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Abstract. In this paper, we consider a class of random generalized nonlinear mixed varia-

tional inclusions with random fuzzy mappings and random relaxed cocoercive mappings in

real Hilbert spaces. We suggest and analyze an iterative algorithm for finding the approx-

imate solution of this class of inclusions. Further, we discuss the convergence analysis of

the iterative algorithm under some appropriate conditions. Our results can be viewed as a

refinement and improvement of some known results in the literature.

1. Introduction

In 1994, Hassouni and Moudafi [10] used the resolvent operator technique
for maximal monotone mapping to study a class of mixed type variational in-
equalities with single-valued mappings which was called variational inclusions
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and developed a perturbed algorithm for finding the approximate solutions
of the mixed type variational inequalities. Since then, many researchers have
obtained some important extensions and generalizations of the results given
in [10] in various different directions. For details, we refer to (see [1-8, 10-12,
14-19]).

In 1965, Zadeh [20] gave the notion of fuzzy sets as an extension of crisp sets,
the usual two-valued sets in ordinary set theory, by enlarging the truth value
set to the real unit interval [0, 1]. Ordinary fuzzy sets are characterized by,
and mostly identified with, mapping called ‘membership function’ into [0, 1].
The basic operations and properties of fuzzy sets or fuzzy relations are defined
by equations or inequalities between the membership functions. Heilpern [11]
initiated the study of fuzzy mappings and established a fuzzy analogue of the
Nadler’s fixed point theorem [16] for multivalued mappings. Random varia-
tional inequality theory is an important part of random functional analysis.
The fuzzy variational inequality (inclusions) problems have a close relation
with fuzzy optimization problems. These topics have attracted many scholars
and experts due to the extensive applications of random problems in modeling,
optimization, engineering sciences and decision making problems(see [1-3, 5-8,
14-20]).

In 1989, Chang and Zhu [5] initiated the study of a class of variational
inequalities with fuzzy mappings. The concept of random fuzzy mapping was
first introduced by Huang [14]. In recent past, various classes of random
variational inequalities involving fuzzy mappings have been introduced and
studied by Cho and Lan [6], Ding [7], Huang [13], Noor [17] and Park and
Jeong [18], etc.

Recently, Huang [14] developed an iterative scheme for a class of random
variational inclusions with random fuzzy mappings and discussed its conver-
gence analysis in real Hilbert space. Very recently, Ahmad and Bazan [1],
Ahmad and Farajzadeh [2], Alshehri et al. [3], Ding and Park [8], Lan et al.
[15] and Park and Jeong [19] introduced and studied some generalized classes
of random variational inclusions with random fuzzy mappings in the setting
of Hilbert and Banach spaces.

Motivated by the recent research work going in this field, in this paper, we
consider a class of random generalized nonlinear mixed variational inclusions
with random fuzzy mappings and random relaxed cocoercive mappings in real
Hilbert space. Further, we suggest and analyze an iterative algorithm for
finding the approximate solution of this class of inclusions. Furthermore, we
discuss the convergence analysis of iterative algorithm under some appropriate
conditions. Our results can be viewed as a refinement and improvement of
some known results given in [1-3, 5-8, 13-15, 17-19].
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2. Preliminaries

Let H be a real Hilbert space whose norm and inner product are denoted
by ‖ · ‖ and 〈·, ·〉, respectively. Let (Ω,Σ) be a measurable space, where Ω is
a set in H and Σ is σ-algebra of subsets of Ω. Let B(H) be the class of Borel
σ-fields in H, CB(H) be the collection of all nonempty, bounded and closed

subsets of H and 2H be the power set of H. The Hausdorff metric H̃(·, ·) on
CB(H) is defined by

H̃(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
, A,B ∈ CB(H). (2.1)

First, we recall and define the following concepts and known results.

Definition 2.1. ([3]) A mapping x : Ω → H is said to be measurable, if for
any B ∈ B(H), {t ∈ Ω : x(t) ∈ B} ∈ Σ.

Definition 2.2. ([3]) A mapping f : Ω × H → H is said to be random,
if for any x ∈ H, f(t, x) = x(t) is measurable. A random mapping f is
said to be continuous (resp. linear, bounded), if for any t ∈ Ω, the mapping
f(t, ·) : H → H is continuous (resp. linear, bounded).

