Nonlinear Functional Analysis and Applications Vol. 18, No. 1 (2013), pp. 85-102

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright $\@ifnextchar[{\@model{Copyright}}]{\@model{Copyright}}$ Kyungnam University Press

DOUBLE GAI SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS

Kuldip Raj¹, Seema Jamwal² and Sunil K. Sharma³

1,2School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, INDIA e-mail: kuldeepraj68@rediffmail.com

³Department of Mathematics Model Institute of Engineering & Technology Jammu-181122, J&K, INDIA e-mail: sunilksharma42@yahoo.co.in

Abstract. In the present paper we introduce some double gai sequence spaces defined by a sequence of modulus functions $F = (f_{kl})$. We also study some topological properties and prove some inclusion relations between these spaces.

1. Introduction

The initial work on double sequences is found in Bromwich [6]. Later on, it was studied by Hardy [8], Moricz [12], Moricz and Rhoades [13], Tripathy [28, 29], Başarır and Sonalcan [4] and many others. Hardy [8] introduced the notion of regular convergence for double sequences. Quite recently, Zeltser [31] in her Ph.D thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [16] have recently introduced the statistical convergence and Cauchy convergence for double sequences and given the relation between statistical convergent and strongly Cesaro summable double sequences. Nextly, Mursaleen [15] and Mursaleen and Edely [17] have defined the almost strong regularity of matrices for double sequences and applied these

 $^{^0\}mathrm{Received}$ October 11, 2012. Revised January 25, 2013.

 $^{^02000}$ Mathematics Subject Classification: 40A05, 40C05, 40D05.

 $^{^0\}mathrm{Keywords}\colon$ Double sequence, difference sequence space, modulus function, solid, monotone.

matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x=(x_{kl})$ into one whose core is a subset of the M-core of x. By the convergence of a double sequence we mean the convergence in the Pringsheim sense i.e. a double sequence $x=(x_{kl})$ has Pringsheim limit L (denoted by $P-\lim x=L$) provided that given $\epsilon>0$ there exists $n\in N$ such that $|x_{kl}-L|<\epsilon$ whenever k,l>n see [17]. We shall write more briefly as P-convergent. The four dimensional matrix transformation $(Ax)_{kl}=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}a_{kl}^{mn}x_{kl}$ was studied extensively by Robison [22]. In their work and throughout this paper, the four dimensional matrices and double sequences have real-valued entries unless specified otherwise. The double sequence $x=(x_{kl})$ is bounded if there exists a positive number M such that $|x_{kl}|< M$ for all k and l.

The notion of difference sequence spaces was introduced by Kızmaz [10], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et. and Çolak [7] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Let w be the space of all complex or real sequences $x = (x_k)$ and let r be non-negative integer, then for $Z = l_{\infty}$, c, c_0 we have sequence spaces

$$Z(\Delta^r) = \{ x = (x_k) \in w : (\Delta^r x_k) \in Z \},$$

where $\Delta^r x = (\Delta^r x_k) = (\Delta^{r-1} x_k - \Delta^{r-1} x_{k+1})$ and $\Delta^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta^r x_k = \sum_{w=0}^r (-1)^w \begin{pmatrix} r \\ w \end{pmatrix} x_{k+w}.$$

Taking r = 1, we get the spaces which were introduced and studied by Kızmaz [10].

A modulus function is a function $f:[0,\infty)\to[0,\infty)$ such that

- (1) f(x) = 0 if and only if x = 0,
- (2) $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,
- (3) f is increasing,
- (4) f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{x}{x+1}$, then f(x) is bounded. If $f(x) = x^p$, 0 , then the modulus <math>f(x) is unbounded. For more details about modulus function and sequence spaces we may refer to [2, 3, 11, 14, 19, 20, 21] and references therein.

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- (1) $p(x) \ge 0$, for all $x \in X$,
- (2) p(-x) = p(x), for all $x \in X$,
- (3) $p(x+y) \le p(x) + p(y)$, for all $x, y \in X$,
- (4) if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [30] Theorem 10.4.2, P-183).

Definition 1.1. Let p,q be semi norms on a vector space X. Then p is said to be stronger than q if whenever (x_{mn}) is a sequence such that $p(x_{mn}) \to 0$, then $q(x_{mn}) \to 0$ also. If each is stronger than the others then p and q as said to be equivalent.

Lemma 1.2. Let p and q be semi norms on a linear space X. Then p is stronger than q if and only if there exists a constant M such that $q(x) \leq Mp(x)$ for all $x \in X$.

Definition 1.3. A sequence E is said to be solid or normal if $\alpha_{mn}x_{mn} \in E$ whenever $x_{mn} \in E$ and for all sequence of scalars α_{mn} with $|\alpha_{mn}| \leq 1$, for all $m, n \in \mathbb{N}$.

Definition 1.4. A sequence space E is said to be monotone if it contains the cannonical pre-images of all its step spaces.

