Nonlinear Functional Analysis and Applications Vol. 27, No. 4 (2022), pp. 743-756

 $ISSN: 1229\text{-}1595 (print), \ 2466\text{-}0973 (online)$ 

https://doi.org/10.22771/nfaa.2022.27.04.04 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2022 Kyungnam University Press



# GENERALIZED QUASI-VARIATIONAL-LIKE INEQUALITIES FOR PSEUDO-MONOTONE TYPE II OPERATORS ON NON-COMPACT SETS

## Mohammad S. R. Chowdhury

Department of Mathematics and Statistics, Faculty of Science,
The University of Lahore, Lahore, Pakistan
e-mail: msrchowdhury@hotmail.com; showkat.rahim@math.uol.edu.pk

**Abstract.** We obtained results on upper hemi-continuous and pseudo-monotone type two mappings for sets which are not compact. M.S.R. Chowdhury and K.-K. Tan's improved result on Ky Fan's minimax inequality will be used.

#### 1. Introduction

We have derived an advanced form of variational-like inequalities for upper hemi-continuous and  $(\beta, g)$ -pseudo-monotone type II and strong  $(\beta, g)$ -pseudo-monotone type II operators on compact domains in topological vector spaces(TVS). These advanced form of variational-like inequalities are extensions of more general form of variational inequalities. In 1985, the generalized quasi-variational inequalities problem was first introduced in [24]. During the last three decades many authors obtained the results on generalized quasi-variational inequalities and generalized quasi-variational-like inequalities and biquasi-variational inequalities (see [4], [6]-[17], [19], [21], [24]-[25]). Generalized quasi-variational-like inequalities are advanced form of variational inequalities and generalized variational inequalities and generalized quasi-variational inequalities in TVS.

<sup>&</sup>lt;sup>0</sup>Received October 27, 2021. Revised April 10, 2022. Accepted May 5, 2022.

<sup>&</sup>lt;sup>0</sup>2020 Mathematics Subject Classification: 47H04, 47H09, 47H10, 49J35, 49J40, 54C60.

<sup>&</sup>lt;sup>0</sup>Keywords: Advanced form of variational-like inequalities, upper hemi-continuous operators,  $(\beta, g)$ -pseudo-monotone type II and strong  $(\beta, g)$ -pseudo-monotone type II operators, locally convex Hausdorff topological vector spaces.

We shall use the definition of generalized quasi-variational inequalities given in [7]. In 1998, Chowdhury [6] obtained generalized quasi-vriational inequalities for upper hemi-continuous and pseudo-monotone type II and strong pseudo-monotone type II operators in non-comact domains. We will derive some results on an advanced form of quasi-variational-like inequalities for  $(\beta, g)$ -pseudo-monotone type II and strong  $(\beta, g)$ -pseudo-monotone type II operators in non-compact domains. We refer to [7] for the definition of generalized quasi-variational-like inequalities problem.

For more results on generalized quasi-variational-like inequalities, readers can look into [4], [19], [21] and references therein.

Readers can look into [7] for preliminary background. Moreover, we will use the definition of  $(\beta, g)$ -pseudo-monotone type II (resp., a strong  $(\beta, g)$ -pseudo-monotone type II) operator given in [7] extensively in obtaining the our results of this paper on non-compact domains. This definition was originally given in [16] and was derived from the demi-operator [6] and pseudo-monotone type II operators [5].

Chowdhury and Tan obtained a more general form of minimax inequality in [10] which generalized the inequality of minimax given by Ky Fan in [18]. This is a main tool for our research findings given below:

The definition of 0-diagonally concave function [22] and the 0-diagonally concave relation [17] will be required (in Section 3) in addition to the definition of upper hemi-continuous given in [11] and in [13].

### 2. Preliminaries

The Lemma 1 in [24], Lemma 3 in [23], and the Lemma 3 in [25] will be used in our research findings. Next, we are giving the proof of a lemma used in [7] which extended one lemma in [16] and Lemma 4.2 in [13]. Please note that we also used this Lemma in [7] but we did not give its proof there.

**Lemma 2.1.** Let G be a TVS over  $\Psi$  and we consider a subset of G which is both convex and nonempty. Suppose that H is a vector space with the scalar filed  $\Psi$ . We then equip H with the  $\sigma\langle H, G\rangle$  topology such that we have a continuous function  $a \mapsto Re\langle w, a \rangle$  for all  $w \in H$ . Let  $J: A \to 2^H$  be upper hemi-continuous in some subsets of A which are only line segments in A. Let  $\beta: A \times A \to G$  be such that, for each fixed  $b \in A$ ,  $\beta(\cdot, b)$  is continuous and, for each fixed  $a \in A$ ,  $\beta(a, \cdot)$  is affine. Suppose that  $g: A \times A \to \mathbb{R}$  is a mapping. We assume that for all  $b \in A$ , arbitrarily fixed,  $g(\cdot, b)$  is lower semi-continuous and convex on co(B) for all  $B \in \mathcal{F}(A)$  and for all  $a \in A$  arbitrarily chosen. Also we assume that  $g(a, \cdot)$  is concave and g(a, a) = 0,  $\beta(a, a) = 0$  and J,  $\beta$  have the 0-diagonally concave relation. Let  $\hat{b} \in A$  be such

that  $\inf_{u\in J(a)} Re\langle u, \beta(\hat{b}, a)\rangle \leq g(a, \hat{b})$  for all  $a\in A$ . Then we have

$$\inf_{w \in J(\hat{b})} Re\langle w, \beta(\hat{b}, a) \rangle \le g(a, \hat{b})$$

for all  $a \in A$ .

