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Abstract. In this presentation, the particles at the matter surface (metal, crystal, nano) will

be considered as the control target outside the physical domain. As is well known that control

problems of quantum particles at surface had been investigated in various aspects in last

couple of years, but the realization of control would become rather difficult than theoretical

results. Especially, whether surface control would be valid? what kind of particles at what

kind of matter surfaces can be controlled? so many questions still left as the mystery in the

current research literature and papers. It means that the direct control sometime does not

easy. On the other hands, control outside the physical domain is quite a interest consideration

in mathematics, physics and chemistry. The main plan is to take the quantum systems

operator (such as Laplacian ∆) in the form of fractional operator (∆s, 0 < s < 1), then

to consider the control outside of physical domain. Fortunately, there are many published

articles in the field of applied mathematics can be referred for the achievement of control

outside of domain. The external quantum control would be a fresh concept to do the physical

control, first in the theoretic, second in the computational, final in the experimental issues.

1. Introduction

The topics of quantum control at surface had already been taken account
into consideration past a long time (cf. [3], [5], [7], [8]), those investigation con-
tained the control of different particles (molecule, atom, elementary particle)
at different matter surface (metal, crystal, catalysis). Although several ques-
tions are inside the obtained results for theoretical study (cf. [18]), restrictedly,
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the consequences could be a direction for the experimental research of control
of quantum system in the physical chemistry area. More precisely, there is a
numerical result for the quantum control of Klein-Gordon-Schrödinger dynam-
ics system, it quite need the physical support for meaningful in the realistic
sense. That is, whether neutrons and meson can be really arranged in a corral
or circle? these connection between the mathematical study and experimental
physics would be existing problems also for other attained results. Without
lost of generalization, it give us the big opportunity to solve those problems
in the future works.

In this paper, suppose the control of a quantum system take place outside
the domain, then differential equation is changed its usual differential operator
into a fractional operator. In the nonlinear fractional differential equation,
apply optimal control theory, and seek the results as supplementary to aid the
control at matter surface using the external force.

2. Fractional differential equation

First of all, we introduce the fractional differential equation as preparation
in corresponding to the control outside the domain. For a very usual quantum
system given by

i~
∂ψ

∂t
= Eψ,

where ψ is a wave function to represent the probability of particle, it is a
complex valued function in complex Hilbert space (cf. [7]). Take most common

differential operator E = ∆, then to have i~
∂ψ

∂t
= ∆ψ, which is composed the

famous Schrödinger equation. In here, ~ is the reduced Planck constant, and
i is unit of imaginary part at complex space.

For such a differential operator ∆, assume its eigenvalue λi and eigenfunc-
tion wi, then there is

∆wi = λwi, i = 1, 2, ....

Therefore, for differential operator ∆s, 0 < s < 1, its eigenvalue λsi and
eigenfunction wi can be defined as

∆swi = λswi, i = 1, 2, ... for 0 < s < 1. (2.1)

The definition (2.1) is well-posed and reasonable. The fractional square is
appeared at the eigenvalue, and it is a valid and existed value to define the
fractional square at the operator ∆ (as well as E). Directly, that is to say, we
define the fractional operator ∆s by (2.1), that is, ∆swi=̇λ

swi. It means that
fractional differential operator make sense. One can consider the fractional
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differential equation as

i~
∂ψ

∂t
= ∆sψ, 0 < s < 1

or

(i~)s
∂ψ

∂t
= ∆sψ, 0 < s < 1.

Mathematically, it is equivalent to each other. For generalization, take the
form of quantum system as

i~s
∂ψ

∂t
= ∆sψ, 0 < s < 1. (2.2)

For example, by (2.2), denote m as mass of particle, then the nonlinear frac-
tional Schrödinger equation can be described as

(i~)s
∂ψ

∂t
=

~2

2m
∆sψ + iαs

∂ψ

∂t
+ βsψ.

It is equivalent to the formulation of

i~s
∂ψ

∂t
=

~2

2m
∆sψ + iα

∂ψ

∂t
+ βψ,

by the consideration of arbitrary of coefficients of α and β.

2.1. Physics support. For a particle at matter surface, the stationary status
most interested in the chemistry field, which consider particle-particle, surface-
particle reaction between particle and matter. At viewpoint of control field,
this paper initially suppose that control process of particle focus on a particle
at some one given surface, and received the external source outside the domain.
Certainly, it can be realized at current experimental facility.

For the consideration of particle at surface, this paper is restricted in the
two dimension plane for spatial space. Let Ω be a open set of RN , N = 2,
then x = (x1, x2) ∈ Ω, and outside domain denoted as RN/Ω. Γ denote the
boundary of Ω, and Γ = ∂Ω. Suppose the term u(t) will be used to express
the potential of external force f , outside the domain, which acting at the
system. Since just one particle is considered in the surface, it can be taken as
a quantum dot. For simplification, assume u(t) depended on time variable t
only. This term indicated the electronic field (shaped laser pulse, etc).

More precisely, set source is located at two spatial space point x0 = (x0
1, x

0
2).

the external force f will be a emission at the point source, therefore, the
interaction to the whole system can be expressed as the formulation u(t) ⊗
δ(x− x0).

Due to the pointwise source outside the physics domain, it completely inde-
pendent from the system, therefore, the problem assume that initial function
ψ(x, 0) = ψ0(x) for ground state of wave function ψ at start time t = 0.
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For other kind of outside value problems, such as outside distributed control,
boundary value ψΓ = ψ∂Ω can be calculated at the boundary ∂Ω by given
outside control RN/Ω, it can avoid to take the initial guess of ψ.

2.2. Fractional Schrödinger equation. For 0 < s < 1, set Q = Ω× (0, T ).
For (x, t) ∈ Q, the nonlinear fractional Schrödinger equation has the form of −i~

sψ = ∆sψ + V (x, t)ψ, in Q,
ψ(x, 0) = ψ(0), in Ω,
ψ(x, t) = u(t)⊗ δ(x− x0), in RN/Ω× [0, T ] for x0 ∈ RN/Ω,

(2.3)

where ~ is reduced Planck constant, take N = 2 for plane surface. ∆s is
Laplacian defined by (2.1). V (x, t) is a physical and chemical potential in
domain Ω. Control variable u(t) is depended on time varying only. Pointwise
function

δ(x− x0) =

{
1 if x = x0 for ∀x ∈ RN/Ω,
0 if x 6= x0 for ∀x ∈ RN/Ω.

Note that ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

, and ∇ =
( ∂

∂x1
,
∂

∂x2

)
as usual. ∆s,∇s are used

to express the fractional derivative of spatial variable x, but the formulation
are different from ∆ and ∇.

Remark 2.1. It needs to explain the control term u(t) ⊗ δ(x − x0), which
mean that there is a control input u(t) only at the point x0 outside the domain
R2/Ω, at other place its value be zero. It is point source for the system (2.3).

Remark 2.2. Mathematically, the domain of a parabolic partial differential
equation is infinite both for inside and outside parts. Our problem is configured
for a particle at matter surface. The domain mentioned in here is indicated the
physics domain of surface, which located the particle. Such as [0, L]×[0, L] and
[−L,L]× [−L,L]. Therefore, the posed quantum system (2.3) is meaningful.

3. Mathematical setting

In this section, nonlinear fractional Schrödinger equation (2.3) as quantum
system will be considered to do mathematical setting in Sobolev, and Hilbert
spaces (cf. [1], [4], [10], [11], [13]). To concentrate to the fractional operator
and outside control, this paper is restricted to take the value of real Hilbert
space as wave function for simplification (cf. [16]). By the equivalent of norm
at complex Hilbert spaces and real Hilbert spaces, it is easily to regard the
calculation of term of complex wave functions by their real part function only,
or the real part and imaginary part separately.
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3.1. Fractional derivative and norm. To the practical problem (2.3), de-
fine two Hilbert spaces H = L2(Ω), V = H1

0 (Ω) with usual norm and inner
product. Then (V,H) is a Gelfand triple spaces V ↪→ H ↪→ V ′, in which
two embeddings are continuous, dense and compact. For 0 < s < 1, let
the fractional spaces Ls(Ω), Hs(Ω),W s,p(Ω) be the fractional L space, frac-
tional Hilbert space, fractional Sobolev space, respectively. As usual Hs(Ω) =
W s,2(Ω), p = 2. s is the order of the derivative of a function ψ of W s,2(Ω).

