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Abstract. In this paper we consider inverse problem for a general class of nonlinear sto-

chastic differential equations on Hilbert spaces whose generating operators (drift, diffusion

and jump kernels) are unknown. We introduce a class of function spaces and put a suit-

able topology on such spaces and prove existence of optimal generating operators from these

spaces. We present also necessary conditions of optimality including an algorithm and its

convergence whereby one can construct the optimal generators (drift, diffusion and jump

kernel).

1. Introduction

Most of the system dynamics found in physical and engineering sciences are
developed on the basis of fundamental laws of science as currently understood
by scientists and engineers. The basic parameters that determine the dynam-
ics are often obtained from physical experiments which are not expected to
guaranty absolute accuracy thereby presenting uncertainty in the model. In
particular, in the study of biological, medical, management, economic and so-
cial sciences mathematical models are not so well developed and hence require
empirical approach and mathematical analysis to develop such models.
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Dynamic systems arising from physical and applied sciences in general, are
governed by either deterministic or stochastic ordinary or partial differential
equations, or integral equations, or combinations thereof. Given the system
dynamics, one is interested to find control policies from an admissible class to
steer the system so as to meet certain objectives subject to various state and
control constraints, see [2], [3], [6] and the references therein. These are the
so called direct problems; in other words, the system dynamics is fully known
and the primary objective is to find controls which can force the system to
reach specified goals. In contrast, the inverse problem is concerned with the
identification of the unknown system dynamics from available and possibly
noisy data(see [1], [4], [5], [7], [8], [9], [10], [11], [12]).

In reference [1], inverse problems for infinite dimensional deterministic and
stochastic systems, are considered with applications to partial differential
equations and nonlinear filtering. Reference [4] presents techniques for iden-
tification of nonlinear systems given by input-output models popular in engi-
neering sciences. In reference [12] the authors consider inverse problems for a
class of partial differential equations from mathematical physics, in particu-
lar, a nonlinear heat equation with unknown system parameters or unknown
initial or boundary data. In reference [9] the authors use the so called “collage
theorem” based on Banach fixed point theorem to solve inverse problems for
deterministic and random ordinary differential equations including mean field
equations. In reference [10] the authors introduce a statistical treatment of
inverse problems constrained by models with stochastic terms. In particular,
the authors propose a technique along with the objective (score) functionals to
determine the unknown space dependent coefficients for an elliptic partial dif-
ferential equation (governing the spatial dynamics of subsurface flows) and a
parameter inversion problem for power grid governed by ordinary differential-
algebraic equations. Also they propose and discuss in details the merits and
demerits of several alternative objective (or score) functionals. In reference
[11] the author considers a linear filtering problem (arising in communication
engineering) with an unknown linear filter for recovering signals embedded in
additive noise. The problem is formulated as a min-max problem and some
finite dimensional approximation techniques are used to treat the problem.

Recently we considered inverse problem for finite dimensional stochastic
systems [5] governed by Itô differential equations identifying the infinitesimal
generators controlling drift and diffusion only. In this paper we consider a
much more general inverse problem for infinite dimensional stochastic systems
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of the form

dx = Axdt+ F (x)dt+B(x)dW (t) +

∫
Vδ

C(x, ξ)q(dξ × dt),

x(0) = x0, (1.1)

where the operator A is a known unbounded linear operator generating a C0-
semigroup of bounded linear operators on a Hilbert space, while the nonlinear
operators {F,B,C} are unknown. Our objective is to identify the unknown
operators. Towards this goal we introduce the objective functional

J(F,B,C) = E{
∫ T

0
`(t, x(t))dt+ Φ(x(T ))}, (1.2)

where x = x(F,B,C)(t), t ∈ I, is the mild solution of equation (1.1). The in-
tegrand ` and the function Φ may also depend on available data not explicitly
shown. The problem is to find a triple (F,B,C) from a suitable topological
space of nonlinear maps or operators, to be introduced shortly, such that J
attains its minimum. The results of this paper are applicable to both finite
and infinite dimensional nonlinear stochastic differential equations including
semilinear stochastic partial differential equations. These results are also ap-
plicable to control theory to determine optimal feedback control operators.

In order to consider the problem as stated above we need certain nota-
tions and terminologies. Let {H,U} denote a pair of real separable Hilbert
spaces with H denoting the state space, U the state space of Brownian mo-
tion, and L(U,H) the space of bounded linear operators from U to H. Let
(Ω,F ,Ft≥0, P ) be a complete filtered probability space where {Ft, t ≥ 0} is
an increasing family of sub-sigma algebras of the sigma algebra F , continuous
from the right and having limits from the left. Let {W (t), t ≥ 0} be an Ft-
adapted U valued Brownian motion with incremental covariance operator Q,
a symmetric positive nuclear operator in L(U). Let {ei, i ∈ N} be a complete
ortho-normal basis of U given by the eigen vectors of Q, Qei = λiei, with
λi ≥ 0 being the corresponding eigen values. Thus the Brownian motion W
can be expressed as W (t) =

∑
(W (t), ei)ei where {(W (t), ei) ≡ βi(t), i ∈ N}

is a family of mutually independent real valued Brownian motions with mean
zero and variance E(W (t), ei)

2 = Eβi(t)
2 = t(Qei, ei) = tλi. Since Q is nu-

clear,
∑

(Qei, ei) =
∑
λi <∞. To consider the jump process, we let V denote

a Polish space (complete separable metric space) and B(V ) denote the Borel
algebra of subsets of V and p(dξ × dt) denote a random measure defined on
the sigma algebra of subsets of the set Vδ × I where I = [0, T ] is the time
interval and Vδ ≡ V \Bδ with Bδ denoting the open ball in V of radius δ > 0
and centered at the origin. Throughout the rest of the paper it is assumed,
without further notice, that for each t ∈ I, and ∆ ⊂ Vδ, the measure process
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p(∆× [0, t)) is Ft adapted. The measure p is said to be a Poisson random mea-
sure (or a counting measure) on the measurable space (Vδ × I,B(Vδ) × B(I))
if for each Borel set S ⊂ Vδ and each time interval Γ ⊂ I, the probability that
there are exactly n jumps of sizes (or with range) confined in the set S is given
by

P{p(S × Γ) = n} =
(π(S)λ(Γ))n

n!
exp−{π(S)λ(Γ)}

where λ denotes the Lebesgue measure on I and π (a positive measure) denotes
the Lèvy (jump) measure on Vδ. The term π(S) (the Lèvy measure of the set
S) denotes the mean rate of jumps of sizes confined in the set S. The measure
π can be chosen according to the specific needs of applications. Define the
random measure

q(S × Γ) ≡ p(S × Γ)− π(S)λ(Γ)

with mean zero and variance π(S)λ(Γ). The process q(dξ × dt) is called the
compensated Poisson random measure.

Throughout rest of the paper we assume without further notice that the ini-
tial state, the Brownian motion, and the Poisson random measure are stochas-
tically independent.