Remark 1.5. From the above two definitions it is clear that a sequence space E is solid implies that E is monotone.

By the double gai sequence we mean the gai on the Pringsheim sense that is, a double sequence $x=(x_{mn})\in E$ has Pringsheim limit 0 (denoted by $P-\lim x=0$) if $((m+n)!|x_{mn}|)^{\frac{1}{m+n}}\to 0$, whenever $m,n\to\infty$. We shall denote the space of all P-gai sequences by χ^2 . The double sequence x is analytic if there exists a positive number M such that $|x_{mn}|^{\frac{1}{m+n}} < M$ for all m,n. We will denote the set of all analytic double sequences by Λ^2 .

Definition 1.6. Let $A = (a_{kl}^{mn})$ denote a four dimensional summability method that maps the complex double sequences x into the double sequences

Ax where the (k, l) term of Ax is as follows:

$$(Ax)_{kl} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(a_{kl}^{mn} \right) x^{mn}$$

such transformation is said to be non negative if (a_{kl}^{mn}) is non-negative.

The notion of regularity for two dimensional matrix transformations was presented by Silverman [26] and Toeplitz [27]. Follows Silverman and Toeplitz presented the following four dimensional analog of regularity for double sequences in which they both added an additional assumption of boundedness. This assumption was made because a double sequence which is P-convergent is not necessarily bounded.

Definition 1.7. The four dimensional matrix A is said to be RH-regular if it maps every bounded P-gai sequence into a P-gai sequence with the same P-limit.

In addition to this definition, Robison and Hamilton also presented the following Silverman-Toeplitz type multidimensional characterization of regularity in [21] and [9] respectively.

Theorem 1.8. The four dimensional matrix A is RH-regular if and only if

$$\begin{split} RH_1: P - \lim_{k,l} a_{kl}^{mn} &= 0 \text{ for each } m \text{ and } n; \\ RH_2: P - \lim_{k,l} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{kl}^{mn} &= 1; \\ RH_3: P - \lim_{k,l} \sum_{m=1}^{\infty} |a_{kl}^{mn}| &= 0 \text{ for each } n; \\ RH_4: P - \lim_{k,l} \sum_{n=1}^{\infty} |a_{kl}^{mn}| &= 0 \text{ for each } m; \\ RH_5: \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{kl}^{mn} \text{ is } P\text{-convergent; and } \\ RH_6: \text{ there exist positive numbers } M \text{ and } N \text{ such that } \sum_{m,n>N} |(a_{kl}^{mn})_{k,l}| < M. \end{split}$$

Definition 1.9. A double sequence (x_{mn}) of complex numbers is said to be strongly A-summable to 0, if

$$P - \lim_{k,l} \sum_{mn} (a_{kl}^{mn})((m+n)!|x_{mn} - 0|)^{\frac{1}{m+n}} = 0.$$

Let σ be a one to one mapping of the set of positive integers into itself such that $\sigma^m(n) = \sigma(\sigma^{m-1}(n)), m = 1, 2, 3, \cdots$. A continuous linear functional ϕ is said to be an invariant mean or a σ - mean if and only if

(1) $\phi(x) \geq 0$ when the sequence $x = (x_{mn})$ has $x_{mn} \geq 0$ for all m, n.

(2)
$$\phi(e) = 1$$
, where $e = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ & \ddots & \ddots & \ddots & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ 1 & 1 & \dots & \ddots & 1 \end{pmatrix}$ and

(3)
$$\phi(x_{\sigma(m)}, \sigma(n)) = \phi(x_{\sigma(m)})$$
 for all $x \in \Lambda^2$.

For certain kinds of mapping σ , every invariant mean ϕ extends the limit functional on the space C of all real convergent sequences in the sense that $\phi(x) = \lim x$ for all $x \in C$ consequently $C \subset V_{\sigma}$, where V_{σ} is the set of double analytic sequences for which σ - means are equal. If $x = (x_{mn})$, set

$$Tx = (Tx)^{\frac{1}{m+n}} = (x_{\sigma(m),\sigma(n)}).$$

It can be shown that
$$V_{\sigma} = \left\{ x \in \Lambda^2 : \lim_{m \to \infty} t_{mn}(x_n)^{\frac{1}{n}} = Le \text{ uniformly in } n, L = \sigma - \lim(x_{mn})^{\frac{1}{m+n}} \right\}$$
 where

$$t_{mn}(x) = \frac{(x_n + Tx_n + \dots + T^m x_n)^{\frac{1}{m+n}}}{m+1},$$
(1.1)

we say that a double analytic sequence $x = (x_{mn})$ is σ -convergent if and only if $x \in V_{\sigma}$.

Definition 1.10. A double analytic sequence $x = (x_{mn})$ of real numbers is said to be σ - convergent to zero provided that

$$P - \lim_{p,q} \frac{1}{pq} \sum_{m=1}^{p} \sum_{n=1}^{q} |x_{\sigma^{m}(k),\sigma^{m}(l)}|^{\frac{1}{\sigma^{m}(k) + \sigma^{m}(l)}} = 0,$$

uniformly in (k, l).