For example s = 1
2 , and L

1
2 (Ω), H

1
2 (Ω),W

1
2
,2(Ω).

An interaction operator N (s) had been used in contributed papers [2], here
is quotation for a continuous mapping: W s,2(Ω)→ L2(RN/Ω) using nonlocal
normal derivative of order s by the definition

N (s)ψ = C(N, s)

∫
Ω

ψ(x)− ψ(y)

|x− y|N+2s
dy, ∀ x ∈ RN/Ω̄,

where C(N, s) =
s22sΓ(2s−N

2 )

π
s
2 Γ(1− s)

, and Γ is special function, Gamma function.

At first, for 0 < s < 1, cite [1, 4, 9], it need to introduce the fractional
derivative and norm for a functional ψ at Sobolev space W s,2(Ω). For ψ ∈
W s,2(Ω), the fractional derivative can be given by the form of

∂sψ

∂xs
:= C(N, s)

∫
Ω

ψ(x)− ψ(y)

|x− y|N+2s
dy for all ψ ∈W s,2(Ω), (3.1)

where N is dimension of RN , take N = 2 in here. Denote x = (x1, x2),y =
(y1, y2) ∈ R2. Denote x = (x1, x2, · · · , xN ), y = (y1, y2, · · · , yN ) for RN , for
detailed expression (cf. [9]) for the integration dx = dx1dx2 · · · dxN of RN .

In system (2.3) and (3.1), additionally, for ψ(x, t) = u(t) ⊗ (x − x0), the
integration of nonlocal normal derivative can be calculated as∫

Ω

ψ(x)− ψ(y)

|x− y|N+2s
dy =

∫
Ω

u(t)⊗ δ(x− x0)− u(t)⊗ δ(y − x0)

|x− y|N+2s
dy

= u(t)⊗
∫

Ω

δ(x− x0)− δ(y − x0)

|x− y|N+2s
dy

= u(t)⊗
∫

Ω

δ((x− y)− x0)

|x− y|N+2s
dy

= −u(t)⊗
∫

Ω

δ(z− x0)

|z|N+2s
dz (set z = x− y)
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= −u(t)⊗
∫

Ω

(
δ(z− x0)|z|−N−2s

)
dz

= −u(t)⊗
∫

Ω
|x0|−(N+2s)dz

= −u(t)|x0|−(N+2s)Ω̄, (3.2)

where Ω̄ is a measurement of domain Ω. Thus, by the definition of nonlocal
normal derivative to find that N (s)ψ belong to L2(RN/Ω), and depended only
on time variable t.

Definition 3.1. The Sobolev space W s,2(Ω) is defined as (cf. [1], [4])

W s,2(Ω) =
{
ψ
∣∣∣ ψ ∈ L2(Ω),

∫
Ω

∫
Ω

|ψ(x)− ψ(x′)|2

|x− x′|N+2s
dx′dx <∞, ∀ x,x′ ∈ Ω

}
.

The norm of y at space W s,2(Ω) is given by

‖ψ‖W s,2(Ω) =
(
‖ψ‖2L2(Ω) +

∫
Ω

∫
Ω

|ψ(x)− ψ(y)|2

|x− y|N+2s
dxdy

) 1
2
, (3.3)

where N is the dimension of space RN , in here N = 2 for particle at surface.

For ψ,ϕ ∈W s,2(Ω), the inner product of W s,2(Ω) is given by

(ψ,ϕ)W s,2(Ω) = (ψ,ϕ)L2(Ω) +

∫
Ω

∫
Ω

(ψ(x)− ψ(x′))(ϕ(x)− ϕ(x′))

|x− x′|N+2s
dx′dx. (3.4)

Because ψ(x, t) = 0, a.e. x ∈ RN/Ω, for cover outside control, define Besov
space

W s,2
0 (Ω̄)=

{
ψ ∈W s,2(RN )

∣∣ψ(x)=u(t)⊗δ(x−x0) for x ∈ RN/Ω,x0 ∈ RN/Ω
}
.

The norm of W s,2
0 (Ω̄) can be defined as

‖ψ‖
W s,2

0 (Ω̄)
=
(
‖ψ‖2L2(Ω) +

∫
RN

∫
RN

|ψ(x)− ψ(y)|2

|x− y|N+2s
dxdy

) 1
2
. (3.5)

By the definition (3.5) of fractional derivative, the difference term x−y allow
to take x,y outside the domain Ω. Therefore, as pointed out in [2], the normal
Laplacian −∆ is a local operator, which just act at inside the domain Ω, the
fractional operator −∆s, is a nonlocal operator, which can act at outside of
domain RN/Ω, and also make ψ derivativiable. Hence, take fractional opera-
tor to do outside control is reasonable and well-posed. Additionally, By above

Definition 3.1, the fractional gradient operator ∇s =
( ∂s
∂xs1

,
∂s

∂xs2
, · · · , ∂s

∂xsN

)
,

N = 2 in here. Response to the calculation of integration (3.2), define a local

Besove space W s,2
local(R

N/Ω) if needed (cf. [2]).
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Besov space is special Sobolev space on real space RN with dimension N
(cf. [1, 4]). To differ with Lebesgue space Lp(RN ), set 0 < s < 1, define
fractional space as

Ls,p(RN ) =
{
ψ
∣∣∣ RN → R measurable, and

∫
RN

|ψ(x)|
(1 + |x|)N+2s

dx <∞
}
.

In here, s is the order of derivative, and p just is a symbol for responding
to later Sobolev space W s,p(RN ), take p = 1 in here. Without specified in
context, in general, the fractional order appeared at L space is to indicate
the fractional Besov space, and the integral order appeared at L space is to
indicate the Lebesgue space.

Next, define Besov space W s,2(RN ) by (3.3) as following, and denote
Hs(RN ) = W s,2(RN ) for p = 2. As to x in whole domain RN , for ψ,ϕ ∈
W s,2(RN ), its inner product (cf. 3.4) is given by

(ψ,ϕ)W s,2(RN ) = (ψ,ϕ)L2(RN )

+

∫
RN

∫
RN

(ψ(x)− ψ(x′))(ϕ(x)−ϕ(x′))

|x− x′|N+2s
dx′dx

+

∫
∂RN

ψN (s)ϕdx.

The norm of y ∈W s,2(RN ) will be given by∥∥ψ∥∥
W s,2(RN )

=
(
‖ψ‖2L2(RN ) +

∫
RN

∫
RN

|ψ(x)− ψ(x′)|2

|x− x′|N+2s
dx′dx +

∫
∂RN

ψN (s)ψdx
) 1

2
.

Thanks to the definition of W s,2(Ω) in (3.3), it means that W s,2(Ω) ⊂ L2(Ω).

It is easily to let us take H = L2(Ω). Denote W s,2
0 (Ω)={ψ |ψ ∈W s,2(Ω), ψΓ =

ψ∂Ω = 0}. Use that notation Hs for fractional Hilbert space 0 < s < 1. Set

V = Hs
0(Ω) = W s,2

0 (Ω), H = L2(Ω), and V′ = H−s(Ω) = W−s,2(Ω). Thus,
(V,H) is a Gelfand triple spaces V ↪→ H ↪→ V′, in which two embeddings are
continuous, dense and compact.

Remarkable that, not take H = Ls(Ω) for the simplification. Due to frac-

tional derivative
∂k

∂tk
, 0 < k < 1 respect to variable time t is not involved in

the equation (2.3), therefore, Sobolev space W 2s,s(Ω) = L2(0, T ;W s,2(Ω)) ∩
L2(Ω;W s(0, T )) for two variable fractional derivative is exclusive in this paper.