2. Admissible class of drift-diffusion-jump triples

To consider the inverse problem as stated above it is necessary to give a
precise characterization of the admissible set of drift-diffusion-jump triples
denoted by Pad. Let {α,K} be any pair of positive numbers and let Fα,K , and
Bα,K denote the class of functions (operators) given by

Fα,K ≡
{
F : H → H

∣∣ ‖ F (0) ‖H ≤ α and

‖ F (x1)− F (x2) ‖H ≤ K ‖ x1 − x2 ‖H ∀ x1, x2 ∈ H
}

(2.1)

and

Bα,K ≡
{
B : H → L(U,H)

∣∣ ‖ B(0) ‖L(U,H) ≤ α and

‖ B(x1)−B(x2) ‖L(U,H)≤ K ‖ x1 − x2 ‖H ∀ x1, x2 ∈ H
}
. (2.2)

Clearly, these are Lipschitz maps whose values at zero vector do not exceed
the number α, and the Lipschitz coefficients do not exceed K. The larger the
parameters {α,K} are, the larger are these classes {Fα,K ,Bα,K}. Let BC(Vδ)
denote the space of bounded continuous real valued functions defined on the set
Vδ ⊂ V, and L2(π) = L2(Vδ, π) denote the class of real valued Borel measurable
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functions defined on Vδ which are square integrable with respect to the Lévy
measure π. Let (a, b) be a pair of nonnegative Borel measurable real valued
functions defined on Vδ so that a, b ∈ BC(Vδ)∩L+

2 (π). We introduce the class
of jump kernels Ca,b as follows:

Ca,b ≡
{
C : H × Vδ −→ H continuous

∣∣
‖ C(x, ξ)− C(y, ξ) ‖H≤ a(ξ) ‖ x− y ‖H , ∀ x, y ∈ H, ξ ∈ Vδ

and ‖ C(0, ξ) ‖H≤ b(ξ), ξ ∈ Vδ
}
. (2.3)

Using the above three classes we introduce the set of admissible drift-diffusion-
jump triples given by the Cartesian product Pad ≡ Fα,K ×Bα,K × Ca,b. Using
the notations of Willard [13] we denote the domain space H × Vδ by X, and
the range space Hw ×Lwo(U,H)×Hw by Y where Hw is the Hilbert space H
furnished with the weak topology τw, and Lwo(U,H) is the space of bounded
linear operators L(U,H) endowed with the weak operator topology τwo. The
range space Y is then endowed with the product topology Tw ≡ τw × τwo ×
τw. We consider the function space Y X = Fp(X,Y ) which has the natural
Tychonoff product topology. Note that the set Pad is a subset of the function
space Y X and it is given the topology of point wise convergence [10] denoted
by τp. For each (x, ξ) ∈ X ≡ H ×Vδ, let Πx,ξ denote the projection map given
by

Πx,ξ(Y
X) = {(F (x), B(x), C(x, ξ))

∣∣ (F,B,C) ∈ Y X}.
This is simply the evaluation map. We are concerned with the set given by

Πx,ξ(Pad) = {(F (x), B(x), C(x, ξ))
∣∣ (F,B,C) ∈ Pad}.

It is clear that for each (x, ξ) ∈ X = H × Vδ, the closure of the (x, ξ)-
projection of Fα,K denoted by Πx,ξ(Fα,K) = Πx(Fα,K) = {F (x), F ∈ Fα,K},
is a closed bounded convex subset of H and hence weakly (or τw) compact.
Similarly, the closure of each (x, ξ)-projection of Bα,K , given by Πx,ξ(Bα,K) =
Πx(Bα,K), is a closed bounded convex subset of L(U,H) and hence compact
in the weak operator topology (τwo). For each (x, ξ) ∈ X, the closure of the
(x, ξ)-projection of Ca,b, given by Πx,ξ(Ca,b) = {C(x, ξ) : C ∈ Ca,b}, is a closed
bounded convex subset of H and hence weakly (or τw) compact.

Theorem 2.1. The set Pad, a subset of the function space Y X , is compact in
the point wise topology τp.

Proof. The Hilbert space H endowed with the weak topology τw is a Hausdorff
topological space, and the space L(U,H) furnished with the weak operator
topology τwo is also a Hausdorff space. The Cartesian product of Hausdorff
spaces is Hausdorff. Thus the space Y furnished with the product topology
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Tw is Hausdorff. It follows from the preceding discussions that the set Pad is
point wise closed and that for each (x, ξ) ∈ X the closure of Πx,ξ(Pad) is Tw
compact. Hence it follows from Willard [13, Theorem 42.3 ], that the set Pad
is compact in point wise topology τp. �

3. Existence of optimal drift-diffusion-jump triples

Consider the system (1.1) with (F,B,C) ∈ Pad and the objective functional
(1.2). First, we present a result on existence, uniqueness, and regularity prop-
erties of solutions of equation (1.1). For this we introduce the following spaces
of random processes. Throughout the rest of the paper, we let I ≡ [0, T ] de-
note the closed bounded interval and B∞(I,H) the Banach space of H valued
bounded measurable functions endowed with the sup-norm topology. In the
study of stochastic differential equations subject to both Wiener process and
Poisson random process (or Lévy process) we expect the solution trajectories
to have discontinuities of no more than that of the first kind. In order to
include such processes we may introduce the space Ba

∞(I,H) consisting of Ft-
adapted H valued random processes having finite second moments. Here we
introduce the norm topology given by

‖ x ‖≡ sup{
(
E ‖ x(t) ‖2H

)1/2
, t ∈ I}.

With respect to this norm topology, Ba
∞(I,H) is a Banach space.

Theorem 3.1. Consider the system (1.1) and suppose A is the infinitesimal
generator of a C0-semigroup S(t), t ≥ 0, on H with S(t), t > 0, being compact.
Then, for each initial state x0 ∈ L2(F0, H) (having finite second moment)
and each drift-diffusion-jump triple (F,B,C) ∈ Pad, the stochastic differential
equation (1.1) has a unique mild solution x ∈ Ba

∞(I,H).

Proof. The proof is fairly standard. We present a brief outline. Before we
begin we note that, for proof of existence of solution, compactness of the
semigroup S(t), t > 0, is not required. We need it for the next theorem.
Recall that by a mild solution of equation (1.1) we mean the solution of the
corresponding stochastic integral equation,

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (x(s))ds+

∫ t

0
S(t− s)B(x(s))dW (s)

+

∫ t

0

∫
Vδ

S(t− s)C(x(s), ξ)q(dξ × ds), t ∈ I. (3.1)
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The proof is based on Banach fixed point theorem. We present a brief outline.
Define the operator Λ given by

(Λx)(t) = S(t)x0 +

∫ t

0
S(t− s)F (x(s))ds+

∫ t

0
S(t− s)B(x(s))dW (s)

+

∫ t

0

∫
Vδ

S(t− s)C(x(s), ξ)q(dξ × ds), t ∈ I. (3.2)

We show that Λ : Ba
∞(I,H) −→ Ba

∞(I,H). Computing the expected value of
the norm square of the process (Λx)(t) and using Fubini’s theorem and the
properties of Itô integrals we obtain

E ‖ (Λx)(t) ‖2H ≤ 4M2E ‖ x0 ‖2H +4tM2

∫ t

0
E ‖ F (x(s)) ‖2H ds

+4M2

∫ t

0
E ‖ B(x(s))Q1/2 ‖2L(U,H) ds (3.3)

+4M2

∫ t

0
E

(∫
Vδ

‖ C(x(s), ξ) ‖2H π(dξ)

)
ds, t ∈ I.