Remark 2.3. ([3]) It is well known that a measurable mapping is necessarily a
random mapping. Similarly, we can define a random mapping a : Ω×H×H →
H. We will write ft(x) = f(t, x(t)) and at(x, y) = a(t, x(t), y(t)), for all t ∈ Ω
and x(t), y(t) ∈ H.

Definition 2.4. ([3]) A multivalued mapping G : Ω → 2H is said to be
measurable, if for any B ∈ B(H), G−1(B) = {t ∈ Ω : G(t) ∩B 6= ∅} ∈ Σ.

Definition 2.5. ([3]) A mapping u : Ω→ H is said to be measurable selection
of a multivalued measurable mapping G : Ω → 2H if u is measurable and for
any t ∈ Ω, u(t) ∈ G(t).

Definition 2.6. ([3]) A multivalued mapping G : Ω × H → 2H is said to
be random, if for any x ∈ H, G(·, x) is measurable. A random multivalued

mapping G : Ω × H → CB(H) is said to be H̃-continuous, if for any t ∈ Ω,
G(t, ·) is continuous in the Hausdorff metric.

Definition 2.7. Let F (H) be the family of all fuzzy sets on H. A mapping
F : H → F (H) is called a fuzzy mapping on H.

Definition 2.8. ([3]) If F is a fuzzy mapping on H, then F (x) (denoted by
Fx, in the sequel) is fuzzy set on H and Fx(y) is the membership function of
y in Fx.



884 F. A. Khan, E. M. Aljohani and J. Ali

Definition 2.9. ([3]) Let M ∈ F (H), α ∈ [0, 1]. Then the set (M)α = {x ∈
H : M(x) ≥ α} is called a α-cut set of fuzzy set M .

Definition 2.10. ([3]) A fuzzy mapping F : Ω→ F (H) is called measurable,
if for any α ∈ (0, 1], (F (·))α : Ω→ 2H is a measurable multivalued mapping.

Definition 2.11. ([3]) A fuzzy mapping F : Ω ×H → F (H) is said to be a
random fuzzy mapping, if for any x ∈ H, F (·, x) : Ω→ F (H) is a measurable
fuzzy mapping.

Remark 2.12. We note that the random fuzzy mappings include multivalued
mappings, random multivalued mappings and fuzzy mappings as special cases.

Definition 2.13. ([2]) A random mapping P : Ω×H → H is said to be

(i) monotone, if

〈P (t, x1(t))− P (t, x2(t)), x1(t)− x2(t)〉 ≥ 0,

for all x1(t), x2(t) ∈ H, t ∈ Ω;

(ii) r-strongly monotone, if there exists a measurable function
r : Ω→ (0,∞) such that

〈P (t, x1(t))− P (t, x2(t)), x1(t)− x2(t)〉 ≥ r(t)‖x1(t)− x2(t)‖2,
for all x1(t), x2(t) ∈ H, t ∈ Ω;

(iii) m-relaxed monotone, if there exists a measurable function
m : Ω→ (0,∞) such that

〈P (t, x1(t))− P (t, x2(t)), x1(t)− x2(t)〉 ≥ −m(t)‖x1(t)− x2(t)‖2,
for all x1(t), x2(t) ∈ H, t ∈ Ω;

(iv) (λ, µ)-relaxed cocoercive, if there exist measurable functions
λ, µ : Ω→ (0,∞) such that

〈P (t, x1(t))− P (t, x2(t)), x1(t)− x2(t)〉
≥ λ(t)‖P (t, x1(t))− P (t, x2(t))‖2 + µ(t)‖x1(t)− x2(t)‖2,

for all x1(t), x2(t) ∈ H, t ∈ Ω;

(v) lP -Lipschitz continuous, if there exists a measurable function
lP : Ω→ (0,∞) such that

‖P (t, x1(t))− P (t, x2(t))‖ ≤ lP (t)‖x1(t)− x2(t)‖,
for all x1(t), x2(t) ∈ H, t ∈ Ω.