3.2. Bilinear form. For the fractional operator (−∆)s, 0 < s < 1 to discuss
the Bilinear form a(ψ, φ) = (∇sψ,∇sφ) as preparation to compose weak form.
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Notice the boundary value ψΓ = ψ∂Ω = 0 for W s,2
0 (Ω).

a(ψ, φ) = 〈−∆sψ, φ〉V′,V = 〈−∆sψ, φ〉H−s(Ω),Hs
0(Ω)

= (∇sψ,∇sφ)L2(Ω) = (∇sψ,∇sφ)H = (ψ, φ)W s,2(Ω)

=

∫
RN

∫
RN

(∇sψ(x)−∇sψ(y))(∇sφ(x)−∇sφ(y))

|x− y|N+2s
dxdy (3.6)

for all ψ, φ ∈ D(A, s), where the value domain of operator (−∆s) can be
defined as

D(A, s) =
{
ψ
∣∣∣ ψ ∈W 2s,2

0 (Ω̄) s.t. − i~sψ = ∆sψ + V ψ
}

= W 2s,2
0 (Ω̄) ∩W s,2

0 (Ω̄).

In particular, to establish the connection between inside space W s,2(Ω) and
outside space L2(R/Ω). To avoid the concept of nonlocal normal derivative,
in this paper, use the most common trace theorem as in [5] to describe the
relationship of W s,2(Ω) and L2(RN/Ω) in Proposition 3.3.

For the domain Ω and its boundary ∂Ω = Γ (without confusion with Gamma
function Γ), cite trace theorem in paper [9] of Wang, and [6] has the result.

Lemma 3.2. For 0 < s < 1, and the normal derivative for order j, denote as
∂jψ

∂ηj
, is a continuous mapping

∂j

∂ηj
: W s,2(Ω)→ Hs−j− 1

2 (∂Ω).

Proposition 3.3. For 0 < s < 1, there is a continuous mapping from inside
space W s,2(Ω) to outside space L2(RN/Ω).

Proof. For parabolic differential equation, take j = 2 in Lemma 3.2. Hence
‖ · ‖

Hs−j− 1
2 (Γ)
≤ C‖ · ‖W s,2(Ω) for constant C.

On the other hand, the outside space RN/Ω shared a boundary ∂Ω with
inside domain Ω, therefore, the outside normal derivative is the minus of inside
normal derivative at the same point, such as x′ ∈ ∂Ω, its also belong to
x′ ∈ ∂(RN/Ω). That is to say

∂j

∂ηj

∣∣∣
x=x′∈∂Ω

= − ∂j

∂ηj

∣∣∣
x=x′∈∂(RN/Ω)

.

Let’s use this relationship to connect inside Ω and outside RN/Ω. Thus, it is
easily to have

ψ(x′) ∈ Hs−j− 1
2 (∂Ω), x′ ∈ ∂Ω → ψ(x′) ∈ Hs−j− 1

2 (∂(RN/Ω)), x′ ∈ ∂(RN/Ω).
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For outside domain RN/Ω, try to use the trace theorem for L2(RN/Ω), and
find that the mapping

− ∂j

∂ηj
: L2(RN/Ω)→ ψ(x′) ∈ L−j−

1
2 (∂(RN/Ω)), x′ ∈ ∂(RN/Ω)

is continuous. Hence ‖ · ‖
L−j− 1

2 (∂(RN/Ω))
≤ C‖ · ‖L2(RN/Ω) for constant C > 0.

Since 0 < s < 1, we have

Hs−j− 1
2 (∂(RN/Ω)) ⊂ Ls−j−

1
2 (∂(RN/Ω)) ⊂ L−j−

1
2 (∂(RN/Ω))

and ‖ ·‖
L−j− 1

2 (∂(RN/Ω))
≤ ‖·‖

Hs−j− 1
2 (∂(RN/Ω))

. By the norm inequality of each

space to know

‖ · ‖L2(RN/Ω) ≤ ‖ · ‖L−j− 1
2 (Γ)
≤ ‖ · ‖

Hs−j− 1
2 (∂(RN/Ω))

≤ C‖ · ‖W s,2(Ω). (3.7)

More precisely calculation in here for norm estimates, denote Γ = ∂Ω,Σ =

∂Ω × (0, T ). For t ∈ [0, T ], γΣ =
∂n

∂ηn
, γΣ ∈ L(W s,2(Ω), Hs− 1

2 (∂Ω)) such

that γΣψ = ψ|Σ, its norm denote as ‖γΣ‖. Then for j = 0, the mapping
∂j

∂ηj
: W s,2(Ω)→ Hs− 1

2 (∂Ω) is continuous, and

‖ψ|Σ‖
Hs− 1

2 (∂Ω)
≤ ‖γΣ‖ ‖ψ‖W s,2(Ω). (3.8)

On the other hand, inverse mapping γ∗Σ means γ∗Σ = −γΣ, and the mapping

γ∗Σ : H−
1
2 (∂(RN/Ω)) → L2(RN/Ω) is continuous, such that γ∗Σψ = ψ|Σ, that

is, γΣψ|Σ = ψ for ψ ∈ L2(RN/Ω). Then to have

‖ψ‖L2(RN/Ω) ≤ ‖γΣ‖ ‖ψ|Σ‖
H−

1
2 (∂(RN/Ω))

. (3.9)

For 0 < s < 1 to know
−1

2
< s− 1

2
<

1

2
, and the shared boundary (e.g, regular

enough) means ∂Ω = ∂(RN/Ω) to get

Hs− 1
2 (∂Ω) ⊂ H−

1
2 (∂(RN/Ω)).

That is,

‖ · ‖
H−

1
2 (∂(RN/Ω))

≤ C ′‖ · ‖
Hs− 1

2 (∂Ω)
(3.10)

for constant C ′ > 0. By (3.8), (3.9), (3.10) to get

‖ψ‖L2(RN/Ω) ≤ ‖γΣ‖ ‖ψ|Σ‖
H−

1
2 (∂(RN/Ω))

≤ C ′‖γΣ‖ ‖ψ|Σ‖
Hs− 1

2 (∂Ω)

≤ C ′‖γΣ‖2 ‖ψ‖W s,2(Ω). (3.11)
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Therefore, set C ′′ = C ′‖γΣ‖2 to obtain (3.7) directly. Therefore, (3.11) show
that there is a continuous mapping from inside space W s,2(Ω) to outside space
L2(RN/Ω). This completes the proof. �

Furthermore, for fractional Laplacian −∆s and j = 2, the integration by
part of bilinear form (3.6) can be deduced by inner product.∫

RN

(−∆)sψφdx = (−∆sψ, φ)W s,2(RN ) + (−∆sψ, φ)W s,2(RN/Ω).

For 0 < s < 1, define inner product of Ls(RN ) space for abstract calculation
at shared boundary Γ.

(ψ, φ)Ls(RN ) =

∫
RN

∫
RN

(ψ(x)− ψ(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy, for x,y ∈ Ω.

(3.12)

Suppose control u(t) belong to the L2(0, T ) space. It is clarifying that time
variable t in wave function will be belong to L2(0, T ; ·) space although the
spatial derivative for x is fractional order s. Notice the equivalent

L2(0, T ;Hs(Ω)) = Hs(0, T ;L2(Ω)) for 0 < s < 1.

Definition 3.4. The space W (0, T ; s) is called a solution space if it is defined
by

W (0, T ; , s) =
{
ψ
∣∣ ψ ∈ L2(0, T ; V),

∂sψ

∂xs
∈ L2(0, T ; V′)

}
=
{
ψ
∣∣ ψ ∈ L2(0, T ;Hs(Ω)),

∂sψ

∂xs
∈ L2(0, T ;H−s(Ω)

}
.

If (ψ, φ) ∈ W (0, T ; s), for variable x, then the inner product is defined by
more detail expanding formula

(ψ, φ)W (0,T ;s) = (ψ(x), ψ(x)L2(Ω)

+

∫
RN

∫
RN

(ψ(x)− ψ(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy

+(∇sψ(x),∇sψ(x))L2(Ω)

+

∫
RN

∫
RN

(∇sψ(x)−∇sψ(y))(∇sφ(x)−∇sφ(y))

|x− y|N−2s
dxdy,

that is, (ψ, φ)W (0,T ;s) = (ψ, φ)L2(0,T ;V) + (ψ, φ)L2(0,T ;V′).
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Then, inner product induced norm of solution space W (0, T ; s) can be defined

‖ψ‖W (0,T ;s) =
(∫ T

0

[
‖ψ‖2L2(Ω) +

∫
RN

∫
RN

|ψ(x)− ψ(y)|2

|x− y|N+2s
dxdy

+‖∇sψ‖2L2(Ω) +

∫
RN

∫
RN

|∇sψ(x)−∇sψ(y)|2

|x− y|N−2s
dxdy

]
dt
) 1

2
.