In this case we write $\sigma_2 - \lim x = 0$. We shall also denote the set of all double σ -convergent sequences by V_{σ}^2 . Clearly $V_{\sigma}^2 \subset \Lambda^2$. One can see that in contrast to the case for single sequences, a P- convergent double sequence need not be σ -convergent. But, it is easy to see that every bounded P-convergent double sequence is convergent. In addition, if we let $\sigma(m) = m+1$, and $\sigma(n) = n+1$, in then σ -convergence of double sequences reduces to the almost convergence of double sequences.

The following inequality will be used throughout the paper. Let $p = (p_{mn})$ be a sequence of positive real numbers with $0 and <math>D = \max(1, 2^{G-1})$. Then for $a_{mn}, b_{mn} \in \mathbb{C}$, the set of complex numbers and for all $m, n \in \mathbb{N}$, we have

$$|a_{mn} + b_{mn}|^{\frac{1}{m+n}} \le D\Big\{|a_{mn}|^{\frac{1}{m+n}} + |b_{mn}|^{\frac{1}{m+n}}\Big\}.$$

Let $F = (f_{kl})$ be a sequence of modulus functions and $A = (a_{kl}^{mn})$ be a non-negative RH-regular summability matrix method. Now, we define the following sequence spaces in this paper:

$$\chi^{2}(A, F, u, \Delta^{r}) = \left\{ x \in \chi^{2} : P - \lim_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \right\}$$
$$\left[f_{kl} \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right)! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right] = 0 \right\}$$

and

$$\Lambda^{2}(A, F, u, \Delta^{r}) = \left\{ x \in \Lambda^{2} : \sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(|u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right] < \infty \right\}.$$

If $f_{kl}(x) = x$, for all k, l then the sequence spaces defined above reduced to the following spaces:

$$\chi^{2}(A, u, \Delta^{r}) = \left\{ x \in \chi^{2} : P - \lim_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \right.$$
$$\left. \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right) ! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} = 0 \right\}$$

and

$$\Lambda^{2}(A, u, \Delta^{r})$$

$$= \left\{ x \in \Lambda^{2} : \sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left(|u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} < \infty \right\}.$$

If A = (C, 1, 1), the sequence space defined above reduced to following spaces:

$$\chi^{2}(F, u, \Delta^{r}) = \left\{ x \in \chi^{2} : P - \lim_{kl} \frac{1}{kl} \sum_{m=0}^{k-1} \sum_{n=0}^{l-1} \left[f_{kl} \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right) ! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)} | \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right] = 0 \right\}$$

and

$$\Lambda^{2}(F, u, \Delta^{r}) = \left\{ x \in \Lambda^{2} : \sup_{kl} \frac{1}{kl} \sum_{m=0}^{k-1} \sum_{n=0}^{l-1} \left[f_{kl} \left(|u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right] < \infty \right\}.$$

For A = (C, 1, 1) and $f_{kl}(x) = x$, for all k, l we obtain the following spaces:

$$\chi^{2}(u, \Delta^{r}) = \left\{ x \in \chi^{2} : P - \lim_{kl} \frac{1}{kl} \sum_{m=0}^{k-1} \sum_{n=0}^{l-1} \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right)! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} = 0 \right\}$$

and

$$\Lambda^{2}(u, \Delta^{r}) = \left\{ x \in \Lambda^{2} : \sup_{kl} \frac{1}{kl} \sum_{m=0}^{k-1} \sum_{n=0}^{l-1} \left(|u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} < \infty \right\}.$$

The main purpose of this paper is to establish some new types of double P-gai sequence spaces defined by a sequence of modulus functions. We also make an efforts to study some topological properties and inclusion relations between $\chi^2(A, F, u, \Delta^r)$ and $\Lambda^2(A, F, u, \Delta^r)$ spaces in the second section of this paper.

2. Main Results

Theorem 2.1. Let $A=(a_{kl}^{mn})$ be a non-negative matrix, $F=(f_{kl})$ be a sequence of modulus functions and $u=(u_{kl})$ be a sequence of strictly positive real numbers. Then the spaces $\chi^2(A, F, u, \Delta^r)$ and $\Lambda^2(A, F, u, \Delta^r)$ are linear spaces over the field of complex numbers \mathbb{C} .

