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Abstract. In this paper, we introduced the notions of * — g—fusion frame and * — K —
g—fusion frame in Hilbert C*—modules, we gives some properties and study the tensor
product of x — g—fusion frame. Non-trivial examples are further provided to support the
hypotheses of our results.

1. INTRODUCTION

A frame is a set of vectors in a Hilbert space that can be used to reconstruct
each vector in the space from its inner products with the frame vectors. These
inner products are generally called the frame coefficients of the vector. But
unlike an orthonormal basis each vector may have infinitely many different
representations in terms of its frame coeflicients. The motivation behind fusion
frames comes from signal processing, more precisely, the desire to process and
analyze large data sets efficiently. A natural idea is to split such data sets into
suitable smaller blocks which can be treated independently.

Gabor [9] introduced a method using a family of elementary functions for
reconstructing functions (signals) in 1946. The idea of frames originated in the
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1952 paper by Duffin and Schaeffer [7] to address some deep questions in non-
harmonic Fourier series. In 2000, Frank-larson [8] introduced the concept of
frames in Hilbet C*—modules as a generalization of frames in Hilbert spaces.
The basic idea was to consider modules over C*—algebras of linear spaces and
to allow the inner product to take values in the C*—algebras [13]. Khosravi
and Khosravi [12] introduced the fusion frames and g—frame theory in Hilbert
C*-modules. Afterwards, Alijani and Dehghan consider frames with C*-valued
bounds [2] in Hilbert C*-modules. Bounader and Kabbaj [4] and Alijani [1]
introduced the x-g-frames which are generalizations of g-frames in Hilbert
C*-modules. In 2016, Xiang and Li [21] give a generalization of g—frames
for operators in Hilbert C*-modules. Recently, Fakhr-dine Nhari et al. [14]
introduced the concepts of g—fusion frame and K — g—fusion frame in Hilbert
C*-modules. For more about frames in Hilbert C*-modules see [10, 15, 16, 17,
18, 19, 20).

Motivated by the above literature, we introduce and investigate some prop-
erties of x—g—fusion frame and x— K —g—fusion frame in Hilbert C* —modules,
we also generalize some known results for fusion frames to generalized fusion
frames with C*-valued bounds.

The paper is organized as follows, we continue this introductory section we
briefly recall the definitions and basic properties of C*—algebra and Hilbert
C*—modules. In section 2, we introduce the concept of * — g—fusion frame
and gives some properties. In section 3, we introduced the notion of K — % —
g—fusion frame in Hilbert C*—modules.

Throughout this paper, H is considered to be a countably generated Hilbert
A—module. Let {H;};cr be the collection of Hilbert A—modules and {W;}icr
be a collection of closed orthogonally complemented submodules of H, where
is finite or countable index set. End’(H, H;) is a set of all adjointable operator
from H to H;. In particular End’(H) denote the set of all adjointable oper-
ators on H. Py, denote the orthogonal projection onto the closed submodule
orthogonally complemented W; of H. Define the module

B({Hibier) = {{wihier : w1 € Hy, | Y (s, w1}l < 0},

el

with A—valued inner product (z,y) = > ,c;(xi,¥i), where x = {z;};c; and
y = {yiYicr, clearly I>({H;}icr) is a Hilbert A—module.

In the following we briefly recall the definitions and basic properties of C*-
algebra, Hilbert A-modules. Our reference for C*-algebras is [5, 6]. For a
C*-algebra A if a € A is positive we write a > 0 and AT denotes the set of
positive elements of A.
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Definition 1.1. ([5]) If A is a Banach algebra, an involution is a map a +— a*
of A into itself such that for all @ and b in A and all scalars o the following
conditions hold:

(1) (a*)* =a.

(2) (ab)* =b*a*.

(3) (aa+b)" = aa™ + b*.

Definition 1.2. ([5]) A C*-algebra A is a Banach algebra with involution
such that :

la*al| = [la]®,
for every a in A.