That is, ‖ψ‖2W (0,T ;s) = ‖ψ‖2L2(0,T ;V) + ‖ψ‖2L2(0,T ;V′). Thus, W (0, T ; s) is a

Hilbert space equipped by above norm and inner product.

3.3. Weak solution.

Definition 3.5. Let T > 0. A function ψ is called a weak solution of (2.3) if
ψ ∈W (0, T ; s) and satisfy the weak form:

−
∫ T

0

∫
RN

i~s
∂ψ

∂t
η̄dxdt

+

∫ T

0

∫
RN

∫
RN

(∇sψ(x)−∇sψ(y)(∇sη̄(x)−∇sη̄(y))

|x− y|N+2s
dxdydt

=

∫ T

0

∫
RN

V ψη̄dxdt

(3.13)

for all η̄ ∈ C1(0, T ; V) in the sense of distribution on (0, T ), and η(T ) =
0, a.e. x ∈ Ω, where η̄ is a conjugate function of functional η.

3.4. Existence of weak solution. Let x0 be a fix point at outside of domain
Ω, that is, x0 ∈ R2/Ω. For control variable u and outside control term u(t)⊗
δ(x− x0), set U = L2(0, T ) is the control space, and Uad is admissible subset
of U , then u ∈ U .

For such a outside control problem, set

Nδu(t) = u(t)⊗ δ(x− x0), x ∈ R2/Ω, t ∈ [0, T ].

ψ(x, t) = Nδu(t) is a outside value of system (2.3) for (x, t) ∈ R2/Ω × [0, T ].
Via control u ∈ L2(0, T ) and δ(x−x0) ≤ 1, we get Nδu ∈ L2(0, T ;L2(R2/Ω)).
Then Nδ is a continuous mapping u→ Nδu : L2(0, T )→ L2(0, T ;L2(R2/Ω)).

Theorem 3.6. For given ψ0 ∈ L2(Ω), x0 = (x0
1, x

0
2), and outside value

ψ(x, t) = u(t) ⊗ δ(x − x0) for x ∈ R2/Ω, if U = L2(0, T ) is bounded, then
there exist a unique weak solution ψ(u) of fractional Schrödinger system (2.3)
in W (0, T ; s) and C(0, T ; H), such that a priori estimates

‖ψ(u)‖2L2(0,T ;H) ≤ Cs(‖ψ(0)‖2L2(Ω) + ‖u‖2L2(0,T )), (3.14)

‖ψ(u)‖2L2(0,T ;V) ≤ Cs(‖ψ(0)‖2L2(Ω) + ‖u‖2L2(0,T )) (3.15)

are valid, where Cs is bounded constant, which depended on fractional order s
only.
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Proof. It is quite interest to prove the existence of weak solution for the non-
linear fractional Schrödinger state system (2.3).

In fractional Schrödinger equation (2.3), take η̄ = ψ ∈ V = Hs(Ω) at weak
form (3.13), then we get the formulation in spatial space for x ∈ Ω as∫

Ω
−i~s∂ψ

∂t
ψdx+

∫
RN

∫
RN

(∇sψ(x)−∇sψ(y))2

|x− y|N+2s
dxdy =

∫
Ω
V (x)ψψdx. (3.16)

Denote bilinear form (3.6), and a(ψ, φ) = (∇sψ,∇sφ)H = (ψ, φ)V. Fractional
differential operator is −∆s for spatial variable x. The formulation (3.16) can
be rewritten in the form of inner products, hence that

i~s

2

d

dt
(ψ,ψ)H + (∇sψ,∇sψ)H = (V (x)ψ,ψ)H. (3.17)

By the equivalent of norm at complex space and real space, we deduce the
formula for Schrödinger equation in the form of norm, that is, from (3.17) we
find

~s

2

d

dt
‖ψ‖2H + ‖∇sψ‖2V = (V (x)ψ,ψ)H. (3.18)

Citing the definition of Ls(RN ) at (3.12), and consider V ⊂ H ⊂ V′, then
we calculate the integration of second term as∫

RN

∫
RN

(∇sψ(x)−∇sψ(y))2

|x− y|N+2s
dxdy

=
[ ∫

Ω

∫
Ω

+

∫
Ω

∫
RN/Ω

+

∫
RN/Ω

∫
Ω

+

∫
RN/Ω

∫
RN/Ω

](∇sψ(x)−∇sψ(y))2

|x− y|N+2s
dxdy

= ‖ψ‖2H+

∫
RN/Ω

∫
RN/Ω

(∇sψ(x)−∇sψ(y))2

|x− y|N+2s
dxdy

= ‖ψ‖2H+

∫
RN/Ω

∫
Rn/Ω

[∇s(u(t)⊗ δ(x− x0))−∇s(u(t)⊗ δ(y − x0))]2

|x− y|N+2s
dxdy

= ‖ψ‖2H + u(t)⊗
∫

RN/Ω

∫
RN/Ω

(∇sδ(x− x0)−∇sδ(y − x0))2

|x− y|N+2s
dxdy

= ‖ψ‖2H + u(t)⊗ ‖δ(x− x0)‖2V′(RN/Ω)

≤ ‖ψ‖2H + u(t)⊗ ‖δ(x− x0)‖2V(RN/Ω)

≤ ‖ψ‖2H + u(t)⊗ ‖1‖2V(RN/Ω) = ‖ψ‖2H + u(t)⊗ ‖1‖2V(RN )

= ‖ψ‖2H + u(t)⊗ ‖1‖2V(Ω) = ‖ψ‖2H + Ω̄2u(t),

where Ω̄ is a measurement of domain Ω. Hence

‖∇sψ‖2V ≤ ‖∇sψ‖2H + Ω̄2u(t) (3.19)
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for t ∈ [0, T ]. Notice that H1(Ω) ⊂ Hs(Ω) ⊂ L2(Ω), then

‖ · ‖L2(Ω) ≤ ‖ · ‖Hs(Ω) ≤ ‖ · ‖H1(Ω).

Due to 0 < s < 1, take p′ =
1

s
, q′ =

1

1− s
, p′, q′ > 1, then,

1

p′
= s,

1

q′
= 1−s

such that
1

p′
+

1

q′
= 1. The nonlinear term in the right hand can be calculated

by Hölder inequality as

(V (x)ψ,ψ)H = (V (x)ψ,ψ)L2(Ω) =

∫
Ω
V (x)ψψdx

≤
(∫

Ω
(V (x)ψ)2dx

) 1
2
(∫

Ω
ψ2dx

) 1
2

=
(∫

Ω
V (x)

2
s dx

) s
2
(∫

Ω
ψ

2
1−sdx

) 1−s
2 ‖ψ‖L2(Ω)

= ‖V ‖
L

2
s (Ω)
‖ψ‖

L
2

1−s (Ω)
‖ψ‖H (3.20)

for L
2
s (Ω) ⊂ L2(Ω). Via Sobolev embedding theorem and space interpolation

theorem Hs(Ω) ↪→ L
2

1−s (Ω) for N = 2, we know that ‖ · ‖
L

2
1−s (Ω)

≤ ‖ · ‖Hs(Ω).

