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Abstract. In the present paper we introduce some double gai sequence spaces defined by
a sequence of modulus functions F' = (fx;). We also study some topological properties and

prove some inclusion relations between these spaces.

1. INTRODUCTION

The initial work on double sequences is found in Bromwich [6]. Later on,
it was studied by Hardy [8], Moricz [12], Moricz and Rhoades [13], Tripa-
thy [28, 29], Basarir and Sonalcan [4] and many others. Hardy [8] intro-
duced the notion of regular convergence for double sequences. Quite recently,
Zeltser [31] in her Ph.D thesis has essentially studied both the theory of topo-
logical double sequence spaces and the theory of summability of double se-
quences. Mursaleen and Edely [16] have recently introduced the statistical
convergence and Cauchy convergence for double sequences and given the re-
lation between statistical convergent and strongly Cesaro summable double
sequences. Nextly, Mursaleen [15] and Mursaleen and Edely [17] have defined
the almost strong regularity of matrices for double sequences and applied these
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matrices to establish a core theorem and introduced the M-core for double se-
quences and determined those four dimensional matrices transforming every
bounded double sequences © = (xj;) into one whose core is a subset of the
M-core of x. By the convergence of a double sequence we mean the conver-
gence in the Pringsheim sense i.e. a double sequence = = (x;) has Pringsheim
limit L (denoted by P — limx = L) provided that given € > 0 there exists
n € N such that |xp — L| < € whenever k,I > n see [17]. We shall write
more briefly as P-convergent. The four dimensional matrix transformation
(Az)p = D o0 1 >t ap"x was studied extensively by Robison [22]. In
their work and throughout this paper, the four dimensional matrices and dou-
ble sequences have real-valued entries unless specified otherwise. The double
sequence x = (xy;) is bounded if there exists a positive number M such that
|zg| < M for all k and .

The notion of difference sequence spaces was introduced by Kizmaz [10], who
studied the difference sequence spaces loo(A), ¢(A) and ¢o(A). The notion was
further generalized by Et. and Colak [7] by introducing the spaces I (A™),
c(A™) and ¢o(A™). Let w be the space of all complex or real sequences x = ()
and let r be non-negative integer, then for Z = [, ¢, cg we have sequence
spaces

Z(A") ={zx = (z1) e w: (A"zy) € Z},

where A"z = (A"xy) = (A" oy — A" lzpyq) and APz = x4, for all k € N,
which is equivalent to the following binomial representation

ATy = Zr:(—mf ( ; )$k+w.

w=0

Taking r = 1, we get the spaces which were introduced and studied by Kizmaz
[10].

A modulus function is a function f : [0,00) — [0, 00) such that

(1) f(z) =0if and only if z =0,

(2) J(o+y) < fx) + f(y) forall 2> 0,y >0,
(3) f is increasing,

(4) f is continuous from right at 0.

It follows that f must be continuous everywhere on [0,00). The modulus
function may be bounded or unbounded. For example, if we take f(x) = T
then f(x) is bounded. If f(z) = aP, 0 < p < 1, then the modulus f(z) is
unbounded. For more details about modulus function and sequence spaces we
may refer to [2, 3, 11, 14, 19, 20, 21] and references therein.
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Let X be a linear metric space. A function p : X — R is called paranorm,
if

—_

(1) p(z) >0, for all x € X,

(2) p(—x) = p(z), for all x € X,

(3) p(z +vy) <p(z)+p(y), for all z,y € X,

(4) if (An) is a sequence of scalars with A\, — A\ as n — oo and (z,) is
a sequence of vectors with p(z, —x) — 0 as n — oo, then p(A,z, —
Ax) — 0 asn — 0.

A paranorm p for which p(z) = 0 implies z = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see [30]
Theorem 10.4.2, P-183).

Definition 1.1. Let p, ¢ be semi norms on a vector space X. Then p is said
to be stronger than ¢ if whenever (z, ) is a sequence such that p(x, ) — 0,
then ¢(z,,,) — 0 also. If each is stronger than the others then p and ¢ ae said
to be equivalent.