Example 1.3. B = B(H) the algebra of bounded operators on a Hilbert
space, is a C*-algebra, where for each operator A, A* is the adjoint of A.

Definition 1.4. ([11]) Let A be a unital C*-algebra and H be a left .A-module,
such that the linear structures of A and U are compatible. H is a pre-Hilbert
A-module if H is equipped with an A-valued inner product (.,.) : Hx H — A,
such that is sesquilinear, positive definite and respects the module action. In
the other words,

(1) (z,x) >0, for all x € H and (x,z) = 0 if and only if x = 0.

(2) (az+y,2z) =alz,z) + (y,2), for all a € A and z,y,z € H.

(3) (z,y) = (y, )", for all z,y € H.

For z € H, we define ||z|| = ||<£L’,{L‘>||% If H is complete with [|.||, it is
called a Hilbert A-module or a Hilbert C*-module over A. For every a in

C*-algebra A, we have |a| = (a*a)% and the A-valued norm on H is defined
by |z| = <a;,:1:>% forx e H

Lemma 1.5. ([2]) If ¢ : A — B is an x—homomorphism between C*—algebras
then ¢ is increasing, that is, if a <b, then ¢(a) < ¢(b).

Lemma 1.6. ([3]) Let H and K two Hilbert A-modules and T € End’y(H, K).
Then the following statements are equivalent:
(i) T is surjective.
(ii) T is bounded below with respect to norm, that is, there is m > 0 such
that [|T*z|| > m||z||, for allz € K.
(iii) T™ is bounded below with respect to the inner product, that is, there is
m' > 0 such that (T*xz,T*z) > m/(z,z), for allz € K.

Lemma 1.7. ([2]) Let U and H be two Hilbert A-modules and T € End* (U, H).
Then, we have the following ststements.
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(i) If T is injective and T has a closed range, then the adjointable map
T*T is invertible and

(T 1)~ M|~ < 7T < || T
(ii) If T is surjective, then the adjointable map TT* is invertible and
(T~ < TT* < |7

Lemma 1.8. ([14]) Let {W;}icr be a sequence of orthogonally complemented
closed submodules of H and T € End’(H) be invertible. If T*TW; C W; for
each i € I, then {TW,;}icr is a sequence of orthogonally complemented closed
submodules and Py, T* = Pw,T* Pryy,.

2. * — g—FUSION FRAME IN HILBERT C*—MODULES

Definition 2.1. Let {A;}icr C {End’(H, H;),i € I}, {W;}icr be a family of
closed orthogonally complemented submodules of H and {v;};c; be a family
of weights in A, that is, each v; is a positive invertible element from the center
of C*—algebra A. We say that A = {W;, A;, v; }ier is a x — g—fusion frame for
H if there exist A, B strictly non-zero of A such that for each x € H

Az, z)A* < ZUZ‘2<AiPWi$,AiPWifU> < B(z,z)B*.
i€l
The element A and B are called the lower and upper * — g—fusion frame
bounds respectively. If A = A = B, then the x — g—fusion frame is said to be
a A—tight * — g—fusion frame for H and if A = B = 14 is called a Parseval
x — g—fusion frame for H.

Example 2.2. Let H be an ordinary inner product space, I = N* be the set
of all nonnegative integers and {e;};en+ be an orthonormal basis for Hilbert
C*—module H. Then, we construct H; = span{ei,...,e;} and W; = span{e;},
iel.

Define A; : H — H; by

ANz = Z(x, %)ek,

k=1

and the adjoint operator A} : H; — H define as

Nz = Z<SE, %)ei,

k=1
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then for each x € H, we have

% %

(AP, A Py = (3 (1, e, S (2, 2 )ey)

W, %% ; \/{ kzk:1 ﬂ k
e Gy G S e 2
= (@ e, =) kﬂu il

= (z,e;)(z,e;)",
S0,

Z (NiPw,z, \i Py, x) = Z (x,ei)(z,e)" = (z,x).
ieN* ieN*
This shows that {W;, A;, 1};en+ is a Parseval « — g—fusion frame for H.