And also, Young’ s inequality and (3.20), we get for V = Hs
0(Ω),

(V (x)ψ,ψ)H ≤
1

2
‖V ‖2

L
2
s (Ω)
‖ψ‖2H +

1

2
‖ψ‖2V. (3.21)

That is, substituting (3.21) into equation (3.18), we get the evaluations

~s

2

d

dt
‖ψ‖2H +

1

2
‖ψ‖2V ≤

1

2
‖V ‖2

L
2
s (Ω)
‖ψ‖2H. (3.22)

Owing to the positivity of norm of ψ in space V, the formula (3.22) can be
converted to inequality (3.23) for ψ as

d

dt

(
‖ψ‖2H

)
≤ 1

~s
‖V ‖2

L
2
s (Ω)
‖ψ‖2H. (3.23)

Since H = L2(Ω), applying Bellman-Gronwall inequality to (3.23), we get

‖ψ(t)‖2L2(Ω) ≤ ‖ψ(0)‖2L2(Ω) exp
( 1

~s

∫ t

0
‖V (τ)‖2

L
2
s (Ω)

dτ
)
. (3.24)

Denote C(t, s) = exp
( 1

~s

∫ t

0
‖V (τ)‖2

L
2
s (Ω)

dτ
)

, hence (3.24) to get ‖ψ(t)‖2H ≤

C(t, s)‖ψ(0)‖2H. Then, by 0 < s < 1 to know that 2 <
2

s
<∞, and L∞(Ω) ⊂
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L
2
s (Ω) ⊂ L2(Ω),∫ T

0
‖ψ(t)‖2L2(Ω)dt ≤ ‖ψ(0)‖2L2(Ω) exp

( 1

i~s
‖V ‖2

L2(0,T ;L
2
s (Ω)

)
≤ ‖ψ(0)‖2H exp

( 1

~s
‖V ‖2

L2(0,T ;L
2
s (Ω))

)
. (3.25)

It means that ψ ∈ L2(0, T ; H) and its norm is bounded. Set

Cs = exp
( 1

~s
‖V ‖2

L2(0,T ;L
2
s (Ω))

)
, then from (3.25), we have

‖ψ‖2L2(0,T ;H) ≤ Cs‖ψ(0)‖2H. (3.26)

It is (3.14). By inequality (3.22), we obtain that

d

dt

(
‖ψ‖2H

)
+

1

~s
‖ψ‖2V ≤

1

~s
‖V ‖2

L
2
s (Ω)
‖ψ‖2H.

Take integration for both sides at [0, t], t < T , then we get

~s(‖ψ(t)‖2H − ‖ψ(0)‖2H) + ‖ψ‖2L2(0,t;V) ≤
∫ t

0
‖V ‖2

L
2
s (Ω)
‖ψ‖2Hdt.

Similarly, by the positivity of norm ψ at space H, we know that

‖ψ‖2L2(0,t;V) ≤
∫ t

0
‖V ‖2

L
2
s (Ω)
‖ψ‖2Hdt+ ~s‖ψ(0)‖2H. (3.27)

Take derivative respect to variable t for both side of (3.27), then we get

‖ψ(t)‖2V ≤ ‖V ‖2
L

2
s (Ω)
‖ψ‖2H ≤ C(t, s)‖V ‖2

L
2
s (Ω)
‖ψ(0)‖2H, for 0 < s < 1.

Set Cs(t) = C(t, s)‖V ‖2
L

2
s (Ω)

. Thus, the estimate of norm of ψ at space V is

‖ψ(t)‖2V ≤ Cs(t)‖ψ(0)‖2H. (3.28)

It means that ψ ∈ L2(V), and its norm is bounded. Let

Cs(t) = exp
( 1

~s
‖V ‖2

L2(0,t;L
2
s (Ω))

)
‖V (t)‖2

L
2
s (Ω)

for 0 < s < 1. Then (3.28) implies that

‖ψ‖2L2(0,T ;V) ≤
∫ T

0
Cs(t)dt‖ψ(0)‖2H

≤ exp
( 1

~s
‖V ‖2

L2(0,t;L
2
s (Ω))

)
‖V ‖2

L2(0,T ;L
2
s (Ω))
‖ψ(0)‖2H. (3.29)

Set another Cs = exp
( 1

~s
‖V ‖2

L2(0,T ;L
2
s (Ω))

)
‖V ‖2

L2(0,T ;L
2
s (Ω))

, then (3.29) im-

plies that
‖ψ‖2L2(0,T ;V) ≤ Cs‖ψ(0)‖2H. (3.30)
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Furthermore, by definition of norm and (3.19), we know that∫ T

0
‖ψ‖2Vdt ≤

∫ T

0
‖ψ‖2Hdt+ Ω̄‖u‖2L2(0,T ).

This means that

‖ψ‖2L2(0,T ;V) ≤ ‖ψ‖
2
L2(0,T ;H) + Ω̄‖u‖2L2(0,T ). (3.31)

Thus, by (3.26), (3.30) and (3.31), we can get the inequality (3.15) directly.

By the definition of norm at W s,2(Ω) and W s,2
0 (Ω̄) (corresponding space

Ls0(Ω̄), Hs
0(Ω̄)), we know that their norm are equivalent at the domain Ω and

different appeared at the outside domain RN/Ω. Therefore obtained inequality
(3.23) is hold for domain Ω̄ and RN .

By Corollary 6.1 in Appendix, we know that initial value can be chosen at
fractional space Ls0(Ω). Currently, take ψ(0) ∈ L2(Ω). Clearly, due to take the
H = L2(Ω) and without take Ls(Ω), 0 < s < 1, it is easily to have argument.
It is a suggest choice to take Ls(Ω) as H space. Here, it still keep the fashion
for a normal selection as usual.

By the norm equivalent at inside and outside domain, the estimates (3.25)
and (3.27) evident that ψ belong to L2(0, T ; H) and L2(0, T ; V), that is,

ψ ∈ L2(0, T ;L2(Ω)) ∩ L2(0, T ;Hs(Ω)),

and their norm is bounded at each space.
Now, to prove rest part of Theorem 3.6, using Faedo-Galerkin method, we

prove the existence of weak solution in the following.

(1) We will construct an approximate solution for the system (2.3). Since
V ↪→ H is compact, there exists orthogonal basis of H, {ωj}∞j=1 consisting of
eigenfunctions of As = ∆s, such that for 0 < s ≤ 1,

Asωj = λsjωj

for all j, 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞, as j → ∞. Denote by P̄n the
orthogonal projection of H(or V) onto the space spanned by {ω1, ω2, · · · , ωn}.
For each n ∈ N , an approximate solution is defined for fractional Schrödinger
system (2.3) by

ψn(t) =
n∑
j=1

ajn(t)ωj , (3.32)

where ajn(t) is real-valued coefficient function. Then approximate real-valued
solution ψn(t) in (3.32) satisfy the ordinary differential equation (1 ≤ j ≤ n)



26 Quan-Fang Wang

given by
∫

RN

i~s
∂ψn

∂t
ω̄jdx =

∫
RN

∆sψnω̄jdx +

∫
RN

V (x, t)ψnω̄jdx, in Q,

ψn(0) = ψn0 in Ω,
φn(x, t) = u(t)⊗ δ(x− x0), for x ∈ RN/Ω,

(3.33)
where, ω̄j is the conjecture function of base function ωj for each j. Therefore,
the standard theory of ODE ensure that the obtained system (3.33) had unique
local solution ψn for n = 1, 2, 3, · · · , N .

(2) For given ψ(0) = ψ0 ∈ L2(Ω), set ψn(0) = 0, then there exists ψn0 ∈
L2(Ω) such that

ψn0 → ψ0 in L2(Ω) (3.34)

as n→∞. By two estimates (3.25) and (3.27) imply that

ψn is bounded in L2(0, T ; H),

ψn is bounded in L2(0, T ; V).

That is, for a function ψ ∈ L2(0, T ; H)∩L2(0, T ; V), there exists a subsequence
{ψnk} of {ψn} such that

ψnk → ψ weakly in L2(0, T ; H), (3.35)

ψnk → ψ weakly in L2(0, T ; V) (3.36)

as nk →∞.