Definition 2.14. ([2]) A random multivalued mapping W : Ω ×H → 2H is
said to be
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(i) monotone, if

〈u(t)− v(t), x1(t)− x2(t)〉 ≥ 0,

for all u ∈W (t, x1(t)), v ∈W (t, x2(t)), x1(t), x2(t) ∈ H, t ∈ Ω;

(ii) r-strongly monotone, if there exists a measurable function
r : Ω→ (0,∞) such that

〈u(t)− v(t), x1(t)− x2(t)〉 ≥ r(t)‖x1(t)− x2(t)‖2,
for all u ∈W (t, x1(t)), v ∈W (t, x2(t)), x1(t), x2(t) ∈ H, t ∈ Ω;

(iii) m-relaxed monotone, if there exists a measurable function
m : Ω→ (0,∞) such that

〈u(t)− v(t), x1(t)− x2(t)〉 ≥ −m(t)‖x1(t)− x2(t)‖2,
for all u ∈W (t, x1(t)), v ∈W (t, x2(t)), x1(t), x2(t) ∈ H, t ∈ Ω.

Definition 2.15. Let A,C,R : Ω × H → CB(H) be random multivalued
mappings. A random mapping N : Ω × H × H × H → H is said to be
(l(N,2)(t), l(N,3)(t), l(N,4)(t))-mixed Lipschitz continuous, if there exist measur-
able functions l(N,2), l(N,3), l(N,4) : Ω→ (0,∞) such that

‖N(t, x1(t), y1(t), z1(t))−N(t, x2(t), y2(t), z2(t))‖
≤ l(N,2)(t)‖x1(t)−x2(t)‖+ l(N,3)(t)‖y1(t)−y2(t)‖+ l(N,4)(t)‖z1(t)−z2(t)‖,

for all xi(t), yi(t), zi(t) ∈ H, t ∈ Ω, i = 1, 2.

Definition 2.16. ([2]) Let P : Ω×H → H be a single-valued mapping. Then
a random multivalued mapping W : Ω×H → 2H is said to be P -monotone if:

(i) W is m-relaxed monotone,

(ii)
[
P (t, x(t)) + ρ(t)W (t, x(t))

]
(H) = H, for all x(t) ∈ H, t ∈ Ω and

ρ(t) > 0.

Definition 2.17. Let P : Ω × H → H be r-strongly monotone and W :

Ω×H → 2H be P -monotone. Then P -resolvent operator J
ρ(t),Pt

Wt
: Ω×H → H

associated with P and W is defined by

J
ρ(t),Pt

Wt
(x) = (Pt + ρ(t)Wt)

−1(x),

where Pt(x) = P (t, x(t)) and Wt(x) = W (t, x(t)), for all x(t) ∈ H, t ∈ Ω and
ρ(t) > 0.

Lemma 2.18. ([2, 15]) Let P : Ω×H → H be r-strongly monotone and W :

Ω×H → 2H be P -monotone. Then P -resolvent operator J
ρ(t),Pt

Wt
: Ω×H → H

is 1/(r(t)− ρ(t)m(t))-Lipschitz continuous for ρ(t) ∈ (0, r(t)/m(t)).
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Definition 2.19. ([2, 15]) A random multivalued mapping A : Ω × H →
CB(H) is said to H̃-Lipschitz continuous, if there exists a measurable function
lH̃A

: Ω→ (0,∞) such that

H̃(A(t, x1(t)), A(t, x2(t))) ≤ lH̃A
(t)‖x1(t)− x2(t)‖,

for all x1(t), x2(t) ∈ H, t ∈ Ω.

3. Formulation of problem

Let A,C,R, S, T : Ω×H → F (H) be random fuzzy mappings satisfying the
following condition (C):

(C): There exist mappings a, b, c, d, e : H → [0, 1] such that

(At,x)a(x) ∈ CB(H), (Ct,x)b(x) ∈ CB(H), (Rt,x)c(x) ∈ CB(H),

(St,x)d(x) ∈ CB(H), (Tt,x)e(x) ∈ CB(H), for all l (t, x) ∈ Ω×H.
By using the random fuzzy mappings A,C,R, S and T , we can define respec-

tively the multivalued mappings Ã, C̃, R̃, S̃, T̃ : Ω×H → CB(H) by Ã(t, x) =

(At,x)a(x), C̃(t, x)=(Ct,x)b(x), R̃(t, x)=(Rt,x)c(x), S̃(t, x) = (St,x)d(x), T̃ (t, x) =
(Tt,x)e(x), for each (t, x) ∈ Ω×H. It means that