Corollary 2.3. Every g—fusion frame for H is a x — g—fusion frame for H.

Proof. Let A = {W;, A;,v; }ier be a g—fusion frame for H with bounds A and
B. Then for each x € H

i€l
S0,
(VA Lale, 2) (VAL <D 07 (AP, Ai Pw,z) < (VB)1a(z, 2)(VB)1a.
el
Hence A is a x—g—fusion frame for H with frame bounds (v/A)1 4 and (v B)1 4.
O

Lemma 2.4. Let A = {W;, Aj,v;}ier be a x — g—fusion bessel sequence for
H with bound B. Then for each sequence {x;}icr € I2({Hi}icr), the series
Y icr ViPw, Af ;i is convergent unconditionally.

Proof. Let J be a finite subset of I. Then
1Y wiPwiAfail| = sup ||(Y viPw, A, y)]

ieJ =1 ey
1 1
<D (@i @)z sup || vf(AiPiwy, AiPw,y)|?
ieJ lwll=1 ey
1
< 1B (@i, @i)][2
i€J
It implies that > jer ViPw; A’ fj is unconditionally convergent in H. O

Now, we can define the synthesis operator by Lemma 2.4.
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Definition 2.5. Let A = {W;, A;, v;}icr be a x — g—fusion bessel sequence for
H. Then the operator Ty : I2({H;}ic;) — H defined by

TA({zi}ier) = ZUiPWiA;'kxia V{z:}ier € P({Hi}ier)
el
is called asynthesis operator. We say the adjoint T’y of the synthesis operator
is the analysis operator and it is defined by T : H — (*({H;}ier) such that

TX(:U) = {UzAzPWZ (w)}i.g], Va € H.
The operator Sy : H — H defined by
Saz =Ta\Tix =Y viPw,AjAPw,(z), VzeH
jel

is called a * — g—fusion frame operator. It can be easily verify that

(Sam,z) =Y 0} (AiPw,(z), AiPw,(x)),  Vz € H. (2.1)

i€l
Furthermore, if A is a * — g—fusion frame with bounds A and B, then
Az, x)A* < (Spz,z) < B(z,x)B", Vo € H.

Theorem 2.6. Let A = {W;,A;,v;}ier be * — g—fusion frame for H with
bounds A and B. Then the synthesis operator Ty is surjective and the analysis
operator T is injective closed rang with || TxX|| < ||B]|.

Proof. We have for each x € H,

iel
then,
Az, x)A* < (Txx,Txz) < B{z,z)B". (2.2)
Hence,
ATl < 1 TRl (2.3)

so, by Lemma 1.6, T} is surjective.
If T{z = 0, then from (2.3), = 0, hence T is injective. And from (2.3)
IR < 1B]l]]]I,
therefore, ||Tx| < || B]].

Now show that the range of Ty is closed. Let {T{zy,}nen be a sequence
in the range of T such that lim, o TXz, = y. Then, by (2.3) we have, for
n,m € N,

[A{zn = 2m, 20 — 2m) AT < [T (20 — 2m), TR (20 — 2m)) |

= | T3 (zn — zm)|.
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Since {Txy }nen is a Cauchy sequence in H,
|A(zn — T, Tp — Tm) A% — 0, n,m — 0.
Note that for n,m € N,
(@n = @y 0 — @) || = |AT Al@n = 2, 0 — 2) A (A7
< HA71H2HA<xn — Ty Tn — Tm) A"
So the sequence {z,}nen is Cauchy and hence there exists x € H such that
T, — = as n — co. Again by (2.2) we have
1T (20 — 2|12 < IBI2Il| @0 — 2,20 — o).

Thus || T{xy, — Tiz|| — 0 as n — oo implies that Tz = y. It concludes that
the range of T\ is closed. O

Theorem 2.7. Let A = {W;, Aj,v;}icr be a x — g—fusion frame for H with
bounds A and B. Then the x — g—fusion frame operator Sp is positive, self-
adjoint, invertible and ||A~1||72 < ||S]| < || BJ?.