By virtue of the property (2.3) of C ∈ Ca,b, one can readily verify that∫
Vδ

‖ C(x(s), ξ) ‖2H π(dξ) ≤
(
2

∫
Vδ

a2(ξ)π(dξ)
)
‖ x(s)) ‖2H

+
(
2

∫
Vδ

b2(ξ)π(dξ)
)
. (3.4)

Using the growth and Lipschitz properties (2.1)-(2.3) of the triple (F,B,C) ∈
Pad, in the inequality (3.3) one can verify that

E ‖ (Λx)(t) ‖2H≤ C1(t) + C2(t) sup
{
E ‖ x(s) ‖2H , 0 ≤ s ≤ t

}
, (3.5)

where

C1(t) = 4M2E ‖ x0 ‖2H +8tM2
(
tα2 + t ‖ b ‖2L2(π)

+TrQ
)

and

C2(t) = 8tM2
(
K2[t+ TrQ]+ ‖ a ‖2L2(π)

)
, t ∈ I.

Hence, for x ∈ Ba
∞(I,H), we have

sup{E ‖ (Λx)(t) ‖2H , t ∈ I}
≤ C1(T ) + C2(T ) sup

{
E ‖ x(s) ‖2H , 0 ≤ s ≤ T

}
. (3.6)

Thus it follows from the above inequality that Λx ∈ Ba
∞(I,H) whenever x ∈

Ba
∞(I,H) proving that Λ maps Ba

∞(I,H) to itself. Following similar steps,
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one can verify that

E ‖ (Λx)(t)− (Λy)(t) ‖2H≤ β̃(t)

∫ t

0
E ‖ x(s)− y(s) ‖2H ds, t ∈ I, (3.7)

where
β̃(t) ≡ 4M2

(
tK2 + TrQ+ ‖ a ‖2L2(π)

)
, t ∈ I.

Define
ρ2t (x, y) ≡ sup{E ‖ x(s)− y(s) ‖2H , 0 ≤ s ≤ t}

and
β ≡ β̃(T ) = 4M2

(
TK2 + TrQ+ ‖ a ‖2L2(π)

)
,

and denote ρ2t (x, y) by %t(x, y) for all t ∈ I. Using these notations in the above
inequality we find that

%t(Λx,Λy) ≤ β
∫ t

0
%s(x, y)ds, t ∈ I. (3.8)

Let Λm denote the m-fold composition of the operator Λ. For m = 2, it follows
from the above expression that

%t(Λ
2x,Λ2y) ≤ β

∫ t

0
%s(Λx,Λy)ds ≤ β2

∫ t

0
s%s(x, y)ds

≤ β2(t2/2!)%t(x, y), t ∈ I. (3.9)

Repeating this iterative process m times one finds that

%t(Λ
mx,Λmy) ≤ βm(tm/m!)%t(x, y), t ∈ I,

and hence ρT (Λmx,Λmy) ≤
√
βm(Tm/m!)ρT (x, y). In terms of the norm of

the Banach space Ba
∞(I,H), this inequality is equivalent to the following in-

equality
‖ Λmx− Λmy ‖Ba∞(I,H)≤ γm ‖ x− y ‖Ba∞(I,H),

where γm ≡
√
βm(Tm/m!). It is clear that for m0 ∈ N sufficiently large,

0 < γm0 < 1. Thus Λm0 is a contraction and hence it follows from Banach
fixed point theorem that it has a unique fixed point xo ∈ Ba

∞(I,H). This
implies that the operator Λ itself has xo as the unique fixed point. This
completes the outline of our proof. �

As indicated in the introduction, our objective is to solve the inverse prob-
lem. The problem is to find a drift-diffusion-jump triple (F o, Bo, Co) ∈ Pad
for system (1.1) that minimizes the functional (1.2). The question of existence
of an optimal triple is crucial. Before we consider this problem, we prove the
continuity of the map (F,B,C) −→ x(F,B,C) representing the (mild) solu-
tion of the stochastic differential equation (1.1) corresponding to the triple
(F,B,C). We present this in the following theorem.
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Theorem 3.2. Consider the system (1.1) with the admissible set of drift-
diffusion-jump triples Pad and suppose the assumptions of Theorem 3.1 hold.
Then the solution map (F,B,C) −→ x(F,B,C) is continuous with respect to
the τp topology on Pad and the norm topology on the space Ba

∞(I,H).

Proof. Let (F k, Bk, Ck) ∈ Pad be a generalized sequence such that it converges
to (F o, Bo, Co) ∈ Pad in the τp topology. Let xk ∈ Ba

∞(I,H) be the mild

solution of equation (1.1) corresponding to the triple (F k, Bk, Ck), and xo ∈
Ba
∞(I,H) the mild solution corresponding to the triple (F o, Bo, Co). We show

that xk
s−→ xo in the Banach space Ba

∞(I,H) as the sequence

(F k, Bk, Ck)
τp−→ (F o, Bo, Co).

Clearly, the pair (xk, xo) satisfies the following stochastic integral equations

xk(t) = S(t)x0 +

∫ t

0
S(t− s)F k(xk(s))ds+

∫ t

0
S(t− s)Bk(xk(s))dW (s)

+

∫ t

0

∫
Vδ

S(t− s)Ck(xk(s), ξ)q(dξ × ds), t ∈ I, (3.10)

xo(t) = S(t)x0 +

∫ t

0
S(t− s)F o(xo(s))ds+

∫ t

0
S(t− s)Bo(xo(s))dW (s)

+

∫ t

0

∫
Vδ

S(t− s)Co(xo(s), ξ)q(dξ × ds), t ∈ I. (3.11)

Subtracting equation (3.11) from equation (3.10) term by term we obtain the
following identity

xk(t)−xo(t) =

∫ t

0
S(t− s)[F k(xk(s))− F k(xo(s))]ds

+

∫ t

0
S(t− s)[F k(xo(s))− F o(xo(s))]ds

+

∫ t

0
S(t− s)[Bk(xk(s))−Bk(xo(s))]dW (s)

+

∫ t

0
S(t− s)[Bk(xo(s))−Bo(xo(s))]dW (s) (3.12)

+

∫ t

0

∫
Vδ

S(t− s)[Ck(xk(s), ξ)− Ck(xo(s), ξ)]q(dξ × ds)

+

∫ t

0

∫
Vδ

S(t−s)[Ck(xo(s), ξ)−Co(xo(s), ξ)]q(dξ×ds), t ∈ I.