Lemma 1.2. Let p and q be semi norms on a linear space X. Then p is
stronger than q if and only if there exists a constant M such that q(z) < Mp(x)
forallx € X.

Definition 1.3. A sequence F is said to be solid or normal if o Tmn € E
whenever z,,, € E and for all sequence of scalars v, with |am,,| < 1, for all
m,n € N.

Definition 1.4. A sequence space E is said to be monotone if it contains the
cannonical pre-images of all its step spaces.

Remark 1.5. From the above two definitions it is clear that a sequence space
F is solid implies that E is monotone.

By the double gai sequence we mean the gai on the Pringsheim sense that
is, a double sequence z = (zy,,) € E has Pringsheim limit 0 (denoted by P —
limz = 0) if ((m + n)'|$mn|)ﬁ — 0, whenever m,n — oco. We shall denote
the space of all P-gai sequences by x2. The double sequence z is analytic if
there exists a positive number M such that |xmn\#ﬂ < M for all m,n. We
will denote the set of all analytic double sequences by A2.

Definition 1.6. Let A = (a}j") denote a four dimensional summability
method that maps the complex double sequences x into the double sequences
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Az where the (k,l) term of Az is as follows:

[e.@] [e.@]
j— TL
=22 (@")e

m=1n=1
such transformation is said to be non negative if (a};") is non-negative.

The notion of regularity for two dimensional matrix transformations was
presented by Silverman [26] and Toeplitz [27]. Follows Silverman and Toeplitz
presented the following four dimensional analog of regularity for double se-
quences in which they both added an additional assumption of boundedness.
This assumption was made because a double sequence which is P—convergent
is not necessarily bounded.

Definition 1.7. The four dimensional matrix A is said to be RH—regular if
it maps every bounded P—gai sequence into a P—gai sequence with the same
P—limit.

In addition to this definition, Robison and Hamilton also presented the fol-
lowing Silverman-Toeplitz type multidimensional characterization of regularity
in [21] and [9] respectively.

Theorem 1.8. The four dimensional matriz A is RH—reqular if and only if

RH, : P — 1]131 ap;" =0 for each m and n;

)

RHy: P —hmZZa 1;

)

m 1n=1
RH3: P — hm Z laz;"| = 0 for each n;
RHy: P— hmz laf]"| = 0 for each m;
o o
RH; : Z ZQZIm is P-convergent; and
m=1n=1
RHg : there exist positive numbers M and N such that Z |(ap™ ki) < M.

mn>N

Definition 1.9. A double sequence (z;,,) of complex numbers is said to be
strongly A-summable to 0, if

_hmz ag”™) ’m"‘”)!\iﬁmn—m)ﬁ =0.
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Let o be a one to one mapping of the set of positive integers into itself such
that 0™ (n) = o(c™ 1(n)),m = 1,2,3,---. A continuous linear functional ¢
is said to be an invariant mean or a o— mean if and only if
(1) ¢(x) > 0 when the sequence = = (Zy,y,) has Ty, > 0 for all m,n.

11 . . .1
11 . . .1

(2) ¢(e) =1, wheree=| =~ =~ = " and
11 . o1

(3) qb(xg(m),a(n)) = qﬁ(azg(m)) for ail x € A2,

For certain kinds of mapping o, every invariant mean ¢ extends the limit
functional on the space C' of all real convergent sequences in the sense that
¢(x) = limz for all z € C consequently C' C V,, where V is the set of double
analytic sequences for which o— means are equal. If x = (z,,), set

Tx = (T:E)m = (xa(m),a(n))'

It can be shown that

V,=3z € A?: lim tmn(xn)% = Le uniformly in n, L = a—lim(wmn)#ﬂ}
m—0o0
where
1
T, +Tx, +---+ T, )mtn
tn () = L . m+1 ) ) (1.1)

we say that a double analytic sequence z = (x,,,) is o-convergent if and only
if x € V,.