(3) Suppose that {ψj} and {ψk} are two sets of solutions to (2.3) corre-
sponding to initial value {ψj(0)} and {ψk(0)} for j, k = 1, 2, · · · ,∞, respec-
tively. For 0 < s < 1, by calculating its difference as

i~s

2

∂

∂t
(ψj(t)− ψk(t)) = ∆s(ψj(t)− ψk(t)) + V (x, t)(ψj(t)− ψk(t)). (3.37)

By the multiplying (ψj−ψk) to the weak form of (3.37), we get inner product
form of

i~s

2

( ∂
∂t

(ψj(t)− ψk(t)), ψj(t)− ψk(t)
)

H

=
〈

∆s(ψj(t)− ψk(t)), ψj(t)− ψk(t)
〉

V′,V

+
(
V (x, t)(ψj(t)− ψk(t)), ψj(t)− ψk(t)

)
H
. (3.38)

Suppose ψj , ψk are corresponding to different controls uj , uk for j, k. Then,
using the estimate (3.19) for ψj(t)− ψk(t), we get

‖∇sψj(t)−∇sψk(t))‖2V ≤ ‖∇sψj(t)−∇sψk(t)‖2H + Ω̄2(uj(t)− uk(t)). (3.39)
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For 0 < s < 1, due to 2 <
2

s
<∞, and L∞(Ω) ⊂ L

2
s (Ω) ⊂ L2(Ω), ‖ · ‖

L
2
s (Ω)
≤

‖ · ‖L2(Ω), by using the same estimate (3.21), we get(
V (x, t)(ψj(t)− ψk(t)), ψj(t)− ψk(t)

)
H

≤ 1

2
‖V (t)‖2

L
2
s (Ω)
‖(ψj(t)− ψk(t))‖2H +

1

2
‖(ψj(t)− ψk(t))‖2V. (3.40)

Substitute (3.39) and (3.40) into (3.38), we obtain that

~s

2

d

dt
‖ψj(t)− ψk(t))‖2H + ‖∇sψj(t)−∇sψk(t)‖2H

≤ 1

2
‖V (t)‖2

L
2
s (Ω)
‖(ψj(t)− ψk(t))‖2H

+
1

2
‖ψj(t)− ψk(t)‖2V + Ω̄2(uk(t)− uj(t)). (3.41)

From ‖∇s · ‖H = ‖ · ‖V, and (3.41), we get

~s

2

d

dt
‖ψj(t)− ψk(t))‖2H +

3

2
‖ψj(t)− ψk(t)‖2V

≤ 1

2
‖V (t)‖2

L
2
s (Ω)
‖(ψj(t)− ψk(t))‖2H + Ω̄2(uk(t)− uj(t)). (3.42)

Let Ijk(t) = ‖ψj(t)− ψk(t)‖2H + ‖ψj(t)− ψk(t)‖2V. Then (3.42) convert to

~s
d

dt
Ijk(t) ≤ Cs(t)Ijk(t) +D(t), (3.43)

where Cs(t) = 3 + ‖V (t)‖2
L

2
s (Ω)

for 0 < s < 1 and D(t) = 2Ω̄2(uk(t) − uj(t)).
Apply Bellman-Gronwall inequality to (3.43), we obtain that

Ijk(t) ≤ Ijk(0) exp
(∫ t

0
Cs(τ)dτ

)
+

∫ t

0
D(t) exp

(
−
∫ t

0
Cs(τ)dτ

)
dt

for t ∈ [0, T ]. By (3.34), we know that ψj(0) − ψk(0) → ψ0 − ψ0 = 0 as
j, k → ∞, then Ijk(0) = 0. By the calculation (3.19) of ψ norm at Hs(RN ),
we know uj , uk → u∗ as j, k →∞. That is, D(t)→ 0 for j, k →∞. Therefore,
by the convergence of ψn at each spaces of L2(Ω) and Hs(Ω) in (3.35) and
(3.36), we get Ijk(t) → 0 as j, k → ∞ for 0 < s < 1. That is, there exist
ψ̄ ∈ H and ψ̄ ∈ V such that

ψn → ψ̄ in L2(0, T ;L2(Ω)), L2(0, T ;Hs(Ω)).

By uniqueness of limit ψ̄ = ψ, that is ψn → ψ in L2(0, T ; H) and L2(0, T ; V)
as n → ∞. By the inclusive of continuous space C(0, T ; H), we show that
ψ ∈ C(0, T ;L2(Ω)). This completes the proof. �
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4. Quantum Control Outside Surface

In this section, it needs to consider control take place outside (disjoint) the
physics domain of matter surface. For control variable u ∈ U = L2(0, T ) at the
admissible set Uad ⊂ U , by virtual of the existence of weak solution theorem,
there is a continuous mapping from control space U to solution space

u→ ψ(u) : U →W (0, T ; s).

The pointwise control outside the domain is taken the formula of u(t)⊗ δ(x−
x0) for x ∈ Rn/Ω. The objective function for the measurement of cost is
defined by

J(u, s) =
1

2
‖ψ − ψd‖2L2(0,T ;H) +

1

2
‖u− ud‖2L2(0,T ) for 0 < s < 1. (4.1)

where ψ is the wave function to represent the probability of the motion of
particle at the surface, ψd ∈ L2(0, T ; H) is the desired state of ψ at each
time for duration t ∈ [0, T ]. Certainly, for one particle at matter surface,
it is easily to take distributed control at whole control process. That is to
say, we can measure the motion of particle at all the time. Assume that
ud ∈ L2(0, T ) is desired control for each time point t. This means to solve
optimal pairing (ψ∗, u∗), (optimal state, optimal control) by the minimization
of cost function in optimization at meantime. Particularly, s is the fractional
number, as a parameter appeared at state system (2.3), and can be adjust at
control process to get different control results if needing to do computational
approach. By the existence of parameter s at the operator term, the total
system structure can be confined, therefore, it is possible to select appropriate
system for getting better control results.

4.1. Control theory for fractional Schrödinger equation. To do control
at outside domain, it is necessary to clarify its physical meaning of quantum
control. At the standing point of physics and chemistry realm, control input
can not be directly executed, hence, it need to control the system described
by Schrödinger equation indirectly. The external control variable outside the
physical surface of existing particle, the control and system is separated by
each others. It would be cucriual if symbolic calculation for addition con-
trol formulation to system equation, it must occurred “dramatic solution”.
Therefore, system equation must be changed, that is the idea of fractional
Schrödinger equation, which cited the contributed papers at the field of math-
ematics [2] for PDEs. These theoretical conclusion provide us the ideal tool
to investigate the quantum control problems outside its physical domain.

As is well known, quantum optimal control is to solve the following two
fundamental problems:
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(1) Find an element u∗ such that

inf
u∈Uad

J(u, s) = J(u∗, s) for 0 < s < 1.

(2) Characterization of u∗.

Such a u∗ is called quantum optimal control for nonlinear fractional Schrödinger
control system (2.3) subject to cost function (4.1).

4.2. Existence of optimal control.

Theorem 4.1. Given ψ0 ∈ L2(Ω), ψ(x, t) = u(t)⊗ δ(x− x0) for x ∈ R2/Ω.
If Uad ⊂ U = L2(0, T ) is bounded closed convex set, then there is at least one
quantum optimal control u∗ of fractional Schrödinger system (2.3) subject to
cost function (4.1).

Proof. For fractional 0 < s < 1, the full proof will be given for quantum
system (2.3). Set J = inf

u∈Uad
J(u, s), since Uad is nonempty, there is a sequence

{un} at Uad such that

inf
u∈Uad

J(u, s) = lim
n→∞

J(un, s) = J.