Computing the expected value of the norm square of the fifth term on the right
hand side of the above expression using the Lipschitz property of the elements



822 N. U. Ahmed

of the set Ca,b and the properties of the compensated Poisson random measure
q and Fubini’s theorem, we obtain

E ‖
∫ t

0

∫
Vδ

S(t− s)[Ck(xk(s), ξ)− Ck(xo(s), ξ)]q(dξ × ds) ‖2H

= E

∫ t

0

∫
Vδ

‖ S(t− s)[Ck(xk(s), ξ)− Ck(xo(s), ξ)] ‖2H π(dξ)ds

≤M2E

∫ t

0

∫
Vδ

‖ Ck(xk(s), ξ)− Ck(xo(s), ξ) ‖2H π(dξ)ds

≤M2 ‖ a ‖2L2(π)

∫ t

0
E ‖ xk(s)− xo(s) ‖2H ds, t ∈ I.

Using this estimate and computing the expected value of the norm square
of the process [xk(t) − xo(t)] given by equation (3.12) and following similar
procedure, we obtain the following inequality

E ‖ xk(t)− xo(t) ‖2H

≤ γ
∫ t

0
E ‖ xk(s)− xo(s) ‖2 ds

+ 8T

∫ t

0
E ‖ S(t− s)[F k(xo(s))− F o(xo(s))] ‖2H ds

+ 8

∫ t

0
E ‖ S(t− s)(Bk(xo(s))−Bo(xo(s)))Q1/2 ‖2L(U,H) ds (3.13)

+ 8

∫ t

0

∫
Vδ

E ‖ S(t− s)[Ck(xo(s), ξ)− Co(xo(s), ξ)] ‖2H π(dξ)ds, t ∈ I,

where γ ≡ 8M2
[
K2(1 + TrQ)+ ‖ a ‖2L2(π)

]
. Define

ek1(t) ≡ 8T

∫ t

0
E ‖ S(t− s)[F k(xo(s))− F o(xo(s))] ‖2H ds, t ∈ I, (3.14)

ek2(t) ≡ 8

∫ t

0
E ‖ S(t− s)[Bk(xo(s))−Bo(xo(s))]Q1/2 ‖2L(U,H) ds

= 8

∫ t

0

∑
λiE ‖ S(t−s)[Bk(xo(s))−Bo(xo(s))]ei ‖2H ds, t ∈ I, (3.15)

ek3(t) ≡ 8

∫ t

0

∫
Vδ

E ‖ S(t− s)[Ck(xo(s), ξ)− Co(xo(s), ξ)] ‖2H π(dξ)ds, t ∈ I.

(3.16)
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and

ϕk(t) ≡ E ‖ xk(t)− xo(t) ‖2H , t ∈ I, (3.17)

ek(t) ≡ ek1(t) + ek2(t) + ek3(t), t ∈ I. (3.18)

Using the expressions (3.17) and (3.18) in the inequality (3.13) we obtain the
following inequality

ϕk(t) ≤ γ
∫ t

0
ϕk(s)ds+ ek(t), t ∈ I. (3.19)

It follows from Grönwall inequality applied to the expression (3.19) that

ϕk(t) ≤ ek(t) + γ

∫ t

0
{exp γ(t− s)}ek(s)ds, t ∈ I. (3.20)

Considering the expression (3.14), and recalling that F k
τw−→ F o point wise

in H and the semigroup S(t), t > 0, is compact, it is easy to verify that the
integrand (within the norm symbol) of the expression for ek1(t) converges to
zero strongly in H for almost all s ∈ [0, t), P -almost surely and for every
t ∈ I. Further, using the growth and Lipschitz properties of the elements of
the set Fα,K , one can verify that the H-norm of the integrand is dominated
by an integrable random process. Thus it follows from Lebesgue dominated
convergence theorem that ek1(t) converges to zero for each t ∈ I. Considering

the expression (3.15) for ek2(t), we note that Bk τwo−→ Bo (in the weak operator
topology of L(U,H)) point wise, and the semigroup S(t), t > 0, is compact.
Thus each component of the integrand within the norm symbol for the process
ek2(t) converges strongly to zero in H for almost all s ∈ [0, t) P -a.s and each
t ∈ I. Recall that the operator Q(∈ L(U)) is positive nuclear and hence the
sum

∑
λi < ∞. Further, note that all of the components of the integrand

are dominated by a single integrable random process and thus, by dominated
convergence theorem, the integral of the sum converges to zero for each t ∈ I.
Hence, ek2(t) −→ 0 for each t ∈ I. Considering the third component ek3(t) for

any t ∈ I, we recall that Ck
τw−→ Co in H point wise on X. Thus again, by

virtue of compactness of the semigroup, we conclude that the norm of the
integrand converges strongly in H. Since xo ∈ Ba

∞(I,H) it follows from the
properties (i) and (ii) of the set Ca,b that the integrand is dominated by a square
integrable random process. Hence, again by dominated convergence theorem,
it follows from the expression (3.16) that ek3(t) −→ 0 for each t ∈ I. Since
ek(t), given by the expression (3.18), is uniformly bounded on I and converges
to zero for each t ∈ I, it follows from Lebesgue bounded convergence theorem
that the integral in the expression (3.20) converges to zero. Thus it follows
from the inequality (3.20) that ϕk(t) → 0 uniformly on I. This proves the
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continuity of the map (F,B,C) −→ x(F,B,C) from Pad to Ba
∞(I,H) in their

respective topologies. This completes the proof. �

Remark 3.3. For proof of convergence in the strong (norm) topology, we
have used in the above theorem the compactness property of the semigroup
S(t) for t > 0. This is easily verified by following the same technique as seen
in [3, Theorem 4.4, p.3180]. Since similar technique applies to {ek1, ek2} also,
we demonstrate this for the component {ek3} only. For any t ∈ (0, T ] and for
any 0 < ε < t, we rewrite the expression (3.16) as follows:

ek3(t) ≡ 8

∫
[0,t]×Vδ

E ‖ S(t− s)[Ck(xo(s), ξ)− Co(xo(s), ξ)] ‖2H π(dξ)ds

= 8

∫
[0,t−ε]×Vδ

E||S(ε)
{
S(t− ε− s)[Ck(xo(s), ξ)− Co(xo(s), ξ)]

}
||2Hπ(dξ)ds

+ 8

∫ t

t−ε

∫
Vδ

E ‖S(t−s)[Ck(xo(s), ξ)−Co(xo(s), ξ)] ‖2H π(dξ)ds, t ∈ I.

Since Ck
τw−→ Co in H point wise, the term within the curly bracket converges

to zero weakly inH for almost all s ∈ I, P-a.s and the operator S(ε) is compact,
it follows from the arguments given in the proof that the first integral on the
righthand side converges to zero as k → ∞. Using the growth properties of
Ca,b and recalling that xo ∈ Ba

∞(I,H), one can easily verify that the second
term satisfies the following inequality,

8

∫ t

t−ε

∫
Vδ

E ‖ S(t− s)[Ck(xo(s), ξ)− Co(xo(s), ξ)] ‖2H π(dξ)ds

≤ 32M2

(
‖ b ‖2L2(π)

+ ‖ a ‖2L2(π)
‖ xo ‖2B∞(I,H)

)
ε.

Thus our conclusion stating that ek3(t) converges to zero point wise on I is
verified.

Now we are prepared to prove existence of optimal drift-diffusion-jump
triple.