Definition 1.10. A double analytic sequence x = () of real numbers is
said to be o— convergent to zero provided that

1 &K 1
P —lim — T m m |7 EFTD = (),

m=1n=1

uniformly in (k,1).

In this case we write o9 —lim z = 0. We shall also denote the set of all double
o-convergent sequences by V2. Clearly V.2 C A%. One can see that in contrast
to the case for single sequences, a P— convergent double sequence need not be
o-convergent. But, it is easy to see that every bounded P-convergent double
sequence is convergent. In addition, if we let o(m) = m+1, and o(n) = n+1,
in then o-convergence of double sequences reduces to the almost convergence
of double sequences.
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The following inequality will be used throughout the paper. Let p = (pmn)
be a sequence of positive real numbers with 0 < p = (pmn) < SUppmn = G
and D = max(1,2¢71). Then for amn, bmn € C, the set of complex numbers
and for all m,n € N, we have

1 1 1

Let F' = (fw) be a sequence of modulus functions and A = (a}}") be a
non-negative RH-regular summability matrix method. Now, we define the
following sequence spaces in this paper:

X2 (A, F,u AT):{xEX P—hmZZakl

m=0 n=0

[fkl<( (k) +o"(l ())!|UklAT$gm(k),gn(l)|)‘W} = O}

and

A*(A, Fu,A™) = {:c e A%: sup Z Z ay")

m=0n=0
1
[fkl(|uklAT‘:Bo-m(k)’o-n(l)|) Um(k)+0"(l)i| < Qo}

If fri(x) = x, for all k,l then the sequence spaces defined above reduced to
the following spaces:

Y2 (A, u, AT) = {:v ex’:P— hrn Z Z (ap™)

m=0n=0

1
((O'm(k) + Un(l))!’ukZArxam(k),a”(l)D o = 0}
and
A%(A,u, A7)

= {a: e A%: sup Z Z ag") |uklA Tgm (k),on (1 )|) TR T < oo}

m=0n=0
If A= (C,1,1)), the sequence space defined above reduced to following spaces:

k—1 1-1

XZ(F,’U,,A) {xex P_hmkl ZZ

m=0n=0

{fkl(( (k) +o"(1 ())!\uklA’”xUm(k)pn(l)\)‘m} :0}
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and
A%(F,u, A7)
=g )
{m € A2: skllp 2l mzongo [fkl lug A" p— )|)4UM(E)+T71(1)} < oo}.

For A= (C,1,1) and fy;(x) = z, for all k,l we obtain the following spaces:

2 (u, AT) = {:c € x? P—hm— kzzl lz%
m=0n=0
(" (k) + 0™ (0) Nk A T 1y o 1)) T _ o}
and
k—1 1—1 .
A*(u, AT) = {:1; € A2: sup 2l mZ:OnZ% Ukt AT T gm (), on (1)) IO < oo}.

The main purpose of this paper is to establish some new types of double
P-gai sequence spaces defined by a sequence of modulus functions. We also
make an efforts to study some topological properties and inclusion relations
between Y2(A, F,u, A") and A%(A, F,u, A") spaces in the second section of
this paper.

2. MAIN RESULTS

Theorem 2.1. Let A = (a}}") be a non-negative matriz, F' = (fi;) be a
sequence of modulus functions and u = (ug;) be a sequence of strictly positive
real numbers. Then the spaces x\*(A, F,u, A") and A?(A, F,u, A") are linear
spaces over the field of complexr numbers C.