Obviously, {J(un, s)} is bounded in R+. Since Uad is bounded, closed and
convex set of U , there is a subsequence {unk

} can be selected from {un}, and
there exist u∗ ∈ Uad such that

unk
→ u∗ weakly in U as nk →∞. (4.2)

It need mentioned that at the outside domain ψ(x, t) = u(t) ⊗ δ(x − x0)
for all x ∈ RN/Ω, and x0 = (x0

1, x
0
2) ∈ RN/Ω. By the calculation of

‖ψ(0)‖L2(0,T ;Ls
0(Ω̄)) in Corollary 6.1 in Appendix to know that the norm is

composed of ψ(0) norm value at domain Ω and the value of norm of u(0).
Therefore, the functional

ψ(x, t) =

{
ψ(x, t), x ∈ Ω,
u(t)⊗ δ(x− x0), x ∈ RN/Ω

(4.3)

for x ∈ RN and t ∈ [0, T ] is meaningful and equivalent to each other at outside
domain, inside domain, respectively. For ψ = ψ(u), the estimate (3.14) in
Theorem 3.6 implies that

‖ψ‖2W (0,T ;s) ≤ Cs‖ψ0‖2H. (4.4)

For control u, the boundedness of Uad and (4.4) to find that ψ(u) is bounded
at W (0, T ; s). Then, there exist a subsequence ψ(unk

) of ψ(un) and a function
ψ̄ of W (0, T ; s) such that

ψ(unk
)→ ψ̄ weakly in W (0, T ; s) (4.5)



30 Quan-Fang Wang

as nk →∞. Denote ψnk = ψ(unk
) for simplify. Since the embedding V ↪→ H

is compact, by the Aubin-Lions-Temam compactness embedding Theorem, we
obtain that

ψnk → ψ̄ strongly in L2(0, T ;L2(Ω))

as nk →∞. Then (4.4) imply that

ψnk
t → ψ̄t weakly in L2(0, T ;H−s(Ω)) for 0 < s < 1,

∇sψnk → ∇sψ̄ weakly in L2(0, T ;L2(Ω)) for 0 < s < 1
(4.6)

as nk →∞. By the expanded formulation (4.3), we know that

‖ψ‖2W s,2(RN ) ≤ ‖ψ‖
2
L2(Ω) + ‖ψ‖2L2(RN/Ω)).

Since ψ = u(t) ⊗ δ(x − x0) belong to L2(0, T ;L2(RN/Ω)), the convergence
(4.5) to show (4.6) is valid for RN , that is,

ψnk
t → ψ̄t weakly in L2(0, T ;H−s(RN )) for 0 < s < 1,

∇sψnk → ∇sψ̄ weakly in L2(0, T ;L2(RN )) for 0 < s < 1.
(4.7)

The definition of weak solutions for ψnk has the form of

−
∫ T

0

∫
RN

i~sψnk η̄tdxdt

+

∫ T

0

∫
RN

∫
RN

(∇sψnk(x)−∇sψnk(y))(η̄(x)− η̄(y))

|x− y|N+2s
dxdydt

=

∫ T

0

∫
RN

V (x, t)ψnk η̄dxdt. (4.8)

Therefore, using (4.2) and (4.7), take nk →∞ in (4.8), then we obtain∫ T

0

∫
RN

−i~sψ̄η̄tdxdt

=

∫ T

0

∫
RN

∫
RN

(∇sψ̄(x)−∇sψ̄(y))(η̄(x)− η̄(y))

|x− y|N+2s
dxdydt

+

∫ T

0

∫
RN

V (x, t)ψ̄η̄dxdt (4.9)

for all η ∈ C(0, T ; V). Thus, by the standard manipulation, we have that the
limit ψ̄ satisfy (4.9) for all ψ ∈ V in the sense of D′(0, T ), which is distribution
on (0, T ). From the uniqueness of weak solution for fractional Schrödinger sys-
tem (2.3), we confirm that ψ̄ = ψ(u∗). It follows from approximate solutions
convergenceness that

ψ(unk
)→ ψ(u∗) strongly in L2(0, T ;L2(Ω)), (4.10)

ψd(unk
)→ ψd(u

∗) strongly in L2(0, T ;L2(Ω)) (4.11)
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as nk → ∞. Since norm ‖ · ‖L2(0,T ;L2(Ω) is lower semi-continuous for weak

topology of space H = L2(Ω), respectively. (4.10) and (4.11) imply that

lim inf
nk→∞

‖ψ(unk
, t)− ψd(t)‖2H ≥ ‖ψ(u∗, t)− ψd(t)‖2H.

Similarly, we have

lim inf
nk→∞

(unk
, unk

)U ≥ (u∗, u∗)U .

On the other hand, it follows from the weak convergenceness (4.2) that

‖unk − ud‖2L2(0,T ) ≥ ‖u
∗ − ud‖2L2(0,T ).

From weakly lower semi-continuity of J , we get J = lim inf
nk→∞

J(unk , s) ≥
J(u∗, s). Resultantly, J(u∗, s) = inf

u∈Uad
J(u, s). It means that u∗ is quantum

optimal control subject to cost function (4.1). This completes the proof. �

4.3. Optimality system.

Theorem 4.2. For, ψ0 ∈ L2(Ω), let ψ(x, t) = Nδu(t) = u(t) ⊗ δ(x − x0)
for x ∈ RN/Ω. If Uad ⊂ U = L2(0, T ) is a bounded closed convex set, then
quantum optimal control u∗ for fractional Schrödinger system (2.3) subject to
cost function (4.1) is characterized by the equations and inequality, called an
optimal system (Euler-Lagrange system): i~sψt = ∆sψ + V (x, t)ψ in RN × [0, T ],

ψ(x, 0) = ψ0(x) in Ω,
ψ(x, t) = u∗(t)⊗ δ(x− x0) in ∀x ∈ R2/Ω for x0 ∈ R2/Ω.

(4.12)

{
i~spt = ∆sp+ V ∗(x, t)ψ + (ψ(u∗)− ψd) in RN × [0, T ],
ip(x, T ) = 0, in Ω.

(4.13)

(u∗, u− u∗)U +

∫ T

0
(N ∗δ p(u∗), u− u∗)W s,2

0 (Ω̄)
dt ≥ 0, ∀u ∈ Uad, (4.14)

where p ∈ W (0, T ; s) is a weak solution of adjoint system (4.13), which cor-
responding to ψ in state system (4.12), V ∗,N ∗δ are the conjugate operators of
V , Nδ, respectively.

It is well known that (4.14) is necessary optimality condition. If J(u, s) is
convex, then (4.14) is sufficient condition. The proof of Theorem 4.2 can be
obtained by citing [17].

Particularly, we know that Nδ is a mapping u → ψ(x, t): L2(0, T ) →
L2(0, T ;L2(RN/Ω)) from t ∈ [0, T ] to (x, t) ∈ Rn/Ω. At the point x0, the
value of ψ is ψ(x0, t) = u(t). That is, for a given t, ψ(x, t)|x=x0 = Nδu(t) =
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ψ(x0, t) at point x0. ThenNδ is a value given operator at point x0. In contrast,
N ∗δ is a x value taken operator such that

(p(u∗),Nδ(u− u∗))W s,2(Ω) = (N ∗δ p(u∗), u− u∗)W s,2(Ω),

where N ∗δ ψ(x, t) = ψ(x0, t) for (x, t)→ t from RN/Ω to [0, T ], it is a contin-

uous mapping of space L2(0, T ;L2(RN/Ω)) to L2(0, T ).

For physical and chemical potential function, consider conjugate functional
V ∗ of V for variables (x, t). By estimate of nonlinear term (3.20), we know

that V ∈ L
2
s (Ω) for 0 < s < 1.

(1) We estimate nonlinear coefficient function V ∗ at adjoint system to ensure
the system (4.13) has a weak solution p(x, t). By the state system (4.12), we

know that (ψ(u∗) − ψd) ∈ W s,2(Ω) and V ∗ ∈ L
2
s (Ω). Moreover, L∞(Ω) ⊂

L
2
s (Ω) ⊂ L2(Ω) for 0 < s < 1, and

‖V ∗‖L2(Ω) ≤ ‖V ∗‖L 2
s (Ω)
≤ ‖V ∗‖L∞(Ω).

(2) On the other hands, V ∗ is the conjugate operator function of V , by

V ∈ L
2
s (Ω), since p0 =

2

s
, q0 =

2

2− s
such that

1

p0
+

1

q0
= 1, by the conjugate

space L
2

2−s (Ω) of L
2
s (Ω), we obtain that V ∗ ∈ L

2
2−s (Ω). Moreover, L2(Ω) ⊂

L
2

2−s (Ω) ⊂ L1(Ω) for 0 < s < 1, and

‖V ∗‖L1(Ω) ≤ ‖V ∗‖
L

2
2−s (Ω)

≤ ‖V ∗‖L2(Ω).

Therefore, by (1) and (2), because
2

2− s
<

2

s
for 0 < s < 1, it implies that

L
2
s (Ω) ⊂ L

2
2−s (Ω), and

‖V ∗‖
L

2
2−s (Ω)

≤ ‖V ∗‖
L

2
s (Ω)

, for 0 < s < 1.