*Proof.* Suppose that

$$\inf_{u \in J(a)} Re\langle u, \beta(\hat{b}, a) \rangle \le g(a, \hat{b})$$

for all  $a \in A$ . Let  $a \in A$  be arbitrarily fixed and let  $z_t = ta + (1-t)\hat{b} = \hat{b} - t(\hat{b} - a)$  for all  $t \in [0, 1]$ . Then  $z_t \in A$  since A is convex. Let  $M = \{z_t : t \in [0, 1]\}$ . Thus, for any  $t \in [0, 1]$ ,

$$\inf_{u \in J(z_t)} Re\langle u, \beta(\hat{b}, z_t) \rangle \le g(z_t, \hat{b}).$$

Since, for each  $b \in A$ ,  $g(\cdot, b)$  is convex and, for each  $a \in A$ ,  $g(a, \cdot)$  is affine, we have

$$\inf_{u \in J(z_t)} Re\langle u, \beta(\hat{b}, ta + (1-t)\hat{b}) \rangle \leq g(tx + (1-t)\hat{b}, \hat{b})$$
  
$$\leq t(g(a, \hat{b})) + (1-t)g(\hat{b}, \hat{b})$$

for all  $t \in (0,1]$  and so

$$\inf_{u \in J(z_t)} [Re\langle u, t\beta(\hat{b}, a) + (1 - t)\beta(\hat{b}, \hat{b})\rangle] \le t(g(a, \hat{b})),$$

that is,

$$\inf_{u \in J(z_t)} t[Re\langle u, \beta(\hat{b}, a)\rangle] \le t(g(a, \hat{b})).$$

This implies that  $\inf_{u \in J(z_t)} Re\langle u, \beta(\hat{b}, a) \rangle \leq g(a, \hat{b})$  for all t in (0, 1]. Because J is upper hemi-continuous on M,  $f_{\beta(\hat{a},a)}: M \to (-\infty, +\infty]$  as given below

$$f_{\beta(\hat{a},a)}(z_t) = \inf_{u \in J(z_t)} Re\langle u, \beta(\hat{a},a) \rangle$$

for each  $z_t \in L$  is lower semi-continuous on M. Thus the set

$$A = \{ z_t \in M : f_{\beta(\hat{a}, a)}(z_t) \le g(a, \hat{b}) \}$$

is a subset of M which is closed in its topology. Then  $z_t \to \hat{b}$  in M because t converges to  $0^+$ . Because  $z_t \in A$  for all  $t \in (0,1]$ , clearly  $\hat{b} \in A$ . Consequently,  $f_{\beta(\hat{a},a)}(\hat{b}) = \inf_{u \in J(\hat{b})} Re\langle u, \beta(\hat{a},a) \rangle \leq g(a,\hat{b})$ . Since  $a \in A$  is arbitrary, we have

$$\inf_{w \in J(\hat{b})} Re\langle w, \beta(\hat{b}, a) \rangle \le g(a, \hat{b})$$

for all  $a \in A$ . Hence the proof of this lemma is completed.

Finally, for our research findings a minimax theorem of Kneser in [20] and of Aubin in [1] will be extensively used.

3. Generalized Quasi Variational-like inequalities for upper hemi-continuous and  $(\beta - g)$ -pseudo-monotone type II operators

We derive some new findings on a more advanced variational inequalities for upper hemi-continuous operators and  $(\beta, g)$ -pseudo-monotone type II (resp., strong  $(\beta, g)$ -pseudo-monotone type II) operators J with non-compact domain in a locally convex topological vector spaces which is also Hausdorff. Our findings will be extensions of similar findings in [24].

In the beginning we start with the following findings:

**Theorem 3.1.** Suppose that G is a locally convex topological vector space over  $\Psi$  which is also Hausdorff and A is a nonempty para-compact subset of G which is also a convex subset and a bounded subset of G. Suppose also that H is a vector space over  $\Psi$  with the topology  $\sigma\langle H, G \rangle$ , where  $\langle \cdot, \cdot \rangle : H \times G \to \Psi$  is a bilinear functional. This bilinear functional separates points on H such that for all  $w \in H$ , we get the continuous function  $a \mapsto Re\langle w, a \rangle$ . Let  $L: A \to 2^A$ ,  $J: A \to 2^H$ ,  $\beta: A \times A \to G$  and  $g: G \times G \to \mathbb{R}$  be the mappings such that

- (1) L is upper semi-continuous and each L(a) is a compact subset of A which is also convex;
- (2) g(A, A) is a bounded subset of  $\mathbb{R}$ ;
- (3) J is a  $(\beta, g)$ -pseudo-monotone type II (resp., a strong  $(\beta, g)$ -pseudo-monotone type II) operator which is also upper hemi-continuous on a subset of A which is also a line segment in A. We assume that H has the topology  $\sigma\langle H, G\rangle$  so that J(a) is a compact subset of H in the topology  $\sigma\langle H, G\rangle$  and is also a convex subset of H. Further we assume that J(A) is a bounded subset of H in the strong topology  $\delta\langle H, G\rangle$ ;
- (4) J and  $\beta$  keep the property of 0 diagonally concave relation, also we assume continuity of  $\beta$ :
- (5) for all  $B \in \mathcal{F}(A)$ ,  $a \mapsto g(a,b)$ ,  $g(\cdot,b)$  is lower semi-continuous on co(B), for all  $a \in A$  arbitrarily chosen, also  $g(a,\cdot)$  and  $\beta(a,\cdot)$  are concave and  $\beta(a,\cdot)$  is affine and g(a,a) = 0,  $\beta(a,a) = 0$  for all  $a \in A$  arbitrarily chosen;
- (6) the set  $\Sigma = \{b \in A : \sup_{a \in L(b)} [\inf_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)] > 0\}$  is a subset of A which is also open in its topology;
- (7) for all  $B \in \mathcal{F}(a)$  and  $b \in co(B)$  there exist  $\bar{a} \in A$  and  $\bar{u} \in J(\bar{a})$  such that

