} is bounded. Indeed,
pick any p € F(S)(\VI(H, A, M) to obtain

o (v f(zn) — Bp) + (I — anB)(yn — p)|

anl|vf(2n) — Bp|l + [T — cnB|[lyn — pll

anY | f(xn) = fF@)| + anllvf(p) — Bpll 4+ (1 — an¥)||zn — pl|
anYBl|zn — pll + anllvf(p) — Bpl| + (1 — an¥)l|zn — pl|

(1 = (¥ —98))l|xn — pll + anllvf(p) — Bp||-

It follows from induction that

”xn—i-l _pH

A IAIA

1
Ty — p|| < max{||x1 — p||, ——||[7f(p) — Bp||}, neN,
|zn — Pl {ll | 7—75” (p) I}

and hence {z,} is bounded. From (3.3) and (3.4), we also obtain that {u,}
and {yn} are bounded. Next, we show that ||z,4+1 — x| — 0. We have

[Znt1 — @
= [lanyf(2n)+ U —anB)yn—(an-17f(@n-1)+ [ —an-1B)yn—1)||
= llanyf(zn) — anvf(Tn-1) + anvf(Tn-1) — an—17f(Tn-1)
+ (I —anB)yn — (I — anB)yp-1+ (I — anB)yn—1
— (I = an—1B)yn—1| (3.16)
< anyBllan — zp-1ll + lom — a1 Y[ f (1)
+ 11 = anB|[lyn = yn-1ll + lom — an—1[| Byn—1]|
< anyBllan — -1l + [an — an—1|yK
+ (1= an)yn — yn—1ll + [an — an—1|K,
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where K = sup{||f(xn)|| + || Byn| : n € N} < co. On the other hand, we note
that

Yyn — Yn—1l| [[Sntn, — Sn—1un—1]|
||Snun - Sn“n—l” + HSnun—l - Sn—lun—l” (317)

<
< ||un - un—lH + ”Snun—l - Sn—l“n—l”-
—\,

Putting v, = x, Azp, from upt1 = I, Unt1 and up = Jprn, Un, We

n+1
have
Un41 — Upt1 € )\n+1M’LLn+1 (318)
and
Up, — Up € AnMuy,. (3.19)

Since M is monotone, we have

Up — Un  Unitl — Unil

_ >0
<un+1 Unp, An )\n+1 > =

and hence

A
<un+1 — Up, Up — Up+1 + Un41 — Up — b\ = (un+1 - Un+1)> > 0.

n+1

Then, we have

i1 =l < (e = s Vs = v+ (1= 3222 (U1 = V)
< ltngr — un”{anJrl — vnl +[1 = ﬁ:‘llﬂunﬂ - UnJrlH}

and hence

Unp+1 — Unp =~ Un+1 — Un n+1 — An||{|Un+1 — Un+1
| < | |+ 11!)\ Anlll |

L
< lopgr —onll + a’/\n—&-l — AnlL,

(3.20)

where L = sup{||u, — vy|| : n € N}. Since I — A\, A is nonexpansive, we also
have

lvnier —vnll = o — A1 Azpgr — (20 — A Az, ||
< ||$n+1 - )\n+1AJ;n+1 - (:En - )\n+1A1‘n) (3'21)
_>\n+1Axn + AnAan
< lzpgr = 2ol 4+ A = A || Aza |-
From (3.21) and (3.20), we have
i = el < 2 = nca |+ Do = At (5 4 Bdenca]). - 32)

Next, we estimate |[Spun—1 — Sp—1un—1]|. Notice that

1Snttn_1 — Sp_1tn_1] = [(Battn1 + (1 — Bn)Sun_1)
—(Ba—1tn-1+ (1 = Bu—1)Sun—1)|  (3.23)
|Bn - IBn71H|un—1 - Sun,1H.

