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Abstract. The aim of this paper is to construct a new method for finding the zeros of

the sum of two maximally monotone mappings in Hilbert spaces. We will define a simple

function such that its set of zeros coincide with that of the sum of two maximal monotone

operators. Moreover, we will use the Newton-Raphson algorithm to get an approximate zero.

In addition, some illustrative examples are given at the end of this paper.

1. Introduction

Let X be a real Hilbert space and A : X ⇒ X, B : X ⇒ X be two maximal
monotone operators on X. We consider the following principal problem: find
an element x in X such that

0 ∈ A (x) +B (x) . (1.1)

We denote the set of solutions of (1.1) by (A+B)−1 (0).

The problem (1.1) was studied by various authors for example, see, [1, 2, 3,
4, 7, 8, 9, 10, 11, 12, 14, 15].

For all λ > 0, we define the following function fλ : X2 → X2 by
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fλ (x, y) =

 JAλ (x)− x+ y

2

JBλ (y)− x+ y

2

 ,

where JAλ and JBλ are respectively the resolvents of A and B, which are defined
as follows:

JAλ (x) := (I + λA)−1 (x) and JBλ (x) := (I + λB)−1 (x) ,

where I is the identity operator in X.

For all λ > 0, we consider the problem:

min
(x,y)∈X×X

‖fλ (x, y)‖ = 0. (1.2)

It is well known that the second problem (1.2) has many algorithms to obtain
one of its solutions(see [13]).

This paper is organized as follows: in the second section, we establish some
notations and some properties of maximal monotone operator. In the third
section, we will explain the relationship between the problems (1.1) and (1.2) .
In the last section, we use the Newton-Raphson algorithm to approximate a
solution of (1.1) .

2. Preliminaries

Let X be a real Hilbert space and A : X ⇒ X a set-valued map. We denote
by domA the domain of A that is, domA := {x ∈ X : Ax 6= ∅}, and the graph
of A is given by:

graphA := {(x, y) ∈ X× X : x ∈ domA and y ∈ Ax} .

Definition 2.1. ([6]) The operator A is said to be monotone, if:

〈y1 − y2, x1 − x2〉 ≥ 0 for all (xi, yi) ∈ graphA, i = 1, 2.

Definition 2.2. ([6]) A monotone operator A is called maximal, if its graph
has not an extension to a graph of another monotone operator.

We can rephrase the definition of a maximal monotone operator in terms of
its graph. If A is a monotone operator, then A is maximal if and only if the
following conditions are equivalents:

(1) u ∈ A(x),
(2) for all (y, v) ∈ graph(A), 〈u− v, x− y〉 ≥ 0.

Proposition 2.3. ([6]) Let A : X ⇒ X be a maximal monotone operator.
Then for all λ > 0, (I + λA) is surjective.
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Proposition 2.4. ([6]) Let A be a maximal monotone operator. For each
y ∈ X, there is a unique x ∈ domA such that y ∈ x+ λA (x) .

For λ > 0, the Yoshida approximation of a maximal monotone A is given
by

Aλ (x) :=
1

λ

(
id − JAλ

)
(x) .

Proposition 2.5. ([5, 6]) For all element y ∈ X, we have

Aλ (y) ∈ A (Jλ (y)) .

Definition 2.6. The sum A+B is defined as:

A (x) +B (x) = {u+ v/u ∈ A (x) and v ∈ B (x)} .
Clearly dom (A+B) = domA ∩ domB.

Let f : X→ R∪{∞} be a proper, convex and lower semicontinuous function.
The subdifferential of f, ∂f : X ⇒ X is defined by

∂f(x) = {x∗ ∈ X : f(y)− f(x) ≥ 〈y − x, x∗〉 , ∀ y ∈ X} .
It is known that ∂f : X ⇒ X is a maximal monotone operator on X, and
0 ∈ ∂f (x∗) if and only if x∗ is a minimizer of f. Setting ∂f = A, it follows
that solving the inclusion 0 ∈ Ax, in this case, is equivalent to solving for a
minimizer of f.