$$\delta_0(b)[Re\langle \bar{u}, \beta(b, \bar{a})\rangle + g(b, \bar{a})] + \sum_{h \in G^*} \delta_h(b)Re\langle h, \beta(b, \bar{a})\rangle \leq 0$$
for every family  $\{\delta_0, \delta_h : h \in G^*\}$  of functions from A into [0, 1] which

are real-valued and non-negative; B) the bilinear functional  $\langle \cdot, \cdot \rangle$  defined on the compact subset  $[\cup_{b \in co(B)} J(b)]$ 

(8) the bilinear functional  $\langle \cdot, \cdot \rangle$  defined on the compact subset  $[\cup_{b \in co(B)} J(b)] \times \beta(co(B) \times co(B))$  of  $H \times G$  is continuous for all  $B \in \mathcal{F}(A)$ ;

(9) there exists a nonempty compact subset K of A and a point  $a_0 \in A$  such that  $a_0 \in K \cap L(b)$  and  $\min_{u \in J(a_0)} Re\langle u, \beta(b, a_0) \rangle + g(b, a_0) > 0$  for all  $b \in A \setminus K$ .

Then there exists a point  $\hat{b} \in K$  such that

- (a)  $\hat{b} \in L(\hat{b})$ ;
- (b) there exists a point  $\hat{w} \in J(\hat{b})$  such that

$$Re\langle \hat{w}, \beta(\hat{b}, a) \rangle + g(\hat{b}, a) \le 0$$

for all  $a \in L(\hat{b})$ .

*Proof.* We shall complete the proof in several steps.

**Step 1.** We first derive that there exist  $\hat{b} \in A$  such that  $\hat{b} \in L(\hat{b})$  with

$$\sup_{a \in L(\hat{b})} [\inf_{u \in J(a)} Re\langle u, \beta(\hat{b}, a) \rangle + g(\hat{b}, a)] \le 0.$$

Suppose, we do not agree with the above outcome. Then, for each  $b \in A$ , either  $b \notin L(b)$  or there exists  $a \in L(b)$  such that  $\inf_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a) > 0$ , that is, for each  $b \in A$ , either  $b \notin L(b)$  or  $b \in \Sigma$ . If  $b \notin L(b)$ , we can use a general form of Hahn Banach theorem to derive that there is a linear functional h which is continuous on G such that

$$Re\langle h,b\rangle - \sup_{a\in L(b)} Re\langle h,x\rangle > 0.$$

For each  $b \in A$ , we define

$$\eta(b) := \sup_{a \in L(b)} [\inf_{u \in J(a)} Re \langle u, \beta(b,a) + g(b,a)],$$

$$W_0 := \Sigma = \{ b \in A : \eta(b) > 0 \}$$

and

$$W_h:=\{b\in A: Re\langle h,b\rangle - \sup_{a\in L(b)} Re\langle h,a\rangle > 0\}.$$

Then we have

$$A = W_0 \cup \bigcup_{h \in LF(G)} W_h.$$

Here, we denote by LF(G) the set of all linear functionals on G which are continuous. Now, by our assumption,  $W_0$  is an open set and each  $W_h$  is open in A by Lemma 1 in [24]. So,  $\{W_0, W_h : h \in LF(G)\}$  is an open covering for A. But A is para-compact, hence there exists a continuous partition of the unity  $\{\delta_0, \delta_h : h \in LF(G)\}$  for A subordinated to the open cover  $\{W_0, W_h : h \in LF(G)\}$ . We conclude that for all  $b \in A$ ,  $B \in \mathcal{F}(A)$  and  $a \mapsto g(a, b)$ ,

 $g(\cdot, b)$  is a continuous function on co(B) (for proof we refer to Cor. 10.1.1 in [22]). Next, we construct the function below  $\psi: A \times A \to \mathbb{R}$  by

$$\psi(a,b) = \delta_0(b) [\min_{u \in J(a)} Re\langle u, \beta(b,a) \rangle + g(b,a)] + \sum_{h \in LF(G)} \delta_h(b) Re\langle h, b - a \rangle$$

for all  $a, b \in A$ . Consequently, the following conclusions are derived:

(I) Since G is a  $T_2$  topological space, for all  $B \in \mathcal{F}(A)$  and  $a \in co(B)$  arbitrarily chosen, the below defined formula

$$b \longmapsto \inf_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)$$

is definitely a function which becomes continuous on co(B) by a lemma in [10] and using the property that g is a continuous function on co(B), and consequently the below defined function

$$b \longmapsto \delta_0(b) [\min_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)]$$

is lower semi-continuous on co(B) by a lemma in [25]. Also, for each fixed  $a \in A$ ,

$$b \longmapsto \sum_{h \in LF(G)} \delta_h(b) Re\langle h, b - a \rangle$$

is a continuous function on A. Consequently,  $\forall B \in \mathcal{F}(A)$  and  $\forall a \in co(B)$  arbitrarily chosen, the mapping  $b \mapsto \psi(a, b)$  is lower semi-continuous on co(B).