Proof. Let z,y € x?(A, F,u,A") and for a,3 € C there exist integers M,
and Njg such that || < M, and [3| < Ng. Since F' = (fi) is a sequence of
modulus functions, so we have

[f’“l((( " (k) + 0" () oun AT om k), on ) +5Usz’"yam<k>w<z>\)Mﬂ
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= 22 i) [fa (") + 070 (»”“klATl‘om(k)ﬂ”(l)Omﬂ

m=0n=0

+Nﬂzz i fa( (o) + 070 ())!|UklNygm(k>,on<z)|>Wﬂ'

m=0n=0

Thus ax + By € x*(A, F,u, A") for all k,I. Hence x?(A, F,u, A") is a linear
space. Similarly we can prove that A%2(A, F,u, A") is a linear space. O

Theorem 2.2. Let A = (a}}") be a non-negative matriz, F' = (fi;) be a
sequence of modulus functions and u = (ug;) be a sequence of strictly positive
real numbers. Then the space x*(A, F,u, A") is a complete linear topological
space with the paranorm defined by

oo 00 1
g(x) = Sup Z Z(aﬁ”)sz(|ukzﬁrwam(k),an(l)!> T

m=0n=0

Proof. Let x € x%(A, F,u,A"). Then g(x) exists. Clearly, g(f) = 0, where
0 =(0,0,---,0), g(—z) = g(z) and g(z +y) < g(z) +g(y). Now we show that
the scalar multiplication is continuous. We have

S
g(Az) = sup Z Z (ai]™) fkl(])\uklA T (k) o (1 )|) TR Fom (D)

klmOnO

< (1 +[ADg(z),

1 1
where [[A[e7®+" @] denotes the integral part of [A\|7"®+"® . In addition
observe that g(x) and A\ approaches to 0 implies g(Ax) approaches to 0. For
fixed A, if x approaches to 0 then g(Ax) approaches to 0. We now show

that for a fixed z, g(A\x) approaches to 0 whenever A approaches to 0. Since
r € x*(A, F,u, A"), thus

1
—lim Z Z ap” [fk:z (k) + " (D) |ur A" gm () o)) T EHTD)

m=0n=0

=0.
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1
If [\|o"®+"0 < 1 and M € N. We have,

ZZ (") | fu( (70 + o0 ())!MH““N%m(k),an(z)l)M)}

m=0n=0
< 3 3 ) u(((0" W+ 0 (>)”A”“klN%m(kxown)mﬂ
m<M n<M
+Z Z i [fa (7" (0)+o"0 ())!\/\\|UklN%m(k),a"(z)|>M)}'

Let € > 0 and choose N such that

1
E E (ari™) sz( (k) + o™ (1 ))!|uk1A’”xam(k)7gn(z)|)"m<k>+a"<1>)
m=0n=0 (21)

<e
2

for k,I > N. Also for each k,l with 1 < k,l < N, we have

Z Z ap” [fkl(( (k) 4+ o™(1 ))!|UklArxam(k)7gn(l)]>M)} < o0,

m=0n=0

so that there exist an integer (M};) such that

> X @ u(( ()+f’())!|“klN%m<k),an(z>|)W)}

m>My  n>My
< €
5"

Taking

M = inf M-
1§k§N%gI‘)1§l§N{ k’l}

We have for each (k,l) with 1 <k < N(or )1 <I< N

2 D (e [f’“l<( (k) + o ())!|uklAT$0m(k),a"(l)|>Jm(k)lw)}

m>M n>M
€
< 5,

for k,I > N we have

P [f’“‘<( (k) + o <>)!quA%am<k>,anml)W)}

m>M n>M
< €
9
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Thus M is an integer independent of (k,1) such that
(k)l )
om Jro-"/
> (e [sz(( "(k)+a™(l ))!lukzN%m(k),w(z)!) )]

m>M n>M (22)

<€
2.

Further for \)\\Gm(k>1+0”(l> < 1 and for all (k,1)

ZZ i) [fa( (07 ) + 0" ())!IAukzN%mw),an(w)Wﬂ

m=0n=0
pIPIL U’“(( (k) + o ())!WuN%m(mvan(z)OMﬂ
m>M n>M
1
+ Z Z (ag™) [sz(( "(k)+o" ())!’)\uklAer'm(k),o'"([)D am(k)Jron(l))}.
m<M n<M

For each (k,l) and A — 0, we have the following

2 2 (@ {f“« "(k) +o"( ())!WklN%m(k),o"(z)l)M)

m<M n<M

1
Now choose 0 < 1 such that |A|e™®+"0 < § implies

> > @) [fu( (0 +am (>)!|MkzN%m<k>,on<z>)Wﬂ
v (2.3)

<€
2.