Proof. From the definition of S}, the operator S} is positive and self-adjoint.
By Lemma 1.7 and Theorem 2.6, S} is invertible. And we have, for each
reH
<S}k\l’, w) = Z UZ'2<AZ'PW1'$7 AzPWl$'> < B<x, .%'>B*
el
and
(x,z) < A1 Z U§<A¢PWZ~CU, Az‘PWﬂf)(A*)il-
i€l
Thus,
1A, 2) || < [(Saz, 2)]| < |BIP||(z, ),
so, we have
IATHZ < (ISl < [1BI1%.
O

Theorem 2.8. Let for everyi € I, A; € End(H, H;) and {y; ;,j € LI} (I; is
finite or countable index set) be a x—frame for H; with frame bounds A;, B;
and there exist A, B strictly nonzero of A such that

AaA* < AjaA;  and BjaB! < BaB*,
for all positive a of A. Then the following statements are equivalent.
(1) {viPw, A} (yij),j € I} is a x—frame for H.
(2) {W;, Ai,vitier is a * — g—fusion frame for H.
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Proof. For each i € I, since {y; j,j € I;} is a s—frame for H; with bounds A4;
and B;, we have for each x € H,

Ai{vi N Py, x, vi\ Py, ) A7 < Z@iAiPWix, Yi,j) (i, vilki Pw, @)
jel;
< Bi(vi\i Pz, vi\i Py, ) B .
So,
Ai{vi\i P, vi\ Py, x) A7 < Z(%Uz‘PWiAfyz‘,ﬁ(UiPWz-A:"yi,jv95)

JEI;
< Bi(vi\i Pw,x, vi\i Py, ) B,
then,
Avihi Py, vil Po,a) A" < (@, 0iPw, Ay ) (0 P Ay 5, )

Jjel
Hence,
A Z U12<AZPsz7 AlPsz>A* < Z Z<‘r’ UiPWiA;'kyi,ﬁ<UiPW¢A2<yi,j) )
icl iel jel;
< B> v}{AiPw,z, A Py,x)B". (2.4)
i€l
And, we suppose that {v;Pw,Afy;;,j € I;} is a s—frame for H with frame
bounds A" and B'. Then we have, for each z € H
A, o) (AN <Y 0 (w,viPw Ay ) (0i Pw, Ay, @)
el jELL'
< B'(z,z)(B)*. (2.5)
Hence, by combining (2.4) and (2.5), we have
AZU?(AiPWim,AiPWi@A* < B'(z,z)(B
iel

/

)*

and
Az, 2)(A)* < BY v} Pw,x, APy, z)B*.
el
Therefore, we have
B A (@, ) (A)(B*) ™ <> v (AiPw,x, Ai P, x)
el
< AT'B' (@, 2)(B) (A"
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Conversely, suppose that {W;, A;,v;}ier is a x — g—fusion frame for H with
bounds A" and B". Then for each z € H , we have

Az, z)(A) < v} (APw,x, APy, x)
1€l
< B'(z,z)(B

)
It follows from (2.4) that
AA (@, z)(A) A" < A 0} (A Pw,x, A Py,z) A*
1€l
and
B v} (AiPw,z, AiPy,x)B* < BB (v,2)(B')*B".
i€l
Hence we have
AA (@, 2)(A)* A <D0 (@, viPw, Ay ) (viPw, ALy 4, @)
iel jel;
< BB'(z,z)(B)*B".
O
Corollary 2.9. Let for each i € I, A; € Endy(H, H;) and {z;j,j € I;} be a
parseval x—frame for H;. Then, we have that
(1) {Wi, Ai,vitier is a * — g—fusion frame for H if and only if
{viPw,ANjz; 5,1 € 1,5 € I;} is a x—frame for H.

(2
(2) the x — g—fusion frame operator of {W;, Ai,v;}icr is the x—frame op-
erator of {viPw,Ax;j,i€1,j € I;}.