(II) According to our assumption,  $\{\delta_0, \delta_h : h \in LF(G)\}$  is a class of functions from A into [0,1] which are real-valued and non-negative, and so by our assumption:

for all  $B \in \mathcal{F}(A)$  and  $b \in co(B)$ , there exist  $\bar{a}$  in A and  $\bar{u}$  in  $J(\bar{a})$  such that

$$\delta_0(b)[Re\langle \bar{u},\beta(b,\bar{a})\rangle + g(b,\bar{a})] + \Sigma_{h\in LF(G)}\delta_h(b)Re\langle h,\beta(b,\bar{a})\rangle \le 0.$$

Thus we have

$$\min_{u \in J(a)} [\delta_0(b)(Re\langle u, \beta(b, \bar{a})) + g(b, \bar{a}))] + \Sigma_{h \in LF(G)} \delta_h(b) Re\langle h, \beta(b, \bar{a}) \rangle \le 0,$$

which implies that

$$\delta_0(b)\left[\min_{u\in J(a)}(Re\langle u,\beta(b,\bar{a})\rangle+g(b,\bar{a}))\right]+\Sigma_{h\in LF(G)}\delta_h(b)Re\langle h,\beta(b,\bar{a})\rangle\leq 0.$$

Therefore, we have

$$\min_{a \in A} [\delta_0(b) (\min_{u \in J(a)} (Re\langle u, \beta(b, a) \rangle + g(b, a))) + \sum_{h \in LF(G)} \delta_h(b) Re\langle h, \beta(b, a) \rangle] \le 0.$$

Thus we have  $\min_{a \in A} \psi(a, b) \leq 0$  for each  $B \in \mathcal{F}(A)$  and  $b \in co(B)$ .

(III) Suppose that  $B \in \mathcal{F}(A)$ ,  $a, b \in co(B)$  and  $\{b_{\beta}\}_{{\beta} \in \Gamma}$  is a net in A converging to b (resp., converging to b in weak topology) with  $\psi(ta + (1 - t)b, b_{\beta}) \leq 0$  for all  $\beta \in \Gamma$  and all  $t \in [0, 1]$ .

Case 1. Let  $\delta_0(b) = 0$ . Since  $\delta_0$  is continuous and  $b_\beta \to b$ , we have  $\delta_0(b_\beta) \to \delta_0(b) = 0$ . Note that  $\delta_0(b_\beta) \ge 0$  for each  $\beta \in \Gamma$ . Since J(A) is bounded in the strong topology and  $\{b_\beta\}_{\beta \in \Gamma}$  is a generalized sequence, that is,, a net which is bounded and therefore we obtain

$$\lim \sup_{\beta} [\delta_0(b_\beta)(\min_{u \in J(a)} Re\langle u, \beta(b_\beta, a) \rangle + g(b_\beta, a))] = 0.$$
 (3.1)

Clearly,

$$\delta_0(b)[\min_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)] = 0.$$

Thus it follows from (3.1) that

$$\lim \sup_{\beta} [\delta_{0}(b_{\beta})(\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a))]$$

$$+ \sum_{h \in LF(G)} \delta_{h}(b) Re\langle h, b - a \rangle$$

$$= \sum_{h \in LF(G)} \delta_{h}(b) Re\langle h, b - a \rangle$$

$$= \delta_{0}(b) [\min_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)]$$

$$+ \sum_{h \in LF(G)} \delta_{h}(b) Re\langle h, b - a \rangle.$$

$$(3.2)$$

If we make t = 1, then we see that  $\psi(a, b_{\beta}) \leq 0$  for all  $\beta \in \Gamma$ , that is,

$$\delta_{0}(b_{\beta})[\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a)] 
+ \sum_{h \in LF(G)} \delta_{h}(b_{\beta}) Re\langle h, b_{\beta} - a \rangle 
\leq 0$$
(3.3)

Consequently, the equation (3.3) gives

$$\begin{aligned} &\limsup_{\beta} [\delta_0(b_{\beta})(\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a))] \\ &+ \liminf_{\beta} [\sum_{h \in LF(G)} \delta_h(b_{\beta}) Re\langle h, b_{\beta} - a \rangle] \\ &\leq \lim \sup_{\beta} [\delta_0(b_{\beta})(\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a)) \\ &+ \sum_{h \in LF(G)} \delta_h(b_{\beta}) Re\langle h, b_{\beta} - a \rangle] \\ &< 0, \end{aligned}$$

and so

$$\limsup_{\beta} [\delta_0(b_{\beta})(\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a))] + \sum_{h \in LF(G)} \delta_h(b) Re\langle h, b - a \rangle$$

$$\leq 0.$$
(3.4)

Hence, by (3.2) and (3.4), we have  $\psi(a, b) \leq 0$ .

Case 2. Let  $\delta_0(b) > 0$ . Since  $\delta_0$  is continuous,  $\delta_0(b_\beta) \to \delta_0(b)$ . Again, since  $\delta_0(b) > 0$ , exists  $\lambda \in \Gamma$  such that  $\delta_0(b_\beta) > 0$  for all  $\beta \ge \lambda$ . If we make t = 0,

then we see that  $\psi(b, b_{\beta}) \leq 0$  for all  $\beta \in \Gamma$ , that is,

$$\delta_0(b_\beta)[\min_{u\in J(y)}Re\langle u,\beta(b_\beta,b)\rangle+g(b_\beta,b)]+\sum_{h\in LF(G)}\delta_h(b_\beta)Re\langle h,b_\beta-b\rangle\leq 0$$

for all  $\beta \in \Gamma$ , and so

and so
$$\limsup_{\beta} [\delta_0(b_{\beta})(\min_{u \in T(y)} Re\langle u, \beta(b_{\beta}, y) \rangle + g(b_{\beta}, y)) + \sum_{h \in LF(G)} \delta_h(b_{\beta}) Re\langle h, b_{\beta} - y \rangle]$$

$$\leq 0.$$
(3.5)