Theorem 3.4. Consider the system (1.1) with the objective functional (1.2)
and admissible set of drift-diffusion-jump triples Pad. Suppose the assumptions
of Theorem 3.2 hold and that ` is a real valued Borel measurable function on
I×H and lower semi-continuous in the second variable, and Φ is also a Borel
measurable real valued function and lower semi-continuous on H satisfying the
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following growth properties:

|`(t, x)| ≤ α1(t) + α2 ‖ x ‖2H , (3.21)

|Φ(x)| ≤ α3 + α4 ‖ x ‖2 (3.22)

for α1 ∈ L+
1 (I), and α2, α3, α4 > 0. Then there exists an optimal triple

(F o, Bo, Co) ∈ Pad that minimizes the cost functional (1.2).

Proof. Since the set Pad is compact in the point wise topology, it suffices to
show that J is lower semicontinuous in this topology. Let (F k, Bk, Ck) ∈ Pad
be a generalized sequence converging to (F o, Bo, Co) ∈ Pad in the point wise
topology. Let (xk, xo) ∈ Ba

∞(I,H) denote the corresponding mild solutions of

equation (1.1). It follows from the continuity Theorem 3.2 that xk
s−→ xo in

Ba
∞(I,H). Since ` is lower semicontinuous in the state variable it is clear that

`(t, xo(t)) ≤ lim
k→∞

`(t, xk(t)) for a.e t ∈ I, P − a.s. (3.23)

The elements of Pad have at most linear growth and therefore the solutions
{(xk, xo)} are contained in a bounded subset of Ba

∞(I,H). Thus it follows
from the growth property of ` as described by the inequality (3.21), that
`(t, xk(t)), t ∈ I, is dominated from bellow by an integrable random process.
Hence by virtue of generalized Fatou’s Lemma we conclude that

E

∫ T

0
`(t, xo(t))dt ≤ E

∫ T

0
lim
k→∞

`(t, xk(t))dt ≤ lim
k→∞

E

∫ T

0
`(t, xk(t))dt.

(3.24)

Since Φ is also lower semicontinuous on H and has the growth property (3.22),
it follows from similar argument that

EΦ(xo(T )) ≤ E lim
k→∞

Φ(xk(T )) ≤ lim
k→∞

EΦ(xk(T )). (3.25)

Sum of lower semi continuous functionals is lower semi continuous. Thus by
adding (3.24) and (3.25) we obtain

J(F o, Bo, Co) ≤ lim
k→∞

J(F k, Bk, Ck)

proving lower semicontinuity of J on Pad in the point wise topology τp. Hence
it follows from compactness of the set Pad that J attains its minimum on Pad.
This completes the proof of existence of an optimal drift-diffusion-jump triple
as stated. �

Remark 3.5. The results presented above also hold for drift-diffusion-jump
triples which are functions of both time and space {F (t, x), B(t, x), C(t, x, ξ)}
under the assumption that the family of functions {Fα,K ,Bα,K , Ca,b} satisfy
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the properties (2.1),(2.2) and (2.3) and that they are also uniformly Hölder
continuous exponent 0 < θ < 1 in t ∈ I.

4. Necessary conditions of optimality

In this section we present the necessary conditions of optimality character-
izing the optimal drift-diffusion-jump triple whereby one can determine the
optimal triple from the admissible class Pad and hence construct the stochas-
tic dynamic model. We recall that Ba

∞(I,H) ⊂ La∞(I, L2(Ω, H)) denotes the
space of Ft-adapted L2(Ω, H) valued norm bounded measurable processes de-
fined on I. Similarly, Ba

∞(I,L(U,H)) ⊂ La∞(I, L2(Ω,L(U,H))) denotes the
space of Ft-adapted L2(Ω,L(U,H)) valued norm bounded measurable pro-
cesses on I. For convenience of notation we use {DF,DB,DC} to denote
respectively the Gâteaux differentials (directional derivatives) of {F,B,C} in
the state variable x ∈ H. Throughout the rest of the paper we assume that the
initial state x0, the Wiener process W, and the compensated Poisson random
measure q are mutually stochastically independent.

Theorem 4.1. Consider the system given by equation (1.1) with (F,B,C) ∈
Pad and the cost functional given by (1.2). Suppose the assumptions of The-
orem 3.4 hold and that the elements of Pad are once continuously Gâteaux
differentiable in the state variable with the derivatives uniformly bounded.
Then, in order for the triple (F o, Bo, Co) ∈ Pad with the corresponding so-
lution xo ∈ Ba

∞(I,H) to be optimal, it is necessary that there exists a triple
(ψ,Ξ, ϕ) ∈ Ba

∞(I,H)×La∞(I,L(U,H))×La∞(I×V,H) satisfying the inequality
(4.1) and the stochastic adjoint and state differential equations (4.2)-(4.3) as
presented below:

E

∫
I
< F (xo)− F o(xo), ψ >H dt+ E

∫
I
Tr[(B(xo)−Bo(xo)) Q Ξ∗]dt

+ E

∫
I

∫
Vδ

< C(xo, ξ)− Co(xo, ξ), ϕ >H π(dξ)dt ≥ 0

≥ 0, ∀ (F,B,C) ∈ Pad, (4.1)

where Ξ(t) ≡ −DBo(xo(t);ψ(t)) and ϕ(t, ξ) ≡ −(DCo(xo(t), ξ))∗ψ(t), (t, ξ) ∈
I×Vδ, with {DBo, DCo} denoting the Gâteaux derivatives of {Bo, Co} with re-
spect to the state variable evaluated at xo. The function ψ denotes the solution
of the following adjoint equation,

−dψ = A∗ψdt+ (DF o(xo(t)))∗ψdt+ V1(x
o(t))ψdt+ V2(x

o(t))ψdt

+ `x(t, xo(t))dt+DBo(xo(t);ψ(t))dW

+

∫
Vδ

(DCo(xo, ξ))∗ψq(dξ×dt) (4.2)
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for t ∈ I, ψ(T ) = Φx(xo(T )), where V1(x
o(t)), t ∈ I, is a non-positive sym-

metric L(H) (bounded linear operators in H) valued random process following
from the bilinear form

−Tr
(
DBo(xo; y)Q(DBo(xo;ψ))∗

)
≡< V1(x

o)y, ψ >;

and V2(x
o(t)), t ∈ I, is another non-positive symmetric L(H) valued random

process given by the bilinear form

−
∫
Vδ

< DCo(xo, ξ)y, (DCo(xo, ξ))∗ψ >≡< V2(x
o(t))y, ψ >

with xo ∈ Ba
∞(I,H) being the solution of the sate equation

dxo = Axodt+ F o(xo)dt+Bo(xo)dW +

∫
Vδ

Co(xo, ξ)q(dξ × dt) (4.3)

for t ∈ I, xo(0) = x0.

Proof. Let (F o, Bo, Co) ∈ Pad be the optimal drift-diffusion-jump triple with
the corresponding (mild) solution of equation (1.1) denoted by xo ∈ Ba

∞(I,H).
Let (F,B,C) ∈ Pad be an arbitrary element and ε ∈ [0, 1]. Define the triple
(F ε, Bε, Cε) as follows

F ε ≡ F o+ε(F−F o), Bε = Bo+ε(B−Bo), Cε = Co+ε(C−Co), ε ∈ [0, 1].