Proof. Let $x, y \in \chi^2(A, F, u, \Delta^r)$ and for $\alpha, \beta \in \mathbb{C}$ there exist integers M_{α} and N_{β} such that $|\alpha| < M_{\alpha}$ and $|\beta| < N_{\beta}$. Since $F = (f_{kl})$ is a sequence of modulus functions, so we have

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! |\alpha u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)} + \beta u_{kl} \Delta^r y_{\sigma^m(k), \sigma^n(l)} \right) \right]^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right]$$

$$\leq M_{\alpha} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \Big[f_{kl} \Big(\Big((\sigma^{m}(k) + \sigma^{n}(l))! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \Big)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \Big) \Big]$$

$$+ N_{\beta} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \Big[f_{kl} \Big(\Big((\sigma^{m}(k) + \sigma^{n}(l))! |u_{kl} \Delta^{r} y_{\sigma^{m}(k), \sigma^{n}(l)}| \Big)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \Big) \Big].$$

Thus $\alpha x + \beta y \in \chi^2(A, F, u, \Delta^r)$ for all k, l. Hence $\chi^2(A, F, u, \Delta^r)$ is a linear space. Similarly we can prove that $\Lambda^2(A, F, u, \Delta^r)$ is a linear space. \square

Theorem 2.2. Let $A=(a_{kl}^{mn})$ be a non-negative matrix, $F=(f_{kl})$ be a sequence of modulus functions and $u=(u_{kl})$ be a sequence of strictly positive real numbers. Then the space $\chi^2(A,F,u,\Delta^r)$ is a complete linear topological space with the paranorm defined by

$$g(x) = \sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) f_{kl} \Big(|u_{kl} \Delta^{T} x_{\sigma^{m}(k), \sigma^{n}(l)}| \Big)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}}.$$

Proof. Let $x \in \chi^2(A, F, u, \Delta^r)$. Then g(x) exists. Clearly, $g(\theta) = 0$, where $\theta = (0, 0, \dots, 0), g(-x) = g(x)$ and $g(x+y) \leq g(x) + g(y)$. Now we show that the scalar multiplication is continuous. We have

$$g(\lambda x) = \sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) f_{kl} \Big(|\lambda u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}| \Big)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}}$$

$$\leq (1 + [\lambda]) g(x),$$

where $[|\lambda|^{\frac{1}{\sigma^m(k)+\sigma^n(l)}}]$ denotes the integral part of $|\lambda|^{\frac{1}{\sigma^m(k)+\sigma^n(l)}}$. In addition observe that g(x) and λ approaches to 0 implies $g(\lambda x)$ approaches to 0. For fixed λ , if x approaches to 0 then $g(\lambda x)$ approaches to 0. We now show that for a fixed $x, g(\lambda x)$ approaches to 0 whenever λ approaches to 0. Since $x \in \chi^2(A, F, u, \Delta^r)$, thus

$$P - \lim_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \Big[f_{kl} (((\sigma^{m}(k) + \sigma^{n}(l))! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}|)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}}) \Big]$$

$$= 0$$

If $|\lambda|^{\frac{1}{\sigma^m(k)+\sigma^n(l)}} < 1$ and $M \in \mathbb{N}$. We have,

$$\begin{split} &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|\lambda||u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]\\ &\leq\sum_{m\leq M}\sum_{n\leq M}(a_{kl}^{mn})\Big[f_{kl}\Big(\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|\lambda||u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]\\ &+\sum_{m\geq M}\sum_{n\geq M}(a_{kl}^{mn})\Big[f_{kl}\Big(\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|\lambda||u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]. \end{split}$$

Let $\epsilon > 0$ and choose N such that

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) f_{kl} \left(((\sigma^m(k) + \sigma^n(l))! |u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}|)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right)$$

$$< \frac{\epsilon}{2}$$

$$(2.1)$$

for k, l > N. Also for each k, l with $1 \le k, l \le N$, we have

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! |u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}| \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right] < \infty,$$

so that there exist an integer $(M_{k,l})$ such that

$$\sum_{m>M_{k,l}} \sum_{n>M_{k,l}} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! | u_{kl} \Delta^r x_{\sigma^m(k),\sigma^n(l)} | \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right]$$

$$< \frac{\epsilon}{2}.$$

Taking

$$M = \inf_{1 \le k \le N(\text{Or}) \le l \le N} \{M_{k,l}\}.$$

We have for each (k, l) with $1 \le k \le N$ (or $)1 \le l \le N$

$$\sum_{m>M} \sum_{n>M} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! |u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}| \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right] < \frac{\epsilon}{2},$$

for k, l > N we have

$$\sum_{m>M} \sum_{n>M} (a_{kl}^{mn}) \Big[f_{kl} \Big(\Big((\sigma^m(k) + \sigma^n(l))! |u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}| \Big)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \Big) \Big]$$

$$< \frac{\epsilon}{2}.$$

Thus M is an integer independent of (k, l) such that

$$\sum_{m>M} \sum_{n>M} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! |u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}| \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right]$$

$$< \frac{\epsilon}{2}.$$
(2.2)

Further for $|\lambda|^{\frac{1}{\sigma^m(k)+\sigma^n(l)}}<1$ and for all (k,l)

$$\begin{split} &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|\lambda u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]\\ &\leq\sum_{m>M}\sum_{n>M}(a_{kl}^{mn})\Big[f_{kl}\Big(\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|\lambda u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]\\ &+\sum_{m\leq M}\sum_{n\leq M}(a_{kl}^{mn})\Big[f_{kl}\Big(\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|\lambda u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]. \end{split}$$