Hence, by (3.5), we have

$$\begin{split} & \limsup_{\beta} [\delta_0(b_{\beta})(\min_{u \in J(y)} Re\langle u, \beta(b_{\beta}, b) \rangle + g(b_{\beta}, b))] \\ & + \liminf_{\beta} [\sum_{h \in LF(G)} \delta_h(b_{\beta}) Re\langle h, b_{\beta} - b \rangle] \\ & \leq \lim \sup_{\beta} [\delta_0(b_{\beta})(\min_{u \in J(y)} Re\langle u, \beta(b_{\beta}, b) \rangle + g(b_{\beta}, b)) \\ & + \sum_{h \in LF(G)} \delta_h(b_{\beta}) Re\langle h, b_{\beta} - b \rangle] \\ & \leq 0. \end{split}$$

Since  $\liminf_{\beta} \left[ \sum_{h \in LF(G)} \delta_h(b_{\beta}) Re\langle h, b_{\beta} - b \rangle \right] = 0$ , we have

$$\limsup_{\beta} \left[ \delta_0(b_\beta) \left( \min_{u \in J(y)} Re\langle u, \beta(b_\beta, b) \rangle + g(b_\beta, b) \right) \right] \le 0.$$
 (3.6)

Since  $\delta_0(b_\beta) > 0 \ \forall \beta \geq \lambda$ , we conclude that

$$\delta_0(b) \limsup_{\beta} [\min_{u \in J(y)} Re\langle u, \beta(b_{\beta}, y) \rangle + g(b_{\beta}, b)] 
= \lim \sup_{\beta} [\delta_0(b_{\beta}) (\min_{u \in J(y)} Re\langle u, \beta(b_{\beta}, b) \rangle + g(b_{\beta}, b))].$$
(3.7)

Since  $\delta_0(b) > 0$ , by the equations (3.6) and (3.7), the following is obtained

$$\lim\sup_{\beta} \left[ \min_{u \in J(y)} Re \langle u, \beta(b_{\beta}, b) \rangle + g(b_{\beta}, b) \right] \le 0.$$

Since J is an operator which is  $(\beta, g)$ -pseudo-monotone type II, the following is derived

$$\limsup_{\beta} [\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a)]$$

$$\geq \min_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)$$

for all  $a \in A$ . Since  $\delta_0(b) > 0$ , we have

$$\begin{split} &\delta_0(b)[\limsup_{\beta}(\min_{u\in J(a)}Re\langle u,\beta(b_{\beta},a)\rangle+g(b_{\beta},a))]\\ &\geq &\delta_0(b)[\min_{u\in J(a)}Re\langle u,\beta(b,a)\rangle+g(b,a)], \end{split}$$

and thus

$$\delta_{0}(b)\left[\limsup_{\beta}\left(\min_{u\in J(a)}Re\langle u,\beta(b_{\beta},a)\rangle+g(b_{\beta},a)\right)\right] 
+\sum_{h\in LF(G)}\delta_{h}(b)Re\langle h,b-a\rangle 
\geq \delta_{0}(b)\left[\min_{u\in J(a)}Re\langle u,\beta(b,a)\rangle+g(b,a)\right] 
+\sum_{h\in LF(G)}\delta_{h}(b)Re\langle h,b-a\rangle.$$
(3.8)

If t=1, then we can derive that  $\psi(a,b_{\beta})\leq 0$  for all  $\beta\in\Gamma$ , that is,

$$\begin{array}{l} \delta_0(b_\beta)[\min_{u\in J(a)}Re\langle u,\beta(b_\beta,a)\rangle + g(b_\beta,a)] + \sum_{h\in LF(G)}\delta_h(b_\beta)Re\langle h,b_\beta-a\rangle \\ < 0 \end{array}$$

for all  $\beta \in \Gamma$  and so, by (3.8),

$$0 \geq \limsup_{\beta} [\delta_{0}(b_{\beta})(\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a))$$

$$+ \sum_{h \in LF(G)} \delta_{h}(b_{\beta}) Re\langle h, b_{\beta} - a \rangle]$$

$$\geq \lim \sup_{\beta} [\delta_{0}(b_{\beta})(\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a))]$$

$$+ \lim \inf_{\beta} [\sum_{h \in LF(G)} \delta_{h}(b_{\beta}) Re\langle h, b_{\beta} - a \rangle]$$

$$= \delta_{0}(b) [\lim \sup_{\beta} (\min_{u \in J(a)} Re\langle u, \beta(b_{\beta}, a) \rangle + g(b_{\beta}, a))]$$

$$+ \sum_{h \in LF(G)} \delta_{h}(b) Re\langle h, b - a \rangle$$

$$\geq \delta_{0}(b) [\min_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)]$$

$$+ \sum_{h \in LF(G)} \delta_{h}(b) Re\langle h, b - a \rangle.$$

$$(3.9)$$

Hence we have  $\psi(a,b) \leq 0$ .