It follows that

Z Z ap” [fkl(( (k) +o™(l ())!])\uklATxam(k)Jn(l)Dam(k)lwn(l)ﬂ <e

m=0n=0

for all (k,1). Thus g(Ax) — 0 as A — 0. Therefore x?(4, F,u, A") is a para-
normed linear topological space.

Now let us show that x (A F,u,A") is complete with respect to its para-
normed topologies. Let (z¢ ) be a sequence in x?(A, F,u,A”). Then, we
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write g(mi —27) = 0asi,j — oo, for all (k,1)

[fkl<(( ")+ 0" D) kAo gy A" im(k)o"(zﬂ)Mﬂ -

Thus for each fixed m and n as i, j — oo we are granted

Jia (m + 1), = ] ) = 0
and so (z¢,,) is a Cauchy sequence in C for each fixed m and n. Since C is
complete we have z!,, — Ty, as i — oo for each (mn). Now we have for e > 0
there exist a natural number N such that

> Y )

m=0n=014,5>N

100" 0+ ) kA3 )) )] < €

for (k l). Since for any fixed natural number M, we have from (2.1)

> )

m<Mn<M i,j>N

{fm((( " (k)+o" (1 ())!\UkleUim(k),on(Z)_inm(k),o“(lﬂ)M)} <€

for all (k, l) by letting 7 — oo in the above expression we obtain

> >

m<Mn<M i>N

{f“«( "(k)+o"(1 ())!!ukleim(m,ona)—N%m<k>v”<l>‘>W)] <€

Since M is arbitrary. By letting M — oo we obtain

> >

m=0n=0

[f"”l (<(U (l))”ukl(Ar'xgm(k),a"(l)_Arxam(k),a”(l)”) Mﬂ <e

for all (k,1). Thus g(z* —x) — 0 as 4,57 — 0. Also (z°) being a sequence in
2(A, F,u, A") by definition of x?(A, F,u, A") for each i with
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{sz (((O'm(k:)'f‘o'n(l))!|UklATxiam(k;),a"(l) —N%m(k),on(l)‘) cm)] —0

as (k,1) — 0. Thus = € x*(A, F,u, A"). This completes the proof. O

Theorem 2.3. Let A = (a}]") be a non-negative matriz such that

o0 o0
SEZp Z Z(aﬂ") < 00

m=0n=0

and let F = (fx;) be a sequence of modulus functions, then x*(A, F,u, A") C
A2(A, F,u, AT).

Proof. Let x € x?(A, F,u, A"). Then, we have

ZZ (@) | ia () + o ())lluuN%m(k)w(z)l)Mﬂ

m=0n=0

= Z Z ™) [ fia (o™ (B) 0" () s A2 4y —L!>m)}
m=0n=0
+ fu(|L]) ZZ ag’")

m=0n=0

There exist an integer N, such that |L| < N,. Thus we have

ZZ aii") [f’“« (k) + o (»”umNﬂfom(k),wa)l)Mﬂ

m=0n—=0
< ZZ CHD) {f’“l« (k) + 0" () i ATz 1, om ) LDW)}
m=0n—=0
+ Np fra (1 ZZ (agi")

m=0n=0

Since sup Z Z api™) < oo and x € x?(A, F,u,A") and this implies that
m=0n=0

T € A2(A, F,u, A"). This completes the proof of the theorem. O
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Theorem 2.4. Let A = (a}]") be a non negative matriz such that

sup Z Z ay™)

m=0n=0

and F = (fu) be a sequence of modulus functions. Then A%(A,u,A") C
A2(A, Fu, AT).