Ã(t, x) = (At,x)a(x) = {z ∈ H, (At,x)(z) ≥ a(x)} ∈ CB(H),

C̃(t, x) = (Ct,x)b(x) = {z ∈ H, (Ct,x)(z) ≥ b(x)} ∈ CB(H),

R̃(t, x) = (Rt,x)c(x) = {z ∈ H, (Rt,x)(z) ≥ c(x)} ∈ CB(H),

S̃(t, x) = (St,x)d(x) = {z ∈ H, (St,x)(z) ≥ d(x)} ∈ CB(H),

T̃ (t, x) = (Tt,x)e(x) = {z ∈ H, (Tt,x)(z) ≥ e(x)} ∈ CB(H).

In the sequel, Ã, C̃, R̃, S̃ and T̃ are called the random multivalued mappings
induced by the random fuzzy mappings A,C,R, S and T , respectively.

Given mappings a, b, c, d, e : H→ [0, 1], random fuzzy mappingsA,C,R, S,T :
Ω×H → F (H), random mappings f, g : Ω×H → H, N : Ω×H×H×H → H
and W : Ω × H → 2H with Im(g) ∩ dom(W (t, ·)) 6= ∅, for t ∈ Ω. We con-
sider the following random generalized nonlinear mixed variational inclusion
problem involving random fuzzy mappings (RGNMVIP):

Find measurable mappings x, u, v, w, p, q : Ω→ H with for all t ∈ Ω, x(t) ∈
H, At,x(t)(u(t)) ≥ a(x(t)), Ct,x(t)(v(t)) ≥ b(x(t)), Rt,x(t)(w(t)) ≥ c(x(t)),
St,x(t)(p(t)) ≥ d(x(t)), Tt,x(t)(q(t)) ≥ e(x(t)) and g(t, q(t)) ∩ dom(W (t, ·)) 6= ∅,
such that, for t ∈ Ω

0 ∈ N(t, u(t), v(t), w(t))−
{
f(t, p(t))− g(t, q(t))

}
+W

(
t, g(t, q(t))

)
. (3.1)
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The set of measurable mappings (x, u, v, w, p, q) is called a random solution
of RGNMVIP (3.1).

For suitable choices of the mappings involved in the problem (3.1) and
the space H, RGNMVIP (3.1) reduces to various known classes of random
variational inclusions (inequalities) involving random fuzzy mappings (see [1-
3, 5-8, 14-19]).

4. Random iterative algorithm

First, we recall the following useful lemmas.

Lemma 4.1. ([4]) Let A : Ω × H → CB(H) be a H̃-continuous random
multivalued mapping. Then for any measurable mapping u : Ω → H, the
multivalued mapping A(·, u(·)) : Ω→ CB(H) is measurable.

Lemma 4.2. ([4]) Let A,C : Ω×H → CB(H) be two measurable multivalued
mappings, ε > 0 be a constant and u : Ω → H be a measurable selection of
A. Then there exists a measurable selection v : Ω→ H of C such that for all
t ∈ Ω,

‖u(t)− v(t)‖ ≤ (1 + ε) H̃(A(t) , C(t)).

Lemma 4.3. The set of measurable mappings x, u, v, w, p, q : Ω→ H is a ran-
dom solution of RGNMVIP (3.1) if and only if for all t ∈ Ω, x(t) ∈ H, u(t) ∈
Ã(t, x(t)), v(t) ∈ C̃(t, x(t)), w(t) ∈ R̃(t, x(t)), p(t) ∈ S̃(t, x(t)), q(t) ∈ T̃ (t, x(t))
and

g(t, q(t)) = J
ρ(t),Pt

Wt

[
Pt(g(t, q(t)))− ρ(t){N(t, u(t), v(t), w(t))

− (f(t, p(t))− g(t, q(t)))}
]
,

where ρ : Ω→ (0,∞) is a measurable function.

Proof. The proof directly follows from the definition of J
ρ(t),Pt

Wt
. �

Using Lemma 4.3, we develop an iterative algorithm for finding the approx-
imate random solution of RGNMVIP (3.1) as follows.