(IV) Using our given assumptions in the statement of the theorem we see that there exists a nonempty subset K of A which is both compact and closed, and there exists  $a_0 \in A$  such that  $a_0 \in K \cap L(b)$  and

$$\min_{u \in J(a_0)} Re\langle u, \beta(b, a_0) \rangle + g(b, a_0) > 0$$

for all  $b \in A \setminus K$ . Thus, for all  $b \in A \setminus K$ , we have

$$\sup_{a \in L(b)} \left[ \min_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a) \right] > 0.$$

Hence  $b \in W_0$  and

$$\delta_0(b)[\min_{u \in J(a_0)} Re\langle u, \beta(b, a_0) \rangle + g(b, a_0)] > 0$$

for all  $b \in A \setminus K$  whenever  $\delta_0(b) > 0$  and  $Re(h, \beta(b, a_0)) > 0$  whenever  $\delta_h(b) > 0$  for any  $h \in LF(G)$ . Consequently, we have

$$\psi(a_0, b) = \delta_0(b) [\min_{u \in J(a_0)} Re\langle u, \beta(b, a_0) \rangle + g(b, a_0)] + \sum_{h \in LF(G)} \delta_h(b) Re\langle h, b - a_0 \rangle$$
> 0

for all  $b \in A \setminus K$ . (If J is an operator which is strong  $(\beta, g)$ -pseudo-monotone type II, we can consider a topology on G which is called weak.) Consequently, we have shown that all assumptions of Theorem 1.1 in [10] are fulfilled by the the function  $\psi$ . So, using the Theorem 1.1 in [10], we obtain  $\hat{b} \in K$  such that

 $\psi(a, \hat{b}) \leq 0$  for all  $a \in A$ , that is,

$$\delta_{0}(\hat{b})[\min_{u \in J(a)} Re\langle u, \beta(\hat{b}, a) \rangle + g(\hat{b}, a)] + \sum_{h \in LF(G)} \delta_{h}(\hat{b}) Re\langle h, \hat{b} - a \rangle$$

$$\leq 0$$
(3.10)

for all  $a \in A$ .

If  $\delta_0(\hat{b}) > 0$ , then  $\hat{b} \in W_0 = \Sigma$  so that  $\gamma(\hat{b}) > 0$ . Choose  $\hat{a} \in L(\hat{b}) \subset A$  such that

$$\min_{u \in J(\hat{a})} Re\langle u, \beta(\hat{b}, \hat{a}) \rangle + g(\hat{b}, \hat{a}) \ge \gamma(\hat{b})/2 > 0.$$

As a consequence, we obtain

$$\delta_0(\hat{b})[\min_{u \in J(\hat{a})} Re\langle u, \beta(\hat{b}, \hat{a}) \rangle + g(\hat{b}, \hat{a})] > 0.$$

If  $\delta_h(\hat{b}) > 0$  for some  $h \in LF(G)$ , then  $\hat{b} \in W_h$  and hence

$$Re\langle h, \hat{b} \rangle > \sup_{a \in L(\hat{b})} Re\langle h, a \rangle \geq Re\langle h, \hat{a} \rangle,$$

which implies that  $Re\langle h, \hat{b} - \hat{a} \rangle > 0$ . Then we see that  $\delta_h(\hat{b})[Re\langle h, \hat{b} - \hat{a} \rangle] > 0$  whenever  $\delta_h(\hat{b}) > 0$  for all  $h \in LF(G)$ . Since  $\delta_0(\hat{b}) > 0$  or  $\delta_h(\hat{b}) > 0$  for some  $h \in LF(G)$ , we derive that

$$\psi(\hat{a},\hat{b}) = \delta_0(\hat{b})[\min_{u \in J(\hat{a})} Re\langle u, \beta(\hat{b},\hat{a})\rangle + g(\hat{b},\hat{a})] + \Sigma_{h \in LF(G)} \delta_h(\hat{b}) Re\langle h, \hat{b} - \hat{a}\rangle > 0.$$

But this is contrary to our equation (3.10). So, we have proved our first step of this proof.

Consequently, we derived the conclusion that there exists  $\hat{b} \in A$  such that  $\hat{b} \in L(\hat{b})$  and

$$\sup_{a \in L(\hat{b})} [\inf_{u \in J(a)} Re\langle u, \beta(\hat{b}, a) \rangle + g(\hat{b}, a)] \le 0.$$

Step 2. Now, we show that

$$\inf_{w \in J(\hat{b})} Re\langle w, \beta(\hat{b}, a) \rangle \le g(a, \hat{b})$$

for all  $a \in L(\hat{b})$ . From Step 1, we know that  $\hat{b} \in L(\hat{b})$ , which is a convex subset of A, and

$$\inf_{u \in J(a)} Re\langle u, \beta(\hat{b}, a) \rangle \le g(a, \hat{b})$$

for all  $a \in L(\hat{b})$ . Hence, by applying Lemma 2.1, we obtain

$$\inf_{w \in J(\hat{b})} Re\langle w, \beta(\hat{b}, a) \rangle \le g(a, \hat{b})$$

for all  $a \in L(\hat{b})$ .

**Step 3.** There exists a point  $\hat{w} \in J(\hat{b})$  with  $Re\langle \hat{w}, \beta(\hat{b}, a) \rangle \leq g(a, \hat{b})$  for all  $a \in L(\hat{b})$ . From Step 2, we have

$$\sup_{a \in L(\hat{b})} \inf_{w \in J(\hat{b})} Re\langle w, \beta(\hat{b}, a) \rangle + g(\hat{b}, a) \le 0, \tag{3.11}$$

where  $J(\hat{b})$  is a subset of the Hausdorff TVS  $(H, \sigma \langle H, G \rangle)$  and is a convex subset of G which is also compact in the topology  $\sigma \langle H, G \rangle$ .