IN
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Substituting (3.22) and (3.23) into (3.17), we have
||yn - yn—l”
< lltn = 2no ] + An = Aol (5 ; HAxnlu)

+|ﬁn - 6n—1|||un—1 - Sun—l”
S ||-77n - xn—l” + |>‘n - )‘n—1|Ml + |Bn - Bn—1|M1a

where M7 is an appropriate constant such that

(3.24)

L
M, > E + HA!Tn—ln + ||un_1 — Sun_1||, Vn € N.
From (3.16) and (3.24), we have

[Zn+1 — nl
< apyBl|zn — Tp-1| + |an — an—1|K(y +1)

+(1 = an¥)(|zn — Tn-1ll + [An — An—1| M1+ |Bp — Bpa| M) (3.25)
S [1 - O‘n(;)/ - 7/8)]‘|xn - xn—l”

+M(|an - an—l‘ + ’)‘n - )\n—1| + |/8n - ﬁn—l’)a

where M = max{K (y + 1), M;}. Hence, by Lemma 2.7, we have
lim ||zp41 — x| = 0. (3.26)
n—oo

From (3.22), (3.24), |An+1 — An| = 0 and |Bn41 — Bn| — 0, we have

lim |Jupt1 — up|| =0 and lim ||yn+1 — ynll = 0. (3.27)
n—oo n—oo

|2 — Znll + [[Znt1 — ynll
Hl‘n - -'L‘n+1|| + an”’yf(xn) - Byn”

From a,, — 0 and (3.26), we have

Since zp+1 = apyf(zn) + (I — anB)yn, it follows that
|20 —ynl <

ILm |zrn — ynll = 0. (3.28)
For p e F(S)VI(H,A, M), from (3.3) and (3.4), we have

| Zn41 — D2
= llan(vf(xn) — Bp) + (I — anB)(yn — p)|I?
< (1= ) llyn — pII*> + o |y f (zn) — Bpl|?
+204n(1 - an:y)”ﬁ)/f(xn) - BpHHyn _pH
< lyn — plI* + |y f (z4) — Bpl|? (3.20)
+2an v f(2n) — Bpllllyn — pl '
< Hwn - p||2 + An(An = 20)||Axy, — Ap”2
+a2||vf(zn) — Bpl|* + 20u[|7.f (zn) — Bpl||lyn — 1l
< lzn — plI* + a(b — 20)|| Az, — Ap||?
+a2 |7 f () — Bpl? + 2an|vf(zn) — Bp|l|lyn — pl,
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and hence
—a(b - 2a)|| Az, — Apl|®
< lzn —plI* = l|lZns1 — pl?
+ap|lvf(zn) = Bpl* + 2an|lvf (xn) — Bpllllyn — pl-
Since ay, — 0 and ||z, — zpy1|| — 0, we have

li_)rn |Az,, — Ap|| = 0. (3.30)

Using Lemma 2.4, we have

Jan — pI? 2

= ||JM,/\n(33n — MAzn) — Iy, (P — A Ap)||

< <1(l'n - )\nAxn) - (p - )\nAp), Up — p>

= j(”(wn - AnA@"n) —(p— )\nAp)Hz + Hun - p”2

—(@n — AnAzn) — (p — A Ap) — (un — p)HQ)

(lzn = 2l + lun = plI> = (0 — un) — An(Azn — Ap)|?)
(lzn = pI* + llun = plI? = llzn — un?
~\2||Az,, — Ap||? + 2\ (T — Up, Axpy — Ap)).

So, we have

<

DI DO —

[un = plI* < llzn = plI* = 20 — unl]® = A3l|Azy, — Ap|)?
2 (T — U, Az, — Ap).

Then, from (3.4) and (3.31), we have

(3.31)

|21 — Pl

= Han(%f(l'n) - Bp) + (I - anB)(yn _p)H2

< (1= an?)?llyn — plI> + 2|17 f (zn) — Bpl|?
+20 (1 — an¥) |7 f(2n) — Bplll||yn — pll

< un = plI* + 2l17.f (#n) — Bpl* + 2|7 f (xn) — Bpllllyn — 1|

< Nwn = plI* = |0 — unll? = A3 || Az — Ap||® + 2Xn (@0 — Un, Azn, — Ap)
+a2 ||y f(zn) — Bpl|? + 20|17 f(zn) — Bp|l||lyn — pl|-