Algorithm 4.4. Let A,C,R, S, T : Ω × H → F (H) be random fuzzy map-

pings satisfying the condition (C). Let Ã, C̃, R̃, S̃, T̃ : Ω × H → CB(H)

be H̃-continuous random multivalued mappings induced by A,C,R, S, T , re-
spectively. Let f, g, P : Ω × H → H and N : Ω × H × H × H → H be
the single-valued random mappings and W : Ω × H → 2H be a multival-
ued random mapping such that for each t ∈ Ω, W (t, ·) : H → 2H is P -
monotone with Im(g)∩dom (W (t, ·)) 6= ∅. For any given measurable mapping

x0 : Ω → H, the multivalued mappings Ã(·, x0(·)), C̃(·, x0(·)), R̃(·, x0(·)), S̃
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(·, x0(·)), T̃ (·, x0(·)) : Ω→ CB(H) are measurable by Lemma 4.1. Hence by

Himmelberg [12], there exist measurable selections u0 : Ω → H of Ã(·, x0(·)),
v0 : Ω→ H of C̃(·, x0(·)), w0 : Ω→ H of R̃(·, x0(·)), p0 : Ω→ H of S̃(·, x0(·))
and q0 : Ω→ H of T̃ (·, x0(·)). Let

x1(t) = x0(t)− g(t, q0(t))

+ J
ρ(t),Pt

Wt

[
Pt(g(t, q0(t)))− ρ(t){N(t, u0(t), v0(t), w0(t))

− (f(t, p0(t))− g(t, q0(t)))}
]
,

where ρ(t) is same as in Lemma 4.3. Then, it is easy to observe that x1 : Ω→
H is measurable. By Lemma 4.2, there exist measurable selections u1 : Ω→ H
of Ã(·, x1(·)), v1 : Ω→ H of C̃(·, x1(·)), w1 : Ω→ H of R̃(·, x1(·)), p1 : Ω→ H

of S̃(·, x1(·)) and q1 : Ω→ H of T̃ (·, x1(·)) such that for all t ∈ Ω,

‖u0(t)− u1(t)‖ ≤ (1 + (1 + 0)−1) H̃ (Ã(t, x0(t)), Ã(t, x1(t))),

‖v0(t)− v1(t)‖ ≤ (1 + (1 + 0)−1) H̃ (C̃(t, x0(t)), C̃(t, x1(t))),

‖w0(t)− w1(t)‖ ≤ (1 + (1 + 0)−1) H̃ (R̃(t, x0(t)), R̃(t, x1(t))),

‖p0(t)− p1(t)‖ ≤ (1 + (1 + 0)−1) H̃ (S̃(t, x0(t)), S̃(t, x1(t))),

‖q0(t)− q1(t)‖ ≤ (1 + (1 + 0)−1) H̃ (T̃ (t, x0(t)), T̃ (t, x1(t))).

Let

x2(t) = x1(t)− g(t, q1(t))

+ J
ρ(t),Pt

Wt

[
Pt(g(t, q1(t)))− ρ(t){N(t, u1(t), v1(t), w1(t))

− (f(t, p1(t))− g(t, q1(t)))}
]
,

then x2 : Ω→ H is measurable. Continuing the above process inductively, we
can define the following random iterative sequences {xn(t)}, {un(t)}, {vn(t)},
{wn(t)}, {pn(t)} and {qn(t)} for solving problem (3.1) as follows:

xn+1(t) = xn(t)− g(t, qn(t))

+ J
ρ(t),Pt

Wt

[
Pt(g(t, qn(t)))

− ρ(t){N(t, un(t), vn(t), wn(t))− (f(t, pn(t))− g(t, qn(t)))}
]
, (4.1)

un(t) ∈ Ã(t, xn(t)), vn(t) ∈ C̃(t, xn(t)), wn(t) ∈ R̃(t, xn(t)),

pn(t) ∈ S̃(t, xn(t)), qn(t) ∈ T̃ (t, xn(t)),

such that
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‖un(t)− un+1(t)‖ ≤ (1 + (1 + n)−1) H̃ (Ã(t, xn(t)), Ã(t, xn+1(t))),