For each (k, l) and $\lambda \to 0$, we have the following

$$\sum_{m \leq M} \sum_{n \leq M} (a_{kl}^{mn}) \Big[f_{kl} \Big(\Big((\sigma^m(k) + \sigma^n(l))! |\lambda u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}| \Big)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \Big).$$

Now choose $\delta < 1$ such that $|\lambda|^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} < \delta$ implies

$$\sum_{m \leq M} \sum_{n \leq M} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! |\lambda u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)} | \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right]$$

$$< \frac{\epsilon}{2}.$$
(2.3)

It follows that

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! |\lambda u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)} | \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right] < \epsilon$$

for all (k, l). Thus $g(\lambda x) \to 0$ as $\lambda \to 0$. Therefore $\chi^2(A, F, u, \Delta^r)$ is a paranormed linear topological space.

Now let us show that $\chi^2(A, F, u, \Delta^r)$ is complete with respect to its paranormed topologies. Let (x_{mn}^i) be a sequence in $\chi^2(A, F, u, \Delta^r)$. Then, we

write $g(x^i - x^j) \to 0$ as $i, j \to \infty$, for all (k, l)

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(\left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right)! | u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}^{i} - \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}^{j} | \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right) \right]$$

$$\rightarrow 0.$$

$$(2.4)$$

Thus for each fixed m and n as $i, j \to \infty$ we are granted

$$f_{kl}\Big((m+n)!|x_{mn}^i-x_{mn}^j|\Big)\to 0$$

and so (x_{mn}^i) is a Cauchy sequence in $\mathbb C$ for each fixed m and n. Since $\mathbb C$ is complete we have $x_{mn}^i \to x_{mn}$ as $i \to \infty$ for each (mn). Now we have for $\epsilon > 0$ there exist a natural number N such that

$$\sum_{m=0}^{\infty} \sum_{i,j>N}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! | u_{kl} \left(\Delta^r x^i_{\sigma^m(k), \sigma^n(l)} - \Delta^r x^j_{\sigma^m(k), \sigma^n(l)} \right) | \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right] < \epsilon$$

for (k,l). Since for any fixed natural number M, we have from (2.1)

$$\sum_{m \le Mn \le M}^{\infty} \sum_{i,j>N}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! | u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}^i - \Delta^r x_{\sigma^m(k), \sigma^n(l)}^j | \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right] < \epsilon$$

for all (k,l), by letting $j \to \infty$ in the above expression we obtain

$$\sum_{m \le Mn \le M}^{\infty} \sum_{i > N}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! | u_{kl} \Delta^r x^i_{\sigma^m(k), \sigma^n(l)} - \Delta^r x_{\sigma^m(k), \sigma^n(l)} | \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right] < \epsilon.$$

Since M is arbitrary. By letting $M \to \infty$ we obtain

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(\left(\left(\sigma^m(k) + \sigma^n(l) \right)! |u_{kl}(\Delta^r x^i_{\sigma^m(k), \sigma^n(l)} - \Delta^r x_{\sigma^m(k), \sigma^n(l)})| \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right] < \epsilon$$

for all (k,l). Thus $g(x^i-x)\to 0$ as $i,j\to 0$. Also (x^i) being a sequence in $\chi^2(A,F,u,\Delta^r)$ by definition of $\chi^2(A,F,u,\Delta^r)$ for each i with

$$\begin{split} &\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \\ &\left[f_{kl} \Big(\Big(\left(\sigma^m(k) + \sigma^n(l) \right)! |u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}^i - \Delta^r x_{\sigma^m(k), \sigma^n(l)} | \Big)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \Big) \right] \to 0 \end{split}$$

Theorem 2.3. Let $A = (a_{kl}^{mn})$ be a non-negative matrix such that

as $(k,l) \to 0$. Thus $x \in \chi^2(A, F, u, \Delta^r)$. This completes the proof.

$$\sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) < \infty$$

and let $F = (f_{kl})$ be a sequence of modulus functions, then $\chi^2(A, F, u, \Delta^r) \subset \Lambda^2(A, F, u, \Delta^r)$.

Proof. Let $x \in \chi^2(A, F, u, \Delta^r)$. Then, we have

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right) ! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)} \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right) \right] \\
\leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right) ! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)} - L| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right) \right] \\
+ f_{kl}(|L|) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}).$$

There exist an integer N_p such that $|L| \leq N_p$. Thus we have

$$\begin{split} & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \Big[f_{kl} \Big(\Big((\sigma^{m}(k) + \sigma^{n}(l))! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \Big)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \Big) \Big] \\ & \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \Big[f_{kl} \Big(\Big((\sigma^{m}(k) + \sigma^{n}(l))! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)} - L| \Big)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \Big) \Big] \\ & + N_{p} f_{kl}(1) \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}). \end{split}$$

Since $\sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) < \infty$ and $x \in \chi^2(A, F, u, \Delta^r)$ and this implies that $x \in \Lambda^2(A, F, u, \Delta^r)$. This completes the proof of the theorem.