Now, we define a mapping  $f: L(\hat{b}) \times J(\hat{b}) \to \mathbb{R}$  by

$$f(a, w) = Re\langle w, \beta(\hat{b}, a) + g(\hat{b}, a)$$

for each  $a \in L(\hat{b})$  and  $w \in J(\hat{b})$ . Then, for each fixed  $a \in L(\hat{b})$ , the mapping  $w \mapsto f(a, w)$  is convex and continuous on  $J(\hat{b})$  and, for each fixed  $w \in J(\hat{b})$ , the mapping  $x \mapsto f(a, w)$  is concave on  $L(\hat{b})$ . Finally, using a theorem of minimax in [20] derived by Kneser, we conclude that

$$\min_{w \in J(\hat{b})} \sup_{a \in L(\hat{b})} [Re\langle w, \beta(\hat{b}, a) \rangle + g(\hat{b}, a)] = \sup_{a \in L(\hat{b})} [\min_{w \in J(\hat{b})} [Re\langle w, \beta(\hat{b}, a) \rangle + g(\hat{b}, a)].$$

Hence, by (3.11), we obtain

$$\min_{w \in J(\hat{b})} \sup_{a \in L(\hat{b})} [Re\langle w, \beta(\hat{b}, a) \rangle + g(\hat{b}, a)] \le 0.$$

Since  $J(\hat{b})$  is compact, there exists  $\hat{w} \in J(\hat{b})$  such that

$$Re\langle \hat{w}, \beta(\hat{b}, a) \rangle + g(\hat{b}, a) \le 0$$

for all  $a \in L(\hat{b})$ . Hence our proof is completed.

In conclusion, we say that if every open subset U of A and for all  $a, b \in U$ ,  $\beta(a,b) = a-b$  and there exist  $g': A \to \mathbb{R}$  such that g(a,b) = g'(a) - g'(b), and if the mapping  $L: A \to 2^A$  is, in addition, lower semi-continuous and, for all  $b \in \Sigma$ , J is upper semi-continuous for some a in L(b) with

$$\inf_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a) > 0,$$

then we can derive that  $\Sigma$  is an open subset of A in our last Theorem 3.1. This conclusion leads us to the result given below:

**Theorem 3.2.** Let G be a locally convex topological vector spaces over  $\Psi$  which is also Hausdorff, A a nonempty para-compact and convex subset of G which is also bounded and H a vector space over  $\Psi$  with  $\sigma\langle H, G \rangle$ -topology, where  $\langle \cdot, \cdot \rangle : H \times G \to \Psi$  is a bilinear functional separating points on H such that for each  $w \in H$ , the function  $a \mapsto Re\langle w, a \rangle$  is continuous. Let  $L: A \to 2^A$ ,  $J: A \to 2^H$ ,  $\beta: A \times A \to G$  and  $g: G \times G \to \mathbb{R}$  be mappings such that

(1) L is continuous such that each L(a) is compact and convex;

- (2) g(A, A) is bounded;
- (3) J is a (β, g)-pseudo-monotone type II (resp., a strong (β, g)-pseudo-monotone type II) operator and is upper hemi-continuous on a subset of A which is also a line segment in A with the σ⟨H, G⟩-topology on H such that each J(a) is σ⟨H, G⟩-compact and convex and J(A) is δ⟨H, G⟩-bounded;
- (4) J and  $\beta$  have the 0-diagonally concave relation and  $\beta$  is continuous;
- (5) for each fixed  $b \in A$ ,  $a \mapsto g(a,b)$ ,  $g(\cdot,b)$  is lower semi-continuous on co(B) for each  $B \in \mathcal{F}(A)$  and, for each fixed  $a \in A$ ,  $g(a,\cdot)$  and  $\beta(a,\cdot)$  are concave,  $\beta(a,\cdot)$  is affine, g(a,a) = 0 and  $\beta(a,a) = 0$ ;
- (6) for each open subset U of A and  $a, b \in U$ ,  $\beta(a, b) = a b$  and there exists  $g': A \to \mathbb{R}$  such that g(a, b) = g'(a) g'(b);
- (7) for each  $b \in \Sigma = \{b \in A : \sup_{a \in L(b)} [\inf_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a)] > 0\}$ , J is upper semi-continuous at some point a in L(b) with

$$\inf_{u \in J(a)} Re\langle u, \beta(b, a) \rangle + g(b, a) > 0;$$

- (8) for each  $A \in \mathcal{F}(A)$  and  $b \in co(B)$ , there exist  $\bar{a} \in A$  and  $\bar{u} \in J(\bar{a})$  such that
  - $\delta_0(b)[Re\langle \bar{u}, \beta(b, \bar{a})\rangle + g(b, \bar{a})] + \Sigma_{h \in LF(G)}\delta_h(b)Re\langle h, y \bar{a}\rangle \leq 0$  for any family  $\{\delta_0, \delta_h : h \in LF(G)\}$  of non-negative real-valued functions from A into [0, 1];
- (9) for each  $B \in \mathcal{F}(A)$ , the bilinear functional  $\langle \cdot, \cdot \rangle$  is continuous over the compact subset  $[\bigcup_{b \in co(B)} J(b)] \times \beta(co(B) \times co(B))$  of  $H \times G$ .

Further, suppose that there exist a nonempty compact subset K of A and a point  $a_0 \in A$  such that

$$a_0 \in K \cap L(b), \quad \min_{u \in J(a_0)} Re\langle u, \beta(b, a_0) \rangle + g(b, a_0) > 0$$

for all  $b \in A \setminus K$ . Then there exists a point  $\hat{b} \in K$  such that

- (a)  $\hat{b} \in L(\hat{b})$ ;
- (b) there exists a point  $\hat{w} \in J(\hat{b})$  with  $Re\langle \hat{w}, \beta(\hat{b}, a) \rangle + g(\hat{b}, a) \leq 0$  for all  $a \in L(\hat{b})$ .