‖vn(t)− vn+1(t)‖ ≤ (1 + (1 + n)−1) H̃ (C̃(t, xn(t)), C̃(t, xn+1(t))),

‖wn(t)− wn+1(t)‖ ≤ (1 + (1 + n)−1) H̃ (R̃(t, xn(t)), R̃(t, xn+1(t))),

‖pn(t)− pn+1(t)‖ ≤ (1 + (1 + n)−1) H̃ (S̃(t, xn(t)), S̃(t, xn+1(t)))

‖qn(t)− qn+1(t)‖ ≤ (1 + (1 + n)−1) H̃ (T̃ (t, xn(t)), T̃ (t, xn+1(t))),

for any t ∈ Ω, n = 0, 1, 2, . . ., and ρ : Ω→ (0,∞) is a measurable function.

5. Convergence of Algorithm 4.4 for RGNMVIP (3.1)

Theorem 5.1. Let H be a real Hilbert space. Let f, g : Ω×H → H be Lipschitz
continuous random mappings with constants lf (t) and lg(t), respectively and g
be (λ, µ)-relaxed cocoercive. Let the random mapping N : Ω×H×H×H → H
be (l(N,2)(t), l(N,3)(t), l(N,4)(t))-mixed Lipschitz continuous and W : Ω ×H →
2H be a random multivalued mapping such that for each t ∈ Ω, W (t, ·) : H →
2H is P -monotone mapping. Let P : Ω×H → H be r-strongly monotone and
Lipschitz continuous with constant lP (t). Let A,C,R, S, T : Ω × H → F (H)
be random fuzzy mappings satisfying the condition (C) and the random mul-

tivalued mappings Ã, C̃, R̃, S̃, T̃ : Ω×H → CB(H) be H̃-Lipschitz continuous
with measurable functions lH̃Ã

(t), lH̃C̃
(t), lH̃R̃

(t), lH̃S̃
(t), lH̃T̃

(t), respectively.

Suppose that the following condition holds, for all t ∈ Ω,

θ(t) =
√

1− 2µ(t) + (lg(t)lH̃T̃
(t))2[1 + 2λ(t)]

+
1

L(t)

[
lg(t)lP (t)lH̃T̃

(t) + ρ(t)
(
LN (t) + lf (t)lH̃S̃

(t) + lg(t)lH̃T̃
(t)
)]

< 1, (5.1)

where

L(t) = r(t)− ρ(t)m(t)

and

LN (t) = l(N,2)(t)lH̃Ã
(t) + l(N,3)(t)lH̃C̃

(t) + l(N,4)(t)lH̃R̃
(t).

Then there exist measurable mappings x, u, v, w, p, q : Ω → H such that (3.1)
holds. Moreover, xn(t) → x(t), un(t) → u(t), vn(t) → v(t), wn(t) → w(t),
pn(t) → p(t) and qn(t) → q(t), where {xn(t)}, {un(t)}, {vn(t)}, {wn(t)},
{pn(t)} and {qn(t)} are the random sequences generated by iterative Algorithm
4.4.
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Proof. It follows from (4.1) and Lemma 2.18 that

‖xn+1(t)− xn(t)‖ =
∥∥xn(t)− g(t, qn(t)) + J

ρ(t),Pt

Wt
[Pt(g(t, qn(t)))

− ρ(t){N(t, un(t), vn(t), wn(t))−(f(t, pn(t))−g(t, qn(t)))}]

−
[
xn−1(t)− g(t, qn−1(t)) + J

ρ(t),Pt

Wt
[Pt(g(t, qn−1(t)))

− ρ(t){N(t, un−1(t), vn−1(t), wn−1(t))

− (f(t, pn−1(t))− g(t, qn−1(t)))}]
]∥∥

≤ ‖xn(t)− xn−1(t)− (g(t, qn(t))− g(t, qn−1(t)))‖

+
1

r(t)− ρ(t)m(t)
‖Pt(g(t, qn(t)))− Pt(g(t, qn−1(t)))‖

+
ρ(t)

r(t)− ρ(t)m(t)
‖N(t, un(t), vn(t), wn(t))

−N(t, un−1(t), vn−1(t), wn−1(t))‖

+
ρ(t)

r(t)− ρ(t)m(t)