Theorem 2.4. Let $A = (a_{kl}^{mn})$ be a non negative matrix such that

$$\sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) < \infty$$

and $F = (f_{kl})$ be a sequence of modulus functions. Then $\Lambda^2(A, u, \Delta^r) \subset \Lambda^2(A, F, u, \Delta^r)$.

Proof. Let $x \in \Lambda^2(A, u, \Delta^r)$, so that

$$\sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) |u_{kl} \Delta^r x_{\sigma^m(k),\sigma^n(l)}|^{\frac{1}{\sigma^m(k)+\sigma^n(l)}} < \infty.$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \epsilon$ for $0 \le t \le \delta$. Consider

$$\begin{split} &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\left[f_{kl}\Big(|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\right]\\ &=\sum_{m=0,n=0}^{\infty}\sum_{|\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\leq\delta}(a_{kl}^{mn})\left[f_{kl}\Big(|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\right]\\ &+\sum_{m=0,n=0}^{\infty}\sum_{|\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}>\delta}(a_{kl}^{mn})\left[f_{kl}\Big(|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\right]. \end{split}$$

Then

$$\sum_{m=0}^{\infty} \sum_{\substack{|\Delta^r x_{\sigma^m(k),\sigma^n(l)}|}}^{\infty} (a_{kl}^{mn}) f_{kl} \Big(|u_{kl} \Delta^r x_{\sigma^m(k),\sigma^n(l)}| \Big)^{\frac{1}{\sigma^m(k)+\sigma^n(l)}} \le \delta$$

$$\leq \epsilon \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}). \tag{2.5}$$

For $|\Delta^r x_{\sigma^m(k),\sigma^n(l)}|^{\frac{1}{\sigma^m(k)+\sigma^n(l)}} > \delta$, we use the fact that

$$|\Delta^{r} x_{\sigma^{m}(k),\sigma^{n}(l)}|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}} < \frac{|\Delta^{r} x_{\sigma^{m}(k),\sigma^{n}(l)}|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}}{\delta}$$
$$< \left[1 + \left|\frac{|\Delta^{r} x_{\sigma^{m}(k),\sigma^{n}(l)}|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}}{\delta}\right|\right],$$

where [t] denoted the integer part of t and $F = (f_{kl})$ be a sequence of modulus functions we have

$$f_{kl}\left(\left|\Delta^{r} x_{\sigma^{m}(k),\sigma^{n}(l)}\right|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\right) \leq \left[1+\left|\frac{\left|\Delta^{r} x_{\sigma^{m}(k),\sigma^{n}(l)}\right|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}}{\delta}\right] f_{kl}(1)$$

$$\leq 2f_{kl}(1) \frac{\left|\Delta^{r} x_{\sigma^{m}(k),\sigma^{n}(l)}\right|^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}}{\delta}.$$

Hence

$$\sum_{m=0,n=0}^{\infty} \sum_{|\Delta^r x_{mn}|^{\frac{1}{m+n}} \le \delta}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(|u_{kl} \Delta^r x_{\sigma^m(k),\sigma^n(l)}| \right)^{\frac{1}{\sigma^m(k)+\sigma^n(l)}} \right]$$

$$\le \frac{2f_{kl}(1)}{\delta} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) |u_{kl} \Delta^r x_{\sigma^m(k),\sigma^n(l)}|^{\frac{1}{\sigma^m(k)+\sigma^n(l)}}.$$

Which together with inequality (2.5) yield the following

$$\begin{split} & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \Big[f_{kl} \Big(|u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}|^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \Big) \Big] \\ & \leq \epsilon \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) + \frac{2f_{kl}(1)}{\delta} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) |u_{kl} \Delta^r x_{\sigma^m(k), \sigma^n(l)}|^{\frac{1}{\sigma^m(k) + \sigma^n(l)}}, \end{split}$$

since $\sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) < \infty$ and hence $x \in \Lambda^2(A, u, F, \Delta^r)$. This completes the proof of the theorem.

3. Double gai sequence spaces defined by seminorm and a sequence of modulus functions

In this section, we shall introduced double P-sequence spaces by using seminorm function q and a sequence of modulus functions $F = (f_{kl})$. We shall also establish some topological properties and inclusion relations between the sequence spaces $\chi^2(A, F, p, q, \Delta^r, u)$ and $\Lambda^2(A, F, p, q, \Delta^r, u)$.