Proof. (1) It follows from Theorem 2.8 that (1) is true.
(2) Letting x,y € H, then we get

(viPw, Ajy, x) = (y, vil\i Py, )
=Y (y,2i5) (@i, vili P, )

J€EL;
*
= (y, i) (0iPw, A j, ),
JEIL
so, we have

viPw ATy =)y, i j)vi P, A ;.
JEI;
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Hence,
2 * _ 3
Z vi Py, Aj Ni P,z = Z v; Py, A (viAi Py, )
el i€l
=3 ) (0l Py, w; j)vi P, Af i
i€l je[i
= Z Z<:L’, ’L)Z'PWZ.A;KJJL]'>U¢PW1.A;(:I)Z'J.
iel jel;
Then the x—g—fusion frame operator of { W, A;, v; }ier is the x—frame operator
of {UiPWiA*$¢7j,’L' el je Iz'}- Il

(2

Theorem 2.10. Let {W;, A;,v;}ier be a x—g—fusion frame for H with bounds
A, B and the x — g—fusion frame operator S. If § € End(H) is injective
which has closed range commute with Py, for each i € I, then {W;, Ai6,v;}icr
s a * — g—fusion frame for H with x — g— fusion frame operator 6*58.

Proof. For all x € H, we have
Az, z)A* < ZU7;2<AiPW¢x7AiPWi$> < B{z,z)B*
i€l
and
i€l icl
Then,
> v} {Ai0Py,x, A0 Py,x) < B(0, 0a) B*
i€l
< ([1011B)(z, z)([|10]|B)". (2.6)
And also, for each x € H, we have
Afba, 0z) A* < 0} (AOPw,z, Aif Py, ).
el
Since 6 is injective which has closed range,
A(0°0) Y|, 2)A” < A(6a, b) A*
or,
l6=HI172 < [[60) "I
So, we have,
(107 A) (@, ) (10717 A)* < A(b, Ox),
Hence,
(16~ = A) a2y (10717 A < Y o (MibPw,, A6 Py ). (2.7)
el



Generalized fusion frames with C*-valued bounds 47

From (2.6) and (2.7), we conclude that {W;, A;0, v; }ier is a * — g—fusion frame
for H. Let x € H. Then,

0°S0 = 0" " v} Py, AfA; Py, 0z
el
= Z v20* Py, A \; Py, 0
el
= Z v2 Py, 0 A N0 Py,
el
el

This completes the proof. Il

Corollary 2.11. Let {W;,A;,v;}ier be a x — g—fusion frame for H. Then
{Wi, NiS™Y v }ier is a * — g—fusion frame for H with the * — g—fusion frame
operator S™1.

Proof. Taking 6 = S~ O

In the next theorem we take H; C H for each i € I.

Theorem 2.12. Let (H, A, (.,.)4) and (H, B, (., .)B) be two Hilbert C*—modules
and let ¢ : A — B be a x—homomorphism and 0 be a map on H such that
(0x,0y)g = ¢((x,y)4) for all x,y € H. Also suppose that {Wi, Ni,vi}tier is
a * — g—fusion frame for (H, A, (.,.)4) with x — g—fusion frame operator S
and lower and upper x — g—fusion frame bounds A and B, respectively. If 6
is surjective and ON\; Py, = NiPw,0, for each i € I, then {W;, A;, ¢(vi) }ier is
a * — g—fusion frame for (H,B,{.,.)p) with x — g—fusion frame operator Sp
and lower and upper x — g— fusion frame bounds ¢p(A) and ¢(B), respectively,
and (Spbz,0y)s = ¢((Saz,y) ).
Proof. For y € H, there exists x € H such that #z = y, and by definition of
x — g—fusion frame we have
Az, z) gA* < Z v2 (N Pw.x, \i Py, 2) A < Bz, z) 4B*.
i€l