It follows from convexity of the set Pad that (F ε, Bε, Cε) ∈ Pad, and by virtue
of optimality of the triple (F o, Bo, Co), we have

J(F ε, Bε, Cε) ≥ J(F o, Bo, Co), ∀ ε ∈ [0, 1]. (4.4)

Let xε ∈ Ba
∞(I,H) denote the (mild) solution of equation (1.1) correspond-

ing to the triple (F ε, Bε, Cε). Clearly, the processes {xε, xo} satisfy respectively
the following stochastic integral equations,

xε(t) = S(t)x0 +

∫ t

0
S(t− s)F ε(xε(s))ds+

∫ t

0
S(t− s)Bε(xε(s))dW (s)

+

∫ t

0

∫
Vδ

S(t− s)Cε(xε(s), ξ)q(dξ × ds), t ∈ I, (4.5)

xo(t) = S(t)x0 +

∫ t

0
S(t− s)F o(xo(s))ds+

∫ t

0
S(t− s)Bo(xo(s))dW (s)

+

∫ t

0

∫
Vδ

S(t− s)Co(xo(s), ξ)q(dξ × ds), t ∈ I (4.6)

and they are elements of Ba
∞(I,H). Clearly (F ε, Bε, Cε)

τp−→ (F o, Bo, Co) and

hence it follows from Theorem 3.2 that xε
s−→ xo in Ba

∞(I,H). As justified
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below, the process y given by the following limit

y(t) = lim
ε↓0

(1/ε)(xε(t)− xo(t)), t ∈ I,

exists and belongs to Ba
∞(I,H). Subtracting equation (4.6) from equation (4.5)

term by term and dividing by ε and letting ε ↓ 0 one can easily verify that y
satisfies the following stochastic integral equation,

y(t) =

∫ t

0
S(t− s)DF o(xo(s))y(s)ds

+

∫ t

0
S(t− s)[F (xo(s))− F o(xo(s))]ds

+

∫ t

0
S(t− s)DBo(xo(s); y(s))dW (s)

+

∫ t

0
S(t− s)[B(xo(s))−Bo(xo(s))]dW (s) (4.7)

+

∫ t

0

∫
Vδ

S(t− s)DCo(xo(s), ξ)y(s)q(dξ × ds)

+

∫ t

0

∫
Vδ

S(t− s)[C(xo(s), ξ)− Co(xo(s), ξ)]q(dξ × ds), t ∈ I,

where for any x, z ∈ H, DF o(x)z denotes the Gâteaux differential of F o

evaluated at x in the direction z with DF o(x) ∈ L(H), and DBo(x; z) de-
notes the Gâteaux differential of Bo evaluated at x in the direction z with
DBo(x, ·) ∈ L(H,L(U,H)), and similarly, for any ξ ∈ Vδ, DCo(x, ξ))z denotes
the Gâteaux differential of Co evaluated at x ∈ H in the direction z ∈ H
with DCo(x, ξ) ∈ L(H). By assumption these Gâteaux derivatives are uni-
formly bounded in x ∈ H. It follows from the integral equation (4.7) that y is
the mild solution (if one exists) of the following linear stochastic differential
equation on H,

dy = Aydt+DF o(xo(t))y(t)dt+DBo(xo(t); y(t))dW (t)

+

∫
Vδ

DCo(xo(t), ξ))y(t)q(dξ × dt) + dMF,B,C
t ,

y(0) = 0, t ∈ I, (4.8)

driven by the (semimartingale) process MF,B,C ≡ {MF,B,C
t , t ∈ I} which is

given by

dMF,B,C
t = [F (xo(t))− F o(xo(t))]dt+ [B(xo(t))−Bo(xo(t))]dW (t)

+

∫
Vδ

[C(xo(t), ξ)− Co(xo(t), ξ)]q(dξ × dt), t ∈ I. (4.9)
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Let SM2 denote the Hilbert space of norm square integrable H valued Ft-
adapted semi martingales {Mt, t ≥ 0} starting from the origin, that is M0 = 0.
Since (F,B,C), (F o, Bo, Co) ∈ Pad and xo ∈ Ba

∞(I,H), it is straightforward
to verify that the drift (vector) [F (xo(·))−F o(xo(·))], the diffusion (operator)
[B(xo(·))−Bo(xo(·))], and the jump kernel [C(xo(·), ξ))−Co(xo(·), ξ)], ξ ∈ Vδ,
are norm square integrable Ft-adapted random processes. Hence MF,B,C ∈
SM2 and therefore, as a special case, it follows from Theorem 3.1 that equation
(4.8) has a unique mild solution y ∈ Ba

∞(I,H). Thus MF,B,C −→ y is a
bounded linear map, denoted by Υ, from the Hilbert space SM2 to the Banach
space Ba

∞(I,H) and hence continuous. We denote this by y = Υ(MF,B,C).
Using the inequality (4.4) and dividing the following expression,

J(F ε, Bε, Cε)− J(F o, Bo, Co) ≥ 0, ∀ ε ∈ [0, 1],

by ε and letting ε ↓ 0 we obtain the Gâteaux differential of J at (F o, Bo, Co) ∈
Pad in the direction (F−F o, B−Bo, C−Co) satisfying the following inequality,

dJ((F o, Bo, Co), (F − F o, B −Bo, C − Co))

= E

{∫ T

0
< `x(t, xo(t)), y(t) >H dt+ < Φx(xo(T )), y(T ) >H

}
≥ 0

for all (F,B,C) ∈ Pad. (4.10)

For notational convenience, we introduce the following linear functional:

L(y) ≡ E

{∫ T

0
< `x(t, xo(t)), y(t) >H dt+ < Φx(xo(T )), y(T ) >H

}
. (4.11)

Since `x(·, xo(·)) ∈ La1(I, L2(Ω, H)), y ∈ Ba
∞(I,H) ⊂ La∞(I, L2(Ω, H)), and

Φx(xo(T )) ∈ L2(Ω,FT , H) and y(T ) ∈ L2(Ω,FT , H), we conclude that y −→
L(y) is a continuous linear functional on Ba

∞(I,H). Hence it follows from the

above analysis that the functional L̃, given by the composition map

MF,B,C −→ y −→ L(y) = (L ◦Υ)(MF,B,C) ≡ L̃(MF,B,C), (4.12)

is a continuous linear functional on the Hilbert space of semi martingales SM2.
Thus it follows from representation of Hilbert space valued semimartingales
and Riesz representation theorem for Hilbert spaces that there exists a triple

{ψ,Ξ, ϕ} ∈ La2(I, L2(Ω, H))× La2(I, L2(Ω,L(U,H)))× La2(I, L2(π, L2(Ω, H)))

such that
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L̃(MF,B,C) = E

∫ T

0
< F (xo(s))− F o(xo(s)), ψ(s) >H ds

+ E

∫ T

0
Tr{(B(xo(s))−Bo(xo(s)))QΞ∗(s)}ds (4.13)

+ E

∫ T

0

∫
Vδ

< C(xo(s), ξ)− Co(xo(s), ξ), ϕ(s, ξ) >H π(dξ)ds.