*Proof.* The proof is similar to the proof of Theorem 3.2 in [15] and so omitted.  $\Box$ 

**Remark 3.3.** (1) Theorems 3.1 and 3.2 of this paper are further generalizations of the results obtained in [15, Theorem 3.1] and in [15, Theorem 3.2], respectively, into generalized quasi-variational-like inequalities of  $(\beta, g)$ -pseudo-monotone type II operators and strong  $(\beta, g)$ -pseudo-monotone type II operators on non-compact sets;

- (2) In 1985, Shih and Tan [24] obtained the results on generalized quasi-variational-like inequalities in locally convex topological vector spaces and their results were obtained on compact sets where the set-valued mappings were either lower semi-continuous or upper semi-continuous. Our present paper is another extension of the original work in [24] using  $(\beta, g)$ -pseudo-monotone type II and strong  $(\beta, g)$ -pseudo-monotone type II operators on non-compact sets;
- (3) The results in [15] were obtained on non-compact sets where one of the set-valued mappings is a pseudo-monotone type II operators which were defined first in [6] and later renamed as pseudo-monotone type II operators in [5]. Our present results are extensions of the results in [15] using an extension of the operators defined in [5] (and originally in [6]).

**Acknowledgments:** The author thanks The University of Lahore for providing partial financial supports.

#### References

- [1] J.P. Aubin, Applied Functional Analysis, Wiley-Interscience, New York, 1979.
- [2] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons. Inc., New York, 1984.
- [3] H. Brézis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan's minimax principle, Boll. U.M.I., 6 (1972), 293–300.
- [4] Y.J. Cho and H.Y. Lan, A new class of generalized nonlinear multi-valued quasivariational-like-inclusions with H-monotone mappings, Math. Inequal. Appl., 10 (2007), 389–401.
- M.S.R. Chowdhury, The surjectivity of upper-hemicontinuous and pseudo-monotone type II operators in reflexive Banach Spaces, Ganit: J. Bangladesh Math. Soc., 20 (2000), 45–53.
- [6] M.S.R. Chowdhury, Generalized variational inequalities for upper hemi-continuous and demi-operators with applications to fixed point theorems in Hilbert spaces, Serdica Math. J., 25 (1998), 163–178.
- [7] M.S. R. Chowdhury, Afrah A.N. Abdou and Y.J. Cho, Existence theorems of generalized quasi-variational-like inequalities for pseudo-monotone type II operators, J. Inequal. Appl., 449 (2014), 1-18.
- [8] M.S. R. Chowdhury and Y.J. Cho, Existence theorems of generalized quasi-variationallike inequalities for η-h-pseudo-monotone type I operators on non-compact sets, J. Inequal. Appl., 79 (2012), 1-19.
- [9] M.S.R. Chowdhury and Y.J. Cho, Generalized bi-quasi-variational inequalities for quasipseudo-monotone type II operators on non-compact sets, J. Inequal. Appl., Article ID 237191, (2010), 1–17.
- [10] M.S.R. Chowdhury and K.K. Tan, Generalized variational-like inequalities for pseudo-monotone type III operators, Cent. Eur. J. Math., 6 (2008), 526–536.
- [11] M.S.R. Chowdhury and K.K. Tan, Application of upper hemi-coninuous operators on generalized bi-quasi-variational inequalities in locally convex topological vector spaces, Positivity, 3 (1999), 333–344.

- [12] M.S.R. Chowdhury and K.K. Tan, Applications of pseudo-monotone operators with some kind of upper semi-continuity in generalized quasi-variational inequalities on noncompacts, Proc. Amer. Math. Soc., 126 (1998), 2957–2968.
- [13] M.S.R. Chowdhury and K.K. Tan, Generalized variational inequalities for quasimonotone operators and applications, Bull. Polish Acad. Sci., 45 (1997), 25–54.
- [14] M.S.R. Chowdhury and K.K. Tan, Generalization of Ky Fan's minimax inequality with applications to generalized variational inequalities for pseudo-monotone operators and fixed theorems, J. Math. Anal. Appl., 204 (1996), 910–929.
- [15] M.S.R. Chowdhury and G. Tarafdar, Existence theorems of generalized quasi-variational inequalities with upper hemi-continuous and demi-operators on non-compact sets, Math. Inequal. Appl., 2 (1999), 585–597.
- [16] M.S.R. Chowdhury and H.B. Thompson, Generalized variational-like inequalities for pseudo-monotone type II operators, Nonlinear Anal., 63 (2005), 321–330.
- [17] A.P. Ding and G. Tarafdar, Generalized variational-like inequalities with pseudomonotone set-valued mappings, Arch. Math., 74 (2000), 302–313.
- [18] K. Fan, A minimax inequality and applications, in "Inequalities, III", (O. Shisha, Ed.), 103–113, Academic Press, San Diego, 1972.
- [19] Y.P. Fang, Y.J. Cho, N.J. Huang and S.M. Kang, Generalized nonlinear implicit quasivariational-like inequalities for set-valued mappings in Banach spaces, Math. Inequal. Appl., 6 (2003), 331–337.
- [20] H. Kneser, Sur un theórème fundamental de la théorie des jeux, C.R. Acad. Sci. Paris, 234 (1952), 2418–2420.
- [21] H.Y. Lan, Y.J. Cho and N.J. Huang, Stability of iterative procedures for a class of generalized nonlinear quasi-variational-like inclusions involving maximal η-monotone mappings, Fixed Point Theory and Applications, Edited by Y.J. Cho, J.K. Kim and S.M. Kang, 6 (2006), 107–116.
- [22] R.T. Rockafeller, Convex Analysis, Princeton Univ. Press, Princeton, 1970.
- [23] M.H. Shih and K.K. Tan, Generalized bi-quasi-variational inequalities, J. Math. Anal. Appl., 143 (1989), 66–85.
- [24] M.H. Shih and K.K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl., 108 (1985), 333–343.
- [25] W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan, 28 (1976), 166–181.