Proof. Let € A%(A,u, A"), so that

Sup Z Z a’k‘l |u1€lA Tom(k),on (1) ’Um(k)+cr"(l) < 0.
ki m=0n=0

Let € > 0 and choose ¢ with 0 < § < 1 such that f(¢) < e for 0 < t <.
Consider

Z Z (aki") [sz(\uklA Tom (k). O_n()|)ﬂ”(k>1+a"<l>}

m=0n=0
% 00 1
mn r oM (k)+o™ (1)
= > (aki )[fkl(‘uklA xam(k),an(ol) }
m=0,n=0 S
‘Arzom(k),o—”(l) ‘ o™ (k)+o™ (1) <6
oo 0 1
mn r o™ (k)+o™ (1)
+ Z (ari )[fkl(\UklA %m(k),w(l)\) }
m=0,n=0 S —
‘AT‘%Jm(k)’O.n(l) ‘ oM (k)+o™(1) >4
Then
% 00 1
mn r oM (k)+o™(1)
> > (a1 )sz(luklA %m(k),an(zﬂ)
m=0n=0

1
|ATZgm (), on @] 7" BT <5

Se€ Z Z ap™). (2.5)

1
For |A"Tgm (g),on(y| @77 @ > 6, we use the fact that

|A”Z gm (1), on (1) | T
§
|A™Z gm (), om (1) | 7
5 ;
where [t] denoted the integer part of ¢ and F' = (fi;) be a sequence of modulus
functions we have

____ 1
|Arxom(k),cr"(l)’0 Rremtll) <

1+]
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-1
| Txam(k),a”(l)’U (k)+o™ (D)

sz(|A Tom (k),0m (1) |W> [1 + | Ju(1)

-1
|A™Zgm (k) oy [T B FTD

<2fu(1)
Hence

S5 (e

=0,n=0
= |Arxmn\m+n<5

< 2 kl L
f Z Z akl ‘uklA -:Uo—m(k,) on l)‘a (k)+o (l)

m=0n=0

Which together with inequality (2.5) yield the following

Z Z ap” [fkl(‘uklA “f’am(k),a"(l)‘mﬂ

m=0n=0
Z Z 2 kl Z Z

< € akl f a’kl ‘UklA :L'o.m (k),om (1 ‘”m(k)“""n(l)
m=0n=0 m=0n=0

since sup Z Z ai™) < oo and hence © € A?(A,u, F,A"). This completes

m=0n=0
the proof of the theorem. O

3. DOUBLE CGAI SEQUENCE SPACES DEFINED BY SEMINORM AND A
SEQUENCE OF MODULUS FUNCTIONS

In this section, we shall introduced double P-sequence spaces by using semi-
norm function ¢ and a sequence of modulus functions F' = (fz;). We shall also
establish some topological properties and inclusion relations between the se-
quence spaces x2(A, F,p,q, A", u) and A%2(A, F,p,q, A", u).

Let (X, q) be a seminormed space over the field C of complex numbers with
the seminorm ¢ and F' = (fy;) be a sequence of modulus functions. We define
the following sequence spaces in this section :

V(A Fop,g, A7 u) = {w € X P—lim S @

m=0n=0

[ (a7 (k) + 0" D)kt A2 gy o ) 77770 ) | = 0},
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AQ(A7F7paQaAT’ ) { €A2 Supzzak‘l
m=0n=0

n

[fkl (q(|uklArxa-m(k)7o.n(l) |)m>]pm < 00}

Theorem 3.1. Let F' = fj, and F" = f]; be two sequences of modulus
functions. Then x*(A, F',p,q, A", u) N x2(A, F",p,q, A", u) C x*(A, F' +
F".p,q, A", u).