By Lemma 1.5, we have,

el

P(A)p((z, 1) 4)P(AT) < ¢
¢(B)o((x, ) 4)¢(B7).
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From the definition of x—homomorphism, we have

G(A) (O, 0x)pd(A)* <Y ¢(v7)(0A; Pw,x, 0A; Py, x)p
el

< ¢(B){0z,0x)30(B)".
Hence,

S(A) (0, 02)sp(A)* <> ¢(vi)*(Ai Py, 0z, A; Py, 0z) 5
el

< ¢(B)(0z,0x)50(B)",

so, we have

S(A) (Y, y)sd(A)* <D d(vi) (i Pw,y, Ni Pw,y)s

el
< ¢(B){y, y)sp(B)".

And also, we have

ZGI

= Z¢< (AP, APWZ/)A)

el

= ¢(v:)*(0A; Pw,x, 0A; Py, y) 3
icl
il

= (D ¢(vi)* Pw, A Ai P, 0z, Oy) 5
el

= (Spbz,0y)p.

This completes the proof. U

Theorem 2.13. If the families A = {W;, Aj,vitier and T' = {V;, T, w;}ies
are * — g— fusion frames for H and K with bounds (A, B) and (C, D), respec-
tively, then A@T = {W; @ V;, A; ® ', v;w;}ij is a x — g—fusion frame for
H®K.

Proof. For each x € H and y € K, we have

A, x) 4A* < 07 (AiPw,x, AiPw,x) 4 < Bz, 2) 4B,
el
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and
Cly,y)sC* <> wHT;Py,y,T;Py,y)s < D{y,y)sD".
jeJ
Therefore,

(A(z,2) 4A") ® (C{y,y)BC")
<Y v (AP, A Pria) 4 @ Y wi(TiPyy, T Pyy)s

iel j€J
< (B{z,2)4B*) @ (D(y,y)sD").

Hence, we have

(A®C)((z,2)a @ (y,y)8) (A" @ C)

<Y viwi (MiPw,x @ TPy, MiPw,x @ TPy y) ass
ij
< (B D)(z,2)4® (y,y)8)(B* ® D7),

it implies that
(A C)r@y,r®@y)ags(A® C)*
<> viwH{(Mi @ T) Puay, (2 ® ), (A @ Tj) Piav; (2 ® ) ass
i.j

< (B®D){z®@y,z®y)ae8(B® D)".

Therefore A ® I' is a * — g—fusion frame for H ® K with bounds A ® C' and
B®D. O

3. * — K — g—FUSION FRAME IN HILBERT C*—MODULE

Definition 3.1. Let K € End’y(H), {Ai}icr € {Endy(H, H;),i € I}, {Wi}lier
be a family of closed orthogonally complemented submodules of H and {v; }ier
be a family of weights in A, that is, each v; is a positive invertible element from
the center of C*—algebra A. We say A = {W;, A;,v; }ier is a x — K — g—fusion
frame for H if there exist A, B strictly non-zeros of A such that for each x € H

A(K*x, K*x) A* < va(AiPWiaf,AiPWi@ < B{z,z)B*.
il

Example 3.2. Let H be an ordinary inner product space, I = N* be the set
of all nonnegative integers and {e;};en+ be an orthonormal basis for Hilbert
C*—module H.
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We construct H; = span{ey,...,e;} and W; = span{e;}, i € I. Define
AZ' cH — I‘IZ by

: e
Nz = (=, \—}m

k=1
the adjoint operator A} : H; — H define as

i e
Nz = Z(x, —)e;.
= Vi

Then for each x € H, we have

i er i er
<A1PW1x7A2Psz> = < <$7 7.>€k, <$7 7>€]€>
2 i

~ -

€; €i \ 2
—F )L, —= (&
S 5 Y

= (z,e;)(x,e;)",

:(x

it implies that

Z <AIPW1$7 A’LPsz> = Z <$7 6¢><l', ei>*
1€N* 1EN*
= (z,x).