(
‖f(t, pn(t))− f(t, pn−1(t))‖

+ ‖g(t, qn(t))− g(t, qn−1(t))‖
)
. (5.2)

Using the H̃-Lipschitz continuity of Ã, C̃, R̃ and (l(N,2)(t), l(N,3)(t), l(N,4)(t))-
mixed Lipschitz continuity of N , we have

‖N(t, un(t), vn(t), wn(t))−N(t, un−1(t), vn−1(t), wn−1(t))‖
≤ l(N,2)(t)‖un(t)− un−1(t)‖+ l(N,3)(t)‖vn(t)− vn−1(t)‖

+ l(N,4)(t)‖wn(t)− wn−1(t)‖

≤ (1 + (1 + n)−1)
(
l(N,2)(t) H̃(Ã(t, xn(t)), Ã(t, xn−1(t)))

+ l(N,3)(t) H̃(C̃(t, xn(t)), C̃(t, xn−1(t)))

+ l(N,4)(t)H̃(R̃(t, xn(t)), R̃(t, xn−1(t)))
)

≤ (1 + (1 + n)−1)
(
l(N,2)(t)lH̃Ã

(t) + l(N,3)(t)lH̃C̃
(t)

+ l(N,4)(t)lH̃R̃
(t)
)
‖xn(t)− xn−1(t)‖. (5.3)

Using the Lipschitz continuity of f and g, we have

‖f(t, pn(t))−f(t, pn−1(t))‖ ≤ lf (t)lH̃S̃
(t)(1+(1+n)−1) ‖xn(t)−xn−1(t)‖,

(5.4)

‖g(t, qn(t))−g(t, qn−1(t))‖ ≤ lg(t)lH̃T̃
(t)(1+(1+n)−1) ‖xn(t)−xn−1(t)‖.

(5.5)
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Using (λ, µ)-relaxed cocoercivity of g, Lipschitz continuity of g and (5.5), we
have

‖xn(t)− xn−1(t)− (g(t, qn(t))− g(t, qn−1(t)))‖2

≤ ‖xn(t)− xn−1(t)‖2 − 2〈g(t, qn(t))− g(t, qn−1(t)), xn(t)− xn−1(t)〉
+ ‖g(t, qn(t))− g(t, qn−1(t))‖2

≤ ‖xn(t)− xn−1(t)‖2 + 2λ(t)‖g(t, qn(t))

− g(t, qn−1(t))‖2 − 2µ(t)‖xn(t)− xn−1(t)‖2

+ ‖g(t, qn(t))− g(t, qn−1(t))‖2

≤ ‖xn(t)− xn−1(t)‖2 − 2µ(t)‖xn(t)− xn−1(t)‖2

+ (lg(t)lH̃T̃
(t)(1 + (1 + n)−1))2[1 + 2λ(t)]‖xn(t)− xn−1(t)‖2,

which implies

‖xn(t)− xn−1(t)− (g(t, qn(t))− g(t, qn−1(t)))‖

≤
√

1−2µ(t)+(lg(t)lH̃T̃
(t)(1+(1+n)−1))2[1+2λ(t)] ‖xn(t)−xn−1(t)‖. (5.6)

Using the Lipschitz continuity of P and combining (5.2)-(5.6), we have

‖xn+1(t)− xn(t)‖

≤
√

1− 2µ(t) + (lg(t)lH̃T̃
(t)L(n))2[1 + 2λ(t)] ‖xn(t)− xn−1(t)‖

+
lg(t)lP (t)lH̃T̃

(t)L(n)

L(t)
‖xn(t)− xn−1(t)‖

+
ρ(t)(l(N,2)(t)lH̃Ã

(t)+l(N,3)(t)lH̃C̃
(t)+l(N,4)(t)lH̃R̃

(t))L(n)

L(t)
‖xn(t)−xn−1(t)‖

+
ρ(t)(lf (t)lH̃S̃

(t) + lg(t)lH̃T̃
(t))L(n)