We know that for all s ∈ (0, 1), the conjugate space L
2

2−s (Ω) is much large

than estimate space L
2
s (Ω). It means that estimate space Lp0(Ω) is a subspace

of conjugate space Lq0(Ω). Its norm can be used to estimate the potential
function V ∗. Especially, we have{

L
2
s (Ω)→ L2(Ω) as s ↑ 1−,

L
2
s (Ω)→ L∞(Ω) as s ↓ 0+.

It is clearly that for fractional Schrödinger equation (2.3), take s ∈ (0, 1),
as s goes to 1−, the system (2.3) approximate to general parabolic differential
equation of ∆, then potential function belong to L2(Ω) is enough for getting
weak solution both state system and adjoint system. As s goes to 0+, system
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(2.3) tended to a degenerated parabolic differential equation, or an ordinary
differential equation of t, with ∆s goes to vanish. To grantee a weak solution,
the nonlinear term need much more better continuity, such as L∞(Ω). Notice
that if suppose V ∈ L∞(Ω) at the beginning, other kinds of deduction can be
also obtained easily. Certainly, current discussion to domain Ω is also valid
for space RN .

Consequently, it ensure that for 0 < s < 1, the adjoint system has a weak
solution p(x, t) ∈W s,2(Ω) for terminal value p(x, T ) = 0.

4.4. Bang-Bang principle. For fractional 0 < s < 1, consider Bang-Bang
principle from necessary optimality condition without running cost in objective
function (4.1). For simplifying, take control space U = L2(0, T ) and take non-
empty admissible space as Uad = {u | ua ≤ u(t) ≤ ub, a.e. t ∈ [0, T ], u ∈
L2(0, T )}, with ua, ub ∈ L2(0, T ). For real-valued functional p, the system
cost in (4.14) is∫ T

0
(N ∗δ p(u∗), (u− u∗))W s,2(Ω̄)dt ≥ 0, ∀u ∈ Uad. (4.15)

By Lebesgue convergence theorem and (4.15), we compute

(p(u∗), (u− u∗)⊗ δ(x− x0))L2(RN/Ω) ≥ 0 a.e. (x, t) ∈ RN/Ω× [0, T ],

for u ∈ Uad and x0 ∈ RN/Ω. By 0 ≤ δ(x − x0) ≤ 1, we can convert the
property of u∗ as follows:

u∗(t) = ua, if p(u∗) > 0, a.e. t ∈ [0, T ],

u∗(t) = ub, if p(u∗) < 0, a.e. t ∈ [0, T ].

As is well known, it is Bang-Bang principle of quantum optimal control u∗.

5. Conclusion And Discussion

In this paper, the fractional Schrödinger equation had been considered at
Sobolev spaces as the particle at surface taking the external force outside
physics domain. The full proof had been provided for both existence of weak
solution and existence of quantum optimal control. Definitely, there are nu-
merous unsolved problem will be arising upon this direction. For example, why
not take complex Hilbert spaces for mathematical setting? the direct answer
is the Schrödinger equation is a complex equation, without loss of generality,
taking complex space is correct choice mathematically.

Other problems will be there, such as

(1) whether use another operator to replace the ∆s as a new operator?
Answer is no, it will be not clear than fractional operator.
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(2) Beside ∆, can other differential operator to be fractional operator?
Answer is yes, cite our paper [18] and book [12] for Cahn-Hillard equa-
tion, that is fourth order integer operator for bilinear form a(ψ, φ) =
(∆2ψ,∆2φ).

(3) Factional operator appeared at other equation, not at Schrödinger
equation? Yes, in mathematical field, it had already been taken in
other kind of equations (cf. [2]).

(4) The definition of fractional operator by its fractional eigenvalue is good
consideration, its also for s > 1 no integer number.

(5) Quantum system described by Schrödinger equation can be fractional
operator for outside control at domain, its also can be applied the
density function theory for fractional operator.

(6) Currently, no indicates the particle type, and surface matter type, this
is a theoretical work as a attempt.

(7) The equation (2.3) is a simplification equation, one can take other
formulation for the needs of physics, chemistry and other areas (cf.
[15, 17]).

(8) Particle-surface reaction has not been considered in the discussion.

Most interesting issues would be the numerical approximate in two dimen-
sions spatial space. The physical experimental for fitting the outside control
would also be attractive research in the future.

6. Appendix

Corollary 6.1. Initial value ψ0 can be taken in fractional space Ls0(Ω).

Proof. In additional, since ψ(x, t) = u(t) ⊗ δ(x − x0), the function ψ = 0 at
the point of x 6= x0 ∈ RN/Ω, it means that it take value at domain Ω and x0

only. To expand the integration at Ls(RN ) space similarly

‖ψ‖2Ls(RN ) =

∫
RN

∫
RN

(ψ(x)− ψ(y))2

|x− y|N+2s
dxdy

=
[∫

Ω

∫
Ω

+

∫
Ω

∫
RN/Ω

+

∫
RN/Ω

∫
Ω

+

∫
RN/Ω

∫
RN/Ω

](ψ(x)−ψ(y))2

|x−y|N+2s
dxdy

= ‖ψ‖2H +

∫
RN/Ω

∫
RN/Ω

(ψ(x)− ψ(y))2

|x− y|N+2s
dxdy

= ‖ψ‖2H+

∫
RN/Ω

∫
RN/Ω

(u(t)⊗ δ(x− x0)− u(t)⊗ δ(y − x0))2

|x− x0|N+2s
dxdy

= ‖ψ‖2H + u(t)⊗
∫

RN/Ω

∫
RN/Ω

(δ(x− x0)− δ(y − x0))2

|x− y|N+2s
dxdy
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= ‖ψ‖2H + u(t)⊗ ‖δ(x− x0)‖2V(RN/Ω) =‖ψ‖2H + u(t)⊗ ‖1‖2V(RN/Ω)

= ‖ψ‖2H + u(t)⊗ ‖1‖2V(RN) = ‖ψ‖2H + u(t)⊗ ‖1‖2V(Ω)

= ‖ψ‖2H + u(t)⊗
∫

Ω

∫
Ω

1dx1dx2 (N=2)

= ‖ψ‖2L2(Ω) + Ω̄ u(t).

The definition of extended norm is equivalent to each other for outside
pointwise source. It make sense at outside domain. Aided by the definition
of norm at Ls0(Ω̄) similarly to W s,2

0 (Ω), now let’s calculate ‖ψ(0)‖H using the
outside value ψ(x, t) = u(t)⊗δ(x−x0). Similarly, denote Ω̄ is the measurement
of domain Ω. Notice the equivalence of norm at Ls(Ω) and Ls0(Ω̄) for pointwise
function δ(x− x0), then we have

‖ψ(0)‖2Ls
0(Ω̄)

=

∫
RN

∫
RN

(ψ(x1, 0)− ψ(x2, 0))2

|x1 − x2|N+2s
dx1dx2

= ‖ψ(0)‖2H+

∫
RN/Ω

∫
RN/Ω

(u(0)⊗ δ(x1 − x0
1)− u(0)⊗ δ(x2 − x0

2))2

|x1 − x2|N+2s
dx1dx2

= ‖ψ(0)‖2H+u(0)⊗
∫

RN/Ω

∫
RN/Ω

(δ(x1 − x0
1)− δ(x2 − x0

2))2

|x1 − x2|N+2s
dx1dx2.

It implies that

‖ψ(0)‖2L2(0,T ;Ls
0(Ω̄)) ≤ ‖ψ(0)‖2L2(0,T ;H) + ‖u(0)‖2L2(0,T )‖δ(x− x0)‖2Ls

0(Ω̄)

= ‖ψ(0)‖2L2(0,T ;Ls(Ω)) + ‖u(0)‖2L2(0,T )‖δ(x− x0)‖2Ls(Ω)

≤ ‖ψ(0)‖2L2(0,T ;Ls(Ω)) + Ω̄2‖u(0)‖2L2(0,T ).

Above discussion show that initial value belong to fractional space Ls0(Ω) is
a selection if needed. �
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