Fix N € N* and define K : H — H by
Ke, — 1€; .if 'iSN,
0 if i>N.
Then it is easy to check that K is adjointable and satisfies
Ko, = ie; »z’f ‘igN,
0 ¢f i>N.

For any z € H we have

1
1EN*
= (z,z).

This shows that {W;, A;, 1}ien+ is a ¥ — K — g—fusion frame with bounds %
and 1.
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Theorem 3.3. Let U € End%(H) be invertible, A = {W;, Aj,vi}ier be a
x — g—fusion frame for H with bounds A and B. Suppose that U*UW; C W},
foralli € I. Then I' = {UW;, \iPw,U*,v;}icr is a x — UKU* — g—fusion
frame for H.

Proof. For each x € H, we have

A(K*z, K*z)A* <Y 0} (A Py, Ai Py, )
iel
< B{z,z)B".
And for each z € h

> 0} (A Pw,U* Pyw,z, Ay Pw,U* Pyw, )

i€l
=> v} {APw,U*x, \i Py, U* )
1€l
< B{U*z,U*z)B*
< BIU|)(z, z)(BU])* (3.1)

On the other hand, for each x € H
A(UKU**z, (UKU*)*z) A*
= AlUK*U*2, UK*U*z) A*
< A|U|K*U*z, K*U*x) A*
<UD v (APw,U*x, A Py, U™ )

i€l
= |UI*> v} {AiPw,U* Puw,x, A Pw,U* Py, )
i€l
and
(IO AU KU*) =, (UKU*) z)(|U]| 7 A)*
< ZU12<A1PWZU*PUWZx7AzPWZU*PUW1x> (32)
i€l
From (3.1) and (3.3), we conclude that I" is a * — UKU* — g—fusion frame for
H. O

Theorem 3.4. Let Uc End’y(H) be invertible and I' = {UW;, A; Pw,U*, v; }ier
be a K — g—fusion frame for H with bounds A and B for some K € End’(H).
Suppose that U*UW; C W;. Then A = {W;, Ai,v; Yier is a UV KU — g— fusion
frame for H.
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Proof. For each x € H, we have
el
= 0N Py, U(U*) ', APy, U(U*) ')
el
= va(AiPWiU*PUWi(U*)_lm, A Py, U* Py, (U) " L2)
el
B((U*) e, (U*) 'a)B*
< (JUHIB)(z, =) (U B)*. (3.3)
On the other hand, we have
A(UTTKU)* 2, (U KU)* 2)A* = A(UK* (U )*2, U K* (U !)*z) A*
< A|UIHKHU ) e, KA(U ) ) A*
< |UIPY  of (A Pw,U* Pyw, (U™") "z, A P, U* Pyw, (U ") ")
el
= UI?) vf (APw, U (U ") 2, Ai P, U (U )
el
= |UI*> v} {AiPw,z, A Pw,),
el
it implies that
(U7 AU KUY 2, (U KU ) (JU]| = A)*

el
From (3.3) and (3.4), A is a * — U1 KU — g—fusion frame for H. O

Theorem 3.5. Let K € End%(H) be invertible and A = {W;, A;, vi}icr be a
*x — g—fusion frame for H with bounds A and B and Sy be the associated * —
g—fusion frame operator. Suppose that T*TW; C W; where T = KSXl. Then
I'={TW;, \i Pw,T*,v; }ier is a K — g—fusion frame for H with corresponding
* — g—fusion frame operator KSXIK*.

Proof. For each x € H, wer have
(K*z, K*) = (Sp Sy K w, Sy Sy LK )
< [ISal*(Sy K e, Sy K )
< || BI*(Sy'K*z, Sy K*x).
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And also, for each x € H,
il iel
< B(T"z,T*z)B*
< (ITB){z, z)(ITB)*.  (3.5)
On the other hand, for each x € H
> 0} (A Pw, T* Prw,x, A Py, T* Py, x)
i€l
= v} {AiPw,T*z, APy, T"x)
el
> AT x, T"x)A*
= A(S ' K*z, S K ) A
> (||BII7H A (K, K ) (|| B 1 A)* (3.6)
From (3.5) and (3.6), I' = {T'W;, A; Pw,T*, v; }ier is a * — K — g—fusion frame

for H.
Next, for each x € H,

iel
= Z U?PTWZ'TPWZ- A: (AzPWZT*)PTWZIE
el
=Y 0} (Pw,T* Prw,)" A; Ai(Pw,T* Prw, )x
icl
=T(> v} Pw,AjAi Py, T*x)
el
=TS\T*z = KS,'K*z.