Proof. The proof is easy so omitted. O

Proposition 3.2. Let F' = (fx;) be a sequence of modulus functions g1 and
q1 be two seminorm on X, we have

(1) XZ(A7 Fapa q1, Ar? u) ﬂ XZ(A7 vaa q2;, Ar, U) - Xz(Aa Fapv q1 + g2, AT? U)

(11) If Q1 1s stronger than g2 then XQ(Aa Fip,q1, Ar’ U) - Xz(Av F,p,q2, Arau)'
(111) If q1 is equivalent to qa then Xz(Aa Fip,q1, Ar"u) = XQ(Avvav q2, Ar?“)'

Theorem 3.3. Let A = (a}}") be a non-negative matriz, F = (fy) be a
sequence of modulus functions, u = (ug;) be a sequence of strictly positive real

numbers, 0 < ppn < Wy for all m,n € N and let {p } be bounded. Then
X (A7F7w7Q7AT7u) g X (A7F7p7Q7A ,U).

Proof. Suppose = € x?(A, F,w,q, A", u),

> >

== 1 (3.1)
[sz (q((am(k‘) + Un(l))!|uklATxgm(k),a”(l)|> m)}wmn
Let

o = > > (el

o (3.2)
ﬁ Wmn
|:fkl <q<(0'm(k;) + Un(l))!‘uklArﬂfo-m,(k)Jn(l)‘) o™ (k)+o" (1) )] ,
we have Yin = Prmn/Wmn- Since Py < Winp, we have 0 <y, < 1.
Let 0 <y < Y. Then

Umn =

0, if o < 1,
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0, if tyn>1
Umn = (33)
tmna lf tmn < 1
tn = Umn + Vmn, b = upm + vom . Now, it follows that
Up < U, <ty Ui < U (3.4)

Since thmr = upmt + vom, we have t)m" = tyn + Upmn. Thus,

ZZ aii” [f’“’( ( <k>+0”<l>)!\usz"wam<k>,m>l)m)wm}%"

m=0n=0

= Z Z ag;" [fkl( < (k) +U”(l))!\usz”mC,m(k)’gn(l)‘)U"‘<k>1+0"<l>)]“’m"

m=0n=0

-

Pmn

ZZ% U’“’(( (k)”"(l))!\UkzN%m(k)van(z)\)M)wmn}wmn

m=0n=0

= Z Z ar” [sz( ( (l-c)+a”(l))!\umN%m(k)J”(Z)‘)mkﬁom)]wmn

m=0n=0

-

Z Z ap” [fkl( < (k) + Un(l))!‘u’fZArmam(l@),gn(z)\)M)]pmn

m=0n=0

) Z Z o fu(o( (o (k)+Gn(l))”“klN%mwxan(z)\)M)]wm".

m=0n=0

But

— hm Z Z ag” [fkl( < (k)+o'n(l))!|$0m(k),0"(l)|>M)}wmn

m=0n=0

= 0.
Therefore we have

- hrn Z Z (agi") {sz( ( (k)—i-o'n(l))!’xo_m(k),gn(l)’)o”‘(k)lﬁ—a”(l))]p'mn

m=0n=0

=0.
Hence = € x%(A, F,p,q, A", u). We get
(A, Fyw,q, A" u) C X*(A, F,p,q, A", u).
This completes the proof of the theorem. O
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Theorem 3.4. The space x\*(A, F,p,q, A", u) is solid and such are monotones.

Proof. Let & = (2mn) € X2(A, F,p,q, A", u) and (o) be a sequence of scalars
such that |a,,| <1 for all m,n € N. Then

i i(a’ﬁ”) [sz (Q((am(k) + 0™ (D)) g A" T gm 1y om 1) |) wwfw)rmn

m=0n=0

= i 3 (ak") [fkl (q((am(k:) + 0" (D)) gt AT g (1) o 1) |) m(k>+(l>>}pm
:7:—0 n=0

i i(a’ﬁ”) [sz (q((am(k) + 0™ (D)) g AT T gm 1y on 1) |) mwfww)rmn
m=0n=0

(ar™) [fk:l (q((cfm(k) + 0" (D) Nur A" T gm 1), 0m 1) |) m)}pm”

g
WE

for all m,n € N. This completes the proof of the theorem. O
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