Since ay, — 0, ||xy, — Tpt1]] — 0 and ||Az, — Ap|| — 0, we obtain

lim |z, — un|| = 0. (3.32)
n—oo
From (3.28) and (3.32), we have
[tn = ynll < lun = znll + 20 — ynll = 0, as n = oo (3.33)

Define T': H — H by Tx = Ax + (1 — A\)Sxz. Then T is nonexpansive with
F(T) = F(S) by Lemma 2.6. Notice that

1 Ttn — || < [|Tun — ynll + (|90 — ual|
< A = Balllun = Sun|l + llyn — unll-



Variational inclusion problems and fixed point problems 81

By (3.33) and /3, — A, we obtain that
lim [|Tup — uy|| = 0. (3.34)
n—o0

Next, we show that limsup((B — vf)q,q — x,) < 0, where ¢ is the unique

n—oo
solution of the variational inequality (3.1). To show this inequality, we choose

a subsequence {z,,} of {z,} such that
Jim (B =7f)d,q = wn;) = linlsup«B —7vf)a:q — n).

Since {uy,} is bounded, there exists a subsequence {um]} of {up,} which
converges weakly to w. Without loss of generality, we can assume that u,, —
w. From (3.32) and (3.34), we obtain z,, — w, and Tu,, — w. By the same
argument as in the proof of Theorem 3.1, we have w € F(S)\VI(H,A, M).
Since ¢ is the unique solution of the variational inequality (3.1), it follows that
limsup((B =7f)¢,q —xn) = lim {(B—=7f)q,q = 2n;)
men = (3.35)
= ((B=7f)g,¢—w) <0.

From x, 11 —q = Oén(’)/f(xn) - BQ) + (I - anB)(yn - Q)) we have

241 — ql|?

< ||(I = anB)(yn — Q)|” + 200 (v f(20) — Bg, Tnt1 — q)

< (1= an¥)?|on — al* + 2007 (f (2n) = £(@), Zn+1 — @)
+2an(vf(q) — Bg, Tnt1 — q)

< (1= an¥)?|zn — all* + 20098l @n — gl | 2ns1 — 4l
+20n(vf(q) — Bg, Tnt1 — q)

< (1= an¥)@n — q|* + cnvB(lzn — al* + lzns1 — ql?)
+2an<7f(Q) — Bg, Tn+1 — q>

< (1= an¥)? + an¥B)|lzn — g
+an VBl Tn+1 — al|> + 200 (v .f(q) — Bg, Tny1 — q).

This implies that

Hxn+1 - QH2 )
1—20,7+ (oY) +a 2
< ”71_(61")% 2 =g+ T2 (0 (@)~ B s —a)
_ (Y =B
=(1- W)”x
2

1D — gl 4 22 (v () ~ Ba zss — a)
(

3 anyp
1- 20208y, g
(7 'Y/B)an (O‘n’)/ )M* _
+ I—a,fB {2(7 ,},5) 5 — 75<’Yf( q) — Bq; xnp Q>}
= (1= y)llzn — ql? + yndn,

— q|?

<
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where 25 8)
¥ =B
M* =s —ql?: € N}, =
up{las — gl im €N, o = SO0
and

(7)) M* 1

5n: — =
2(7 —B) +7—’VB

(vf(q) = Bq,zns1 — Q).

o0
It is easily to see that v, — 0, > 7, = oo and limsup d,, < 0 by (3.35). Hence,

n=1 n—oo

by Lemma 2.7, the sequence {z,} converges strongly to gq. O

Remark 3.3. Theorem 3.2 improves Proposition 3.1 of [6] in the following
senses:
(1) We generalize classical variational inequality (1.3) considered by [6] to vari-

atio

nal inclusion (1.1).

(2) We generalize a nonexpansive mapping considered by [6] to a strictly pseu-
docontractive mapping.

(3) We generalize the iterative algorithm from viscosity approximation methods
proposed by [6] to general iterative methods.

Remark 3.4. Theorems 3.1 and 3.2 are also development of the iterative
algorithms of [10] in different directions.
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