Thus, K SXIK * is the associated x — g—fusion frame operator. O

Theorem 3.6. Let K € Endy(H) and A = {W;, Aj,vi}ier be a x — K —
g—fusion frame for H with frame operator Sp and frame bounds A and B.
Let U € Endy(H) be an invertible operator on H, and U*UW; C W;, for all
1 € I. Then the following statements are equivalent:

(1) T ={UW;, \i Pw,U*,vi }ier is * — UK — g—fusion frame for H.
1
(2) The quotient operator {(UK)*/SK U*] is bounded.

(3) The quotient operator [(UK)*/(USAU*)%} is bounded.
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Proof. (1) = (2) Since I' is * — UK — g—fusion frame for H, there exist
A, B € A— {0} such that for each x € H,

A(UK) 2, (UK)*2)A* < 3 v}(Ai Pw,U* Pyw,z, A; Py, U* Pow, )
i€l
< Az, z)A*

and

Z vi2 <A1PW1U*PUWZ‘T7 AZPWZU*PUWZx> = Z ’Uiz <A,PWZU*JZ, AZPWZU*@
il el
= (SAU"z,U"z)

= (S:U*z, SiU*a).
Hence we have
A(UK) 2, UK)*2)A* < (S2U*z, S2U).
We define the operator 71" : R(S% U*) - R(UK)*) by
T(S2U*z) = (UK)*z.

1
Then, from Ker(S{U*) C Ker((UK)*), T' is a well-defined quotient operator.
And for each = € H,

1
IT(S;U*2)|| = ||(UK)*x|
* * l
= (UK) =z, (UK)*z)| 2
1 1
< ANHSEU* e, SFU ) (A™) V|2
1 1
< [|ATINSFU 2, SEU*)| 2
1
< ||A7Y 182U,

it implies that T is bounded.
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(2) = (3) Suppose that the quotient operator [(UK)*/S}\ U*} is bounded.
Then for all z € H, there exist C' > 0 such that
WKyl < s3]
— CI(SiU", S{U"D)|
= Cl(USAU", )2
= CI{(USAU") 2z, (USAU")2a)||
= C|(USAU*)2a.

(3) = (1) Since A is x — K — g—fusion frame for H with bounds A and B,
for each x € H,

A(K 'z, K*x)A* < ZU1'2<A1'PW¢$7A¢PWZ~$> < B{z,z)B*.
el
And also, for each x € H,
Z UZ-Q <AiPWiU*PUWi$; AZPWZU*PUW,x> = Z Uiz <AiPWiU*$, AZPWZU*.CIZ>
icl iel
< B{U*z,U*z)B*
< BIU){z,z)(BIUI)".  (3.7)
On the other hand, we have
> 0} (A Pw,U* Pyw,z, A Pw,U* Pyw,z) = > 0} (A Py, U*x, \i Py, U )
icl el
> AK*U*x, K*U*z)A*
= A(UK)"z, UK)*x)A*.  (3.8)
Thus, from (3.7) and (3.8), we conclude that I' = {UW;, A; Pw,U*, v; }ier is
x — UK — g—fusion frame for H. This completes the proof. O

4. CONCLUSIONS

In this work, we present the notions of * — g—fusion frame and * — K —
g—fusion frame in Hilbert C*—modules, we gives some properties and study
the tensor product of * — g—fusion frame. We also give illustrative examples
to exhibit the utility of our results. Our results generalize and extend various
results in the existing literature.
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