Hence, it follows from (4.10),(4.11),(4.12) and (4.13)that

dJ((F o, Bo, Co); (F − F o, B −Bo, C − Co))

= E

∫ T

0
< F (xo(s))− F o(xo(s)), ψ(s) > ds

+ E

∫ T

0
Tr[(B(xo(s))−Bo(xo(s))) Q Ξ∗(s)]ds (4.14)

+ E

∫ T

0

∫
Vδ

< C(xo(s), ξ)− Co(xo(s), ξ), ϕ(s, ξ) > π(dξ)ds

≥ 0

for all (F,B,C) ∈ Pad. This proves the necessary condition (4.1). We show
that the triple (ψ,Ξ, ϕ) is given by the solution of the adjoint equation (4.2).
Since y ∈ Ba

∞(I,H) ⊂ La2(I, L2(Ω, H)) and ψ ∈ La2(I, L2(Ω, H)), the scalar
product < y,ψ > is well defined for almost all t ∈ I, P − a.s. Computing the
Itô differential of this scalar product we have

d < y, ψ >=< dy, ψ > + < y, dψ > + << dy, dψ >>, (4.15)

where the third component on the right hand side of the above equation de-
notes the quadratic variation term. Using the stochastic variational equation
(4.8) in the first term on the right hand side of the above expression we obtain

< dy, ψ > + < y, dψ >

=< Aydt+DF o(xo)ydt+DBo(xo; y)dW,ψ >

+ <

∫
Vδ

DCo(xo, ξ)yq(dξ × dt), ψ >

+ < dMF,B,C , ψ > + < y, dψ >

=< y, dψ +A∗ψdt+ (DF o(xo))∗ψdt+DBo(xo;ψ)dW >

+ < y,

∫
Vδ

(DCo(xo, ξ))∗ψq(dξ × dt) > + < ψ, dMF,B,C > . (4.16)

In order to consider the quadratic variation term in equation (4.15), let us
note that the variational equation for y given by (4.8)-(4.9) contains (the sum
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of) four martingale terms as follows,

DBo(xo; y)dW + [B(xo)−Bo(xo)]dW

+

∫
Vδ

DCo(xo, ξ)yq(dξ × dt) +

∫
Vδ

[C(xo, ξ)− Co(xo, ξ)]q(dξ × dt).

In contrast, it is clear from the expression (4.16) that the equation for ψ
contains at most the sum of two martingale terms given by

−DBo(xo;ψ)dW −
∫
Vδ

(DCo(xo, ξ))∗ψq(dξ × dt).

Hence the quadratic variation term is given by

<< dy, dψ >>=<< dy, dψ >>1 + << dy, dψ >>2

where the first term corresponds to the Wiener martingale and the second
term corresponds to the martingale generated by the Lévy (poisson) jump
process. Integrating the first term of the quadratic variation we obtain,

E

∫
I
<< dy, dψ >>1

= −E
∫
I
<< DBo(xo; y)dW + [B(xo)−Bo(xo)]dW,DBo(xo, ψ)dW >>

= −E
∫
I
Tr{(DBo(xo; y))Q(DBo(xo;ψ))∗}dt

−E

∫
I
Tr{[B(xo)−Bo(xo)]Q[DBo(xo;ψ)]∗}dt (4.17)

≡ E

∫
I

{
< y, V1(x

o)ψ > −Tr{[B(xo)−Bo(xo)]Q[DBo(xo;ψ)]∗}
}
dt.

Note that V1(x
o(t)), t ∈ I, is a non-positive symmetric L(H) valued es-

sentially norm bounded random process following from the first component
of the above quadratic variation. Similarly, integrating the second quadratic
variation we obtain,

E

∫
I
<< dy, dψ >>2

= −E
∫
I

∫
Vδ

< DCo(xo, ξ)y, (DCo(xo, ξ))∗ψ > π(dξ)dt

−E

∫
I

∫
Vδ

< C(xo, ξ)− Co(xo, ξ), (DCo(xo, ξ))∗ψ > π(dξ)dt
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≡ E

∫
I
< y, V2(x

o(t))ψ > dt

−E

∫
I

∫
Vδ

< C(xo, ξ)− Co(xo, ξ), (DCo(xo, ξ))∗ψ > π(dξ)dt, (4.18)

where V2(x
o(t)), t ∈ I, is a non-positive symmetric L(H) valued essentially

norm bounded random process following from the first component of the above
quadratic variation term. Integrating the expression (4.15) and substituting
the expressions (4.16), (4.17) and (4.18) we arrive at the following expression

E

∫
I
d < y, ψ >

= E

∫
I
< y,

{
dψ +A∗ψdt+ (DF o(xo))∗ψdt+ [V1(x

o) + V2(x
o(t))]ψdt

}
>

+ E

∫
I
< y,

{
DBo(xo;ψ)dW +

∫
Vδ

(DCo(xo, ξ))∗ψq(dξ, dt)
}
>

+ E

∫
I

{
< ψ, dMF,B,C > −Tr{[B(xo)−Bo(xo)]Q(DBo(xo;ψ))∗}dt

}
−E

∫
I

∫
Vδ

< C(xo, ξ)− Co(xo, ξ), (DCo(xo, ξ))∗ψ > π(dξ)dt. (4.19)

Then setting

dψ +A∗ψdt+ (DF o(xo))∗ψdt+ [V1(x
o) + V2(x

o)]ψdt

+DBo(xo;ψ)dW +

∫
Vδ

(DCo(xo, ξ))∗ψq(dξ, dt)

= −`x(t, xo)dt, t ∈ I, (4.20)

in the expression (4.19) we obtain

E

∫
I
d < y, ψ >

= −E
∫
I
< y, `x(t, xo)dt > +E

∫
I
< ψ, dMa,b,c >

−E

∫
I
Tr{[B(xo)−Bo(xo)]Q(DBo(xo;ψ))∗}dt

−E

∫
I

∫
Vδ

< C(xo, ξ)− Co(xo, ξ), (DCo(xo, ξ))∗ψ > π(dξ)dt. (4.21)

Next, using the identity (4.9) (characterizing the semi martingale MF,B,C) in
the above expression and integrating we obtain
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E < y(T ), ψ(T ) > +E

∫ T

0
< y(t), `x(t, xo(t)) > dt

= E

∫ T

0

{
< ψ, [F (xo)− F o(xo)] >

− Tr
(
[B(xo)−Bo(xo)]Q[DBo(xo;ψ)]∗

)
−
∫
Vδ

< [C(xo, ξ)− Co(xo, ξ)], (DCo(xo, ξ))∗ψ > π(dξ)

}
dt

+ E

∫ T

0
< ψ, [B(xo(t))−Bo(xo(t))]dW (t) >

+ E

∫ T

0

∫
Vδ

< ψ, [C(xo, ξ)− Co(xo, ξ)] > q(dξ × dt). (4.22)

Using stopping time argument one can verify that the last two stochastic
integrals in equation (4.22) vanish. Hence, for ψ(T ) = Φx(xo(T )), the identity
(4.22) reduces to the following one,

E < y(T ),Φx(xo(T )) > +E

∫ T

0
< y(t), `x(t, xo(t)) > dt

= E

∫ T

0

{
< ψ, [F (xo)− F o(xo)] > −Tr

(
[B(xo)−Bo(xo)]Q[DBo(xo;ψ)]∗

)
−
∫
Vδ

< [C(xo, ξ)− Co(xo, ξ)], [(DCo(xo, ξ))∗ψ] > π(dξ)