Let (X,q) be a seminormed space over the field \mathbb{C} of complex numbers with the seminorm q and $F=(f_{kl})$ be a sequence of modulus functions. We define the following sequence spaces in this section :

$$\chi^{2}(A, F, p, q, \Delta^{r}, u) = \left\{ x \in \chi^{2} : P - \lim_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \right.$$
$$\left[f_{kl} \left(q((\sigma^{m}(k) + \sigma^{n}(l))! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}|)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right) \right]^{p_{mn}} = 0 \right\},$$

$$\Lambda^{2}(A, F, p, q, \Delta^{r}, u) = \left\{ x \in \Lambda^{2} : \sup_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(q(|u_{kl}\Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}|)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right) \right]^{p_{mn}} < \infty \right\}.$$

Theorem 3.1. Let $F' = f'_{kl}$ and $F'' = f''_{kl}$ be two sequences of modulus functions. Then $\chi^2(A, F', p, q, \Delta^r, u) \cap \chi^2(A, F'', p, q, \Delta^r, u) \subseteq \chi^2(A, F' + q, u)$ F'', p, q, Δ^r, u).

Proof. The proof is easy so omitted.

Proposition 3.2. Let $F = (f_{kl})$ be a sequence of modulus functions q_1 and q_1 be two seminorm on X, we have

- (i) $\chi^2(A, F, p, q_1, \Delta^r, u) \cap \chi^2(A, F, p, q_2, \Delta^r, u) \subseteq \chi^2(A, F, p, q_1 + q_2, \Delta^r, u)$.
- (ii) If q_1 is stronger than q_2 then $\chi^2(A, F, p, q_1, \Delta^r, u) \subseteq \chi^2(A, F, p, q_2, \Delta^r, u)$. (iii) If q_1 is equivalent to q_2 then $\chi^2(A, F, p, q_1, \Delta^r, u) = \chi^2(A, F, p, q_2, \Delta^r, u)$.

Theorem 3.3. Let $A = (a_{kl}^{mn})$ be a non-negative matrix, $F = (f_{kl})$ be a sequence of modulus functions, $u = (u_{kl})$ be a sequence of strictly positive real numbers, $0 \le p_{mn} \le w_{mn}$ for all $m, n \in \mathbb{N}$ and let $\left\{\frac{w_{mn}}{p_{mn}}\right\}$ be bounded. Then $\chi^2(A, F, w, q, \Delta^r, u) \subseteq \chi^2(A, F, p, q, \Delta^r, u)$.

Proof. Suppose $x \in \chi^2(A, F, w, q, \Delta^r, u)$,

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(q \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right) ! | u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)} | \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right) \right]^{w_{mn}}.$$
(3.1)

Let

$$t_{mn} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn})$$

$$\left[f_{kl} \left(q \left(\left(\sigma^{m}(k) + \sigma^{n}(l) \right)! |u_{kl} \Delta^{r} x_{\sigma^{m}(k), \sigma^{n}(l)}| \right)^{\frac{1}{\sigma^{m}(k) + \sigma^{n}(l)}} \right) \right]^{w_{mn}},$$
(3.2)

we have $\gamma_{mn} = p_{mn}/w_{mn}$. Since $p_{mn} \leq w_{mn}$, we have $0 \leq \gamma_{mn} \leq 1$. Let $0 < \gamma < \gamma_{mn}$. Then

$$u_{mn} = \begin{cases} t_{mn}, & \text{if } t_{mn} \ge 1\\ 0, & \text{if } t_{mn} < 1, \end{cases}$$

$$v_{mn} = \begin{cases} 0, & \text{if } t_{mn} \ge 1\\ t_{mn}, & \text{if } t_{mn} < 1, \end{cases}$$

$$(3.3)$$

 $t_{mn} = u_{mn} + v_{mn}, t_{mn}^{\gamma_{mn}} = u_{mn}^{\gamma_{mn}} + v_{mn}^{\gamma_{mn}}$. Now, it follows that

$$u_{mn}^{\gamma_{mn}} \le u_{mn} \le t_{mn}, \quad v_{mn}^{\gamma_{mn}} \le v_{mn}^{\gamma}. \tag{3.4}$$

 $u_{mn}^{\gamma_{mn}} \leq u_{mn} \leq t_{mn}, \quad v_{mn}^{\gamma_{mn}} \leq v_{mn}^{\gamma}.$ Since $t_{mn}^{\gamma_{mn}} = u_{mn}^{\gamma_{mn}} + v_{mn}^{\gamma_{mn}}$, we have $t_{mn}^{\gamma_{mn}} = t_{mn} + v_{mn}^{\gamma}$. Thus,

$$\begin{split} &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)^{w_{mn}}\Big]^{\gamma_{mn}} \\ &\leq \sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{w_{mn}} \\ &\Longrightarrow \\ &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)^{w_{mn}}\Big]^{\frac{p_{mn}}{w_{mn}}} \\ &\leq \sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{w_{mn}} \\ &\Longrightarrow \\ &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{p_{mn}} \\ &\leq \sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{w_{mn}}. \end{split}$$

But

$$P - \lim_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \left[f_{kl} \left(q \left(\left(\sigma^m(k) + \sigma^n(l) \right)! |x_{\sigma^m(k), \sigma^n(l)}| \right)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \right) \right]^{w_{mn}}$$

$$= 0$$

Therefore we have

$$\begin{split} P - \lim_{kl} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (a_{kl}^{mn}) \Big[f_{kl} \Big(q \Big(\left(\sigma^m(k) + \sigma^n(l) \right)! |x_{\sigma^m(k), \sigma^n(l)}| \Big)^{\frac{1}{\sigma^m(k) + \sigma^n(l)}} \Big) \Big]^{p_{mn}} \\ = 0. \end{split}$$

Hence $x \in \chi^2(A, F, p, q, \Delta^r, u)$. We get

$$\chi^2(A, F, w, q, \Delta^r, u) \subset \chi^2(A, F, p, q, \Delta^r, u).$$

This completes the proof of the theorem.