3. Main results

Our goal in this section is to find the relation between the problems (1.1)
and (1.2), we start with the following theorem.

Theorem 3.1. For all λ > 0, the problem (1.2) has a solution if and only if
(1.1) has a solution.

Proof. For all λ > 0, if (x, y) is a solution of (1.2), then
JAλ (x) =

x+ y

2
,

JBλ (y) =
x+ y

2
.

Therefore, {
y = 2JAλ (x)− x,

2JBλ (y) = x+ y.

Replacing y by 2JAλ (x)− x in 2JBλ (y) = x+ y, we get,

JBλ
(
2JAλ (x)− x

)
= JAλ (x) .
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So

2JAλ (x)− x ∈ JAλ (x) + λB
(
JAλ (x)

)
.

That means

−Aλ (x) ∈ B
(
JAλ (x)

)
.

Since Aλ (x) ∈ A
(
JAλ (x)

)
, we obtain

0 ∈ A
(
JAλ (x)

)
+B

(
JAλ (x)

)
.

Consequently

JAλ (x) ∈ (A+B)−1 (0) .

Conversely, if z ∈ (A+B)−1 (0) , then z ∈ domA. This means that there
exists an element x′ ∈ X such that x′ ∈ A (z) . So,

x′ + z ∈ z +A (z) ,

and by the definition of the resolvent of A, we get

z = JAλ
(
x′ + z

)
.

We conclude that, for all z ∈ (A+B)−1 (0), there exists s = x′ + z ∈ X such
that z = JAλ (s) . Thus we have

JAλ (s) ∈ (A+B)−1 (0) .

Then

0 ∈ A
(
JAλ (s)

)
+B

(
JAλ (s)

)
.

Therefore, there exists a ∈ X such that{
a ∈ A

(
JAλ (s)

)
,

−a ∈ B
(
JAλ (s)

)
.

Hence {
a+ JAλ (s) ∈ JAλ (s) +A

(
JAλ (s)

)
,

−a+ JAλ (s) ∈ JAλ (s) +B
(
JAλ (s)

)
.

By the definition of the resolvent of A, we have{
JAλ (s) = JAλ

(
JAλ (s) + a

)
,

JAλ (s) = JBλ
(
JAλ (s)− a

)
.

We can write JAλ (s) as

JAλ (s) =
x+ y

2
,
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where {
x = JAλ (s) + a,

y = JAλ (s)− a.
Then 

JAλ (x) =
x+ y

2
,

JBλ (y) =
x+ y

2
.

Consequently, the problem (1.2) has a solution. �

Remark 3.2. Let λ > 0, µ > 0, Sλ = {(x, y) ∈ X× X : ‖fλ (x, y)‖ = 0} and
Sµ = {(x, y) ∈ X× X : ‖fµ (x, y)‖ = 0} . Then{

JAλ (x) : (x, y) ∈ Sλ
}

=
{
JAµ (x) : (x, y) ∈ Sµ

}
.

that is,

(A+B)−1 (0) =
{
JAλ (x) : (x, y) ∈ Sλ

}
, ∀ λ > 0.

Theorem 3.3. For all λ > 0, if θλ(a) = JBλ (2JAλ (a)− a)− JAλ (a) + a, then

JAλ (S (θλ)) = (A+B)−1(0),

where S (θλ) denotes the set of all fixed points of θλ.

Proof. If a is a fixed point for the function θλ, we have

a = JBλ (2JAλ (a)− a)− JAλ (a) + a⇐⇒ JBλ (2JAλ (a)− a) = JAλ (a)

⇐⇒ 2JAλ (a)− a ∈ JAλ (a) + λB
(
JAλ (a)

)
⇐⇒ 1

λ

(
JAλ (a)− a

)
∈ B

(
JAλ (a)

)
⇐⇒ −Aλ (a) ∈ B

(
JAλ (a)

)
.