}
dt. (4.23)

Taking
Ξ(t) ≡ −DBo(xo(t);ψ(t)), t ∈ I,

ϕ(t, ξ) ≡ −(DCo(xo(t), ξ))∗ψ, (t, ξ) ∈ I × Vδ,
and using this in the above expression, it is easy to see that the right hand
member equals L̃(MF,B,C) as seen in equation (4.13), while the left hand
member equals L(y) as seen in the expression (4.11), thereby satisfying the
required identity (4.12). As seen above in the expression (4.14), this gives
the necessary condition (4.1). Thus equation (4.20) with the terminal condi-
tion ψ(T ) = Φx(xo(T )) is a necessary condition. Hence equation (4.2), being
identical to equation (4.20) with the terminal condition as stated above, is
a necessary condition giving the adjoint equation. Necessary condition (4.3)
needs no proof since it is the system equation (1.1) corresponding to the op-
timal drift-diffusion-jump triple (F o, Bo, Co) with xo being the corresponding
solution. This proves all the necessary conditions of optimality. �

Remark 4.2. Let us note that Remark 3.5 also holds for the necessary con-
ditions of optimality given by the above theorem.
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5. Convergence of numerical algorithm

Here we present an algorithm whereby one can construct the optimal drift-
diffusion-jump triple.

Proposition 5.1. Suppose the assumptions of Theorem 4.1 hold. Then there
exists (and one can construct) a sequence {(F k, Bk, Ck)} ∈ Pad along which
the corresponding sequence of values of the cost functional {J(F k, Bk, Ck)}
converges monotonically to a (possibly) local minimum.

Proof. We will divide the proof into five steps.

(Step 1): Choose a triple (F 1, B1, C1) ∈ Pad and consider the system equa-
tion (4.3) with (F o, Bo, Co) replaced by the triple (F 1, B1, C1) and let x1

denote the corresponding solution.

(Step 2): Use the quadruple (F 1, B1, C1, x1) in place of (F o, Bo, Co, xo) in
the adjoint equation (4.2) with V1(x

1(t)) and V2(x
1(t)) given by

< V1(x
1(t))η1, η2 >

= −Tr
{
DB1(x1; η1)Q(DB1(x1; η2))

∗}, for η1, η2 ∈ H, t ∈ I,

< V2(x
1(t))η1, η2 >

= −
∫
Vδ

< DC1(x1, ξ)η1, (DC
1(x1, ξ))∗η2 > π(dξ), for η1, η2 ∈ H, t ∈ I,

and solve this adjoint equation for ψ1. Then define

Ξ(t) = Ξ1(t) ≡ −DB1(x1(t);ψ1(t)), t ∈ I,
ϕ(t, ξ) = ϕ1(t, ξ) = −(DC1(x1(t), ξ))∗ψ1(t), (t, ξ) ∈ I × Vδ.

This step yields the septuple (F 1, B1, C1, x1, ψ1,Ξ1, ϕ1).

(Step 3): At this step, replace the septuple (F o, Bo, Co, xo, ψo,Ξo, ϕo) by the
septuple (F 1, B1, C1, x1, ψ1,Ξ1, ϕ1) in the inequality (4.1) giving

E

∫ T

0
< F (x1(t))− F 1(x1(t)), ψ1(t) > dt

+ E

∫ T

0
Tr
{

(B(x1(t))−B1(x1(t)))QΞ1(t)∗
}
dt

+ E

∫
I×Vδ

< [C(x1(t), ξ)− C1(x1(t), ξ)], ϕ1(t, ξ)π(dξ)dt

≥ 0, ∀ (F,B,C) ∈ Pad. (5.1)

If this inequality holds then the septuple (F 1, B1, C1, x1, ψ1,Ξ1, ϕ1) is opti-
mal. Since an arbitrary choice of the triple (F 1, B1, C1) is not expected to be
optimal we must ignore this and proceed to the next step.
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(Step 4): Here we choose a new triple (F 2, B2, C2) as follows

F 2 ≡ F 1 − εψ1, B2 ≡ B1 − εΞ1, C2 = C1 − εϕ1, (5.2)

where ε > 0 is chosen sufficiently small so that (F 2, B2, C2) ∈ Pad. Then the
Gâteaux differential of the cost functional J evaluated at (F 1, B1, C1) in the
direction −(ψ1,Ξ1, ϕ1) with step size ε > 0 is given by

dJ((F 1, B1, C1);−ε(ψ1,Ξ1, ϕ1)) = −εE
∫ T

0
‖ ψ1(t) ‖2 dt

− εE
∫ T

0
Tr(Ξ1(t)Q(Ξ1(t))∗)dt

− εE
∫
I×Vδ

‖ ϕ1(t, ξ) ‖2H π(dξ)dt. (5.3)

For notational convenience, let us define

G(ψ1,Ξ1, ϕ1) ≡ E

∫ T

0
‖ ψ1(t) ‖2H dt+ E

∫ T

0
Tr(Ξ1(t)Q(Ξ1(t))∗)dt

+ E

∫
I×Vδ

‖ ϕ1(t, ξ) ‖2H π(dξ)dt. (5.4)

Using Lagrange formula and the expressions (5.3) and (5.4), the cost functional
evaluated at (F 2, B2, C2) can be written as follows:

J(F 2, B2, C2) = J(F 1, B1, C1)− εG(ψ1,Ξ1, ϕ1) + o(ε). (5.5)

It is clear from the above expression that for ε > 0 sufficiently small

J(F 1, B1, C1) ≥ J(F 2, B2, C2).

(Step 5): Returning to (step1) with the triple (F 2, B2, C2) and repeating the
process, one generates the sequence {(F k, Bk, Ck)}k≥1 and the corresponding
sequence of values of J given by {J(F k, Bk, Ck)}k≥1 that satisfies the following
train of inequalities,

J(F 1, B1, C1) ≥ J(F 2, B2, C2)

...

≥ J(F k, Bk, Ck) ≥ J(F k+1, Bk+1, Ck+1) · · · .

Further, it follows from the assumptions of Theorem 3.4, in particular
(3.21)-(3.22), and the growth properties (2.1)-(2.3) that

inf{J(F,B,C), (F,B,C) ∈ Pad} > −∞.
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Thus the sequence {J(F k, Bk, Ck)}k≥1 is a monotone decreasing sequence
bounded away from −∞ and hence it converges possibly to a local minimum.
This completes the proof. �

Remark 5.2. It is interesting note that the admissible set Pad can be eas-
ily expanded by increasing any of the parameters {α,K} and the functions

{a, b ∈ L+
2 (π)}. For example, if {α ≤ α̃,K ≤ K̃} and {a ≤ ã, b ≤ b̃ ∈

L+
2 (π) point wise π − a.e on Vδ}, then Pad ⊆ P̃ad. Hence we expect the fol-

lowing inequality to hold,

inf{J(F,B,C), (F,B,C) ∈ P̃ad} ≤ inf{J(F,B,C), (F,B,C) ∈ Pad},
thereby increasing the possibility of further improvement if desired.

Open Problem: It would be interesting to extend the results of this paper
to general Banach spaces.
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