L(t)
‖xn(t)− xn−1(t)‖, ∀ t ∈ Ω, (5.7)

where L(n) = (1 + (1 + n)−1) and L(t) = r(t)− ρ(t)m(t). Thus, we have

‖xn+1(t)− xn(t)‖ ≤ θn(t) ‖xn(t)− xn−1(t)‖, ∀ t ∈ Ω, (5.8)

where

θn(t) =
√

1− 2µ(t) + (lg(t)lH̃T̃
(t)L(n))2[1 + 2λ(t)]

+
L(n)

L(t)

[
lg(t)lP (t)lH̃T̃

(t) + ρ(t)
(
l(N,2)(t)lH̃Ã

(t) + l(N,3)(t)lH̃C̃
(t)

+ l(N,4)(t)lH̃R̃
(t) + lf (t)lH̃S̃

(t) + lg(t)lH̃T̃
(t)
)]
,
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where L(n) = (1 + (1 + n)−1) and L(t) = r(t)− ρ(t)m(t). Letting n→∞, we
have θn(t)→ θ(t) for all t ∈ Ω, where

θ(t) =
√

1− 2µ(t) + (lg(t)lH̃T̃
(t))2[1 + 2λ(t)]

+
1

L(t)

[
lg(t)lP (t)lH̃T̃

(t)+ρ(t)
(
LN (t)+lf (t)lH̃S̃

(t)+lg(t)lH̃T̃
(t)
)]
,∀ t ∈ Ω

(5.9)

where,

L(t) = r(t)− ρ(t)m(t),

and

LN (t) = l(N,2)(t)lH̃Ã
(t) + l(N,3)(t)lH̃C̃

(t) + l(N,4)(t)lH̃R̃
(t).

By condition (5.1), θ(t) ∈ (0, 1) for all t ∈ Ω. Hence for any t ∈ Ω, θn(t) < 1 for
n sufficiently large. Therefore (5.8) implies that {xn(t)} is a Cauchy sequence
in H. Since H is complete, there exists a measurable mapping x : Ω → H
such that xn(t) → x(t) for all t ∈ Ω. Further, it follows from H̃-Lipschitz

continuity of Ã and iterative Algorithm 4.4, we have

‖un+1(t)− un(t)‖ ≤ (1 + (1 + n)−1)lH̃Ã
(t)‖xn+1(t)− xn(t)‖,

which implies that {un(t)} is a Cauchy sequence in H.
Similarly, we can prove that {vn(t)}, {wn(t)}, {pn(t)}, {qn(t)} are Cauchy

sequences in H. Hence, there exist measurable mappings v, w, p, q : Ω → H
such that vn(t)→ v(t), wn(t)→ w(t), pn(t)→ p(t) qn(t)→ q(t) as n→∞ for
all t ∈ Ω.

Furthermore, for any t ∈ Ω, we have

d(u(t), Ã(t, x(t))) ≤ ‖u(t)−un(t)‖+d(un(t) , Ã(t, x(t)))

≤ ‖u(t)− un(t)‖+ H̃(Ã(t, xn(t)) , Ã(t, x(t)))

≤ ‖u(t)− un(t)‖+ lH̃Ã
(t)‖xn(t)− x(t)‖

→ 0 as n→∞.
Hence u(t) ∈ Ã(t, x(t)) for all t ∈ Ω.

Similarly, we can show that v(t) ∈ C̃(t, x(t)), w(t) ∈ R̃(t, x(t)), p(t) ∈
S̃(t, x(t)), q(t) ∈ T̃ (t, x(t)) for all t ∈ Ω. This completes the proof. �

Remark 5.2. For all t ∈ Ω, and measurable functions ρ, r,m : Ω → (0,∞),
it is clear that r(t) > ρ(t)m(t), 2µ(t) < 1 + (lg(t)lH̃T̃

(t))2[1 + 2λ(t)] and

ρ(t) ∈ (0, r(t)/m(t)). Further, θ(t) ∈ (0 , 1) and condition (5.1) of Theorem
5.1 holds for some appropriate values of constants.
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Remark 5.3. Since the RGNMVIP (3.1) includes many known classes of
random variational inclusions (inequalities) involving random fuzzy mappings
as special cases, so the technique utilized in this paper can be used to extend
and advance the theorems given by many researchers (see [1-3, 5-8, 14-19]).

Acknowledgments: The authors would like to thank the anonymous referees
for their comments that helped us to improve this paper.
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