Since Aλ (a) ∈ A
(
JAλ (a)

)
, we get 0 ∈ A

(
JAλ (a)

)
+B

(
JAλ (a)

)
. �

Example 3.4. Consider A (x) = {2x}, B (x) = {4x} and X = R. We will find
a solution of the following problem:

0 ∈ A (x) +B (x) . (3.1)

Clearly, for all λ > 0,

JAλ (x) =
x

2λ+ 1
and JBλ (x) =

x

4λ+ 1
.
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We can define the function: fλ : R2 → R2 by

fλ (x, y) =

JAλ (x)− x+ y

2

JBλ (y)− x+ y

2

 =


x

2λ+ 1
− x+ y

2
y

4λ+ 1
− x+ y

2

 .

If ‖fλ (x, y)‖ = 0, then 
x

2λ+ 1
− x+ y

2
= 0,

y

4λ+ 1
− x+ y

2
= 0.

Hence (x, y) = (0, 0) . Apply Theorem (3.1), we obtain JAλ (0) = 0 is a solution
of (3.1) .

4. Numerical example

4.1. Algorithm. We have:

f : R2 → R2

(x, y)→ f (x, y) =

 JAλ (x)− x+ y

2

JBλ (y)− x+ y

2

 .

The Jacobian matrix of f is :

Jf (x, y) =


∂JAλ
∂x

(x)− 1

2
−1

2

−1

2

∂JBλ
∂y

(y)− 1

2

 .

We calculate the determinant of Jf (x, y):

det Jf (x, y) =

(
∂JAλ
∂x

(x)− 1

2

)(
∂JBλ
∂y

(y)− 1

2

)
− 1

4

=
∂JAλ
∂x

(x)
∂JBλ
∂y

(y)− 1

2

∂JAλ
∂x

(x)− 1

2

∂JBλ
∂y

(y) .

Newton-Raphson method, or Newton Method, is a powerful technique for
solving the equations numerically:

(xk+1, yk+1) = (xk, yk)− J−1f (xk, yk) f (xk, yk) , k = 0, 1, 2, ....
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4.2. MATLAB programming.

clear all; close all; clc ; x = 10;
y = 10;
variable = [x; y];
t = [0; 0];
delta = 1;
iteration = 1;
while (abs(delta) > 1e− 20)
f = [JAλ (variable(1)) + 0.5 ∗ (variable(1) ∗ variable(2)) ;

JBλ (variable(1)) + 0.5 ∗ (variable(1) ∗ variable(2))];

jacop=[
(
∂JAλ
∂x (variable(1))− 0.5

)
(−0.5) ;

(
(−0.5)

∂JBλ
∂x (variable(1))− 0.5

)
];

delta = (jacop) ∗ (t− f);
variable = variable+ delta;
iteration = iteration+ 1;
end
format long
x optimise = variable(1)
y optimise = variable(2)

Example 4.1. Let f : R→ R and g : R→ R be two convex functions defined
as:

f (x) = (2x+ 1)2 and g (x) = (5x+ 2)2.

Then

∂f (x) = {8x+ 4} and ∂g (x) = {50x+ 20} .
It is known that A = ∂f : R ⇒ R and B = ∂g : R ⇒ R are maximal monotone
operators on R. Our problem,

0 ∈ ∂f (x) + ∂g (x) . (4.1)

Then, for all λ > 0,

JAλ (x) =
x− 4λ

8λ+ 1
and JBλ (x) =

x− 20λ

50λ+ 1
.

If we choose λ = 1, we obtain by using the above program,

(x, y) = (0.246,−1.073)

and from Theorem 3.1, JA1 (0.246) = −0.417 is an approximate solution of
(4.1) .
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[4] H. Attouch, J.B. Baillon and M. Théra, Variational Sum of Monotone Operators, J.
Convex Anal., 1(1) (1994), 1-29.

[5] A. Beddani, An approximate solution of a differential inclusion with maximal monotone
operator, J. Taibah Univ. Sci., 14(1) (2020), 1475-1481.
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