Theorem 3.4. The space $\chi^2(A, F, p, q, \Delta^r, u)$ is solid and such are monotones.

Proof. Let $x = (x_{mn}) \in \chi^2(A, F, p, q, \Delta^r, u)$ and (α_{mn}) be a sequence of scalars such that $|\alpha_{mn}| \leq 1$ for all $m, n \in \mathbb{N}$. Then

$$\begin{split} &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{p_{mn}}\\ &\leq\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{p_{mn}}\\ &\Longrightarrow\\ &\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{p_{mn}}\\ &\leq\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(a_{kl}^{mn})\Big[f_{kl}\Big(q\Big(\big(\sigma^{m}(k)+\sigma^{n}(l)\big)!|u_{kl}\Delta^{r}x_{\sigma^{m}(k),\sigma^{n}(l)}|\Big)^{\frac{1}{\sigma^{m}(k)+\sigma^{n}(l)}}\Big)\Big]^{p_{mn}} \end{split}$$

for all $m, n \in \mathbb{N}$. This completes the proof of the theorem.

References

- B. Altay and F. Başar, Some new spaces of double sequencs, J. Math. Anal. Appl., 309 (2005), 70-90.
- [2] Y. Altin and M. ET, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math., 31 (2005), 233-243.
- [3] H. Altinok, Y. Altin and M. Isik, The sequence space $Bv_{\sigma}(M, P, Q, S)$ on seminormed spaces, Indian J. Pure Appl. Math., **39** (2008), 49-58.
- [4] M. Başarır and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math., 21 (1999), 193-200.
- [5] F. Başar and Y. Sever, The space \mathcal{L}_q of double sequences, Math. J. Okayama Univ., **51** (2009), 149-157.
- [6] T.J. Bromwich, An introduction to the theory of infinite series, Macmillan and co. Ltd., New York (1965).
- [7] M. Et and R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
- [8] G.H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil., Soc., 19 (1917), 86-95.
- [9] H.J. Hamilton, Transformation of multiple sequences, Duke Math. J., 2 (1936), 29-60.
- [10] H. Kızmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.
- [11] E. Malkowsky and E. Savas, Some λ -sequence spaces defined by a modulus, Arch. Math., **36** (2000), 219-228.
- [12] F. Moricz, Extension of the spaces c and c₀ from single to double sequences, Acta Math. Hungarica, 57 (1991), 129-136.
- [13] F. Moricz and B.E. Rhoades, Almost convergence of double sequences and strong requiarity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.

- [14] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34 (1983), 77 - 86.
- [15] M. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2) (2004), 523-531.
- [16] M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1) (2003), 223-231.
- [17] M. Mursaleen and O.H.H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2) (2004), 532-540.
- [18] A. Pringsheim, Zur Theori der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
- [19] K. Raj, S.K. Sharma and A.K. Sharma, Some new sequence spaces defined by a sequence of modulus function in n-normed spaces, Int. J. Math. Sci. Engg. Appl., 5 (2011), 395-403.
- [20] K. Raj and S.K. Sharma, Difference sequence spaces defined by sequence of modulus function, Proyecciones J. Math., 30 (2011), 189-199.
- [21] K. Raj and S.K. Sharma, Some difference sequence spaces defined by sequence of modulus function, Int. J. Math. Archive, 2 (2011), 236-240.
- [22] G.M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), pp. 50-73.
- [23] T. Salat, On statistical convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
- [24] E. Savas, On some generalized sequence spaces defined by a modulus, Indian J. pure and Appl. Math., 30 (1999), 459-464.
- [25] E. Savas, Strong almost convergence and almost λ-statistical convergence, Hokkaido Math. J., 29 (2000), 531-566.
- [26] L.L. Silverman, On the definition of the sum of a divergent series, Ph. D. Thesis, University of Missouri Studies, Mathematics Series, (1913).
- [27] O. Toeplitz, Über allegenmeine linear Mittelbrildungen, Prace Mat.-Fiz (Warzaw) 22 (1913), 113-119.
- [28] B.C. Tripathy, Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces, Soochow J. Math., 30 (2004), 431-446.
- [29] B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34 (2003), 231-237.
- [30] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. 85 (1984).
- [31] M. Zeltser, Investigation of double sequence spaces by soft and hard analytical methods, Diss. Math. Univ. Tartu. 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu (2001).