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Abstract. By utilizing a certain Libera integral operator considered on analytic multivalent
functions in the unit disk U. Using the hypergeometric function and the Libera integral
operator, we included a new convolution operator that expands on some previously specified
operators in U, which broadens the scope of certain previously specified operators. We
introduced and investigated the properties of new subclasses of functions f (z) € A, using

this operator.

1. INTRODUCTION

Let A, signify the class of all analytic multivalent functions of the form:
oo
F(2) =224 anp2"™, (pe N ={1, 2,3, .}, z€U) (1.1)
n=1

which are analytic in the unit disc U := {z €:|2| <1}. We denote by S
the subclass of univalent functions f(z) in A,. For (0 < < p), we denote
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by S, (B8) and Cy, (B) the subclasses of Aj, consisting of all analytic functions
which are, respectively, starlike of order 8 and convex of order 8 in U.

For functions f (z) given by (1.1) and g (z) given by
g(z):z—l—anz", (zeU), (1.2)
n=1

the convolution (or Hadamard product), denoted by f * g of the functions f
and g is defined by

(f*g)(z)=z+2anbnz”:(g*f)(z) (zeU). (1.3)
n=1

In 1965, Libera [18] had studied an operator called the Libera integral op-
erator L : A — A defined by:

2 | < 9
Liz)y=-|[ f()dt=2z+ anz". (1.4)
ZO/ nZ::ln—Fl

An integral operator was one such operator which has attracted many re-
searchers. Later Kumar and Shukla [17], Bhoosnurmath and Swamy [8] and
Noor and Noor [20] have studied certain types of integral operators. For more
details about the properties of integral operators, one can refer [4], [5], [9],
[10], [16], [19], [26] and [29].

In this paper, we introduce the operator L, : A, — A, defined by

Ly(z) = %Z(logf)alf(t)dt

(o] p+ 1 6%
= zp—i-z <> antp2" P, (1.5)
— n+p+1

When p = 1, equation (1.5) studied by [6], [7] and [16]. If p = a = 1 we get
back to Libera integral operator.
Let A, be defined as the function A, (a,¢; z) by

Ay (a,cz) = 2P + Z ((Z))"z”ﬂ’, (1.6)
n=1 n

for c#0,—-1,-2,..., and a € C\ {0}, pe N =1,2,3,..., where ()),, is the
Pochhammer symbol which is defined by
_I'(A+n)

MW=y~ = AO+D e Otn=1), (1.7)
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forn =1, 2,3, ..., and (\), = 1. It should be noted that
AP (a,c;z) :ZP2F1 (a,l,c;z), (18)

where

Ooa (1) Ooa
F(a,1,¢z2) = chl Zc

Tl

Corresponding to the function A, (a,c; z), we define a new linear operator
Q, (a,c) f (2) on A, by the convolution product for A, (a,c;z) and L, given
in (1.5), we obtain

Qpala,c)f(z) = (BpxLp)f(2)
_ D p+1 \%(a), n+p
= 7 +Z<n+p—|—1> (c), “tP* : (1.9)

forc#0,-1,-2,..., and a € C\{0},pe N, a € N =1,2,3,....

Using the definition of hypergeometric functions, the Hadamard product
principle, and the definitions of the classes of uniformly k-starlike function
S* (B, k) and the class of uniformly k-convex C (f, k) function which are in-
troduced and investigated by Gooodman [15], [16] and Regnning [25], [26], in
this paper we will define new subclasses of multivalent hypergeometric func-
tions f € A, and study their properties.

Let f € A, denote the subclass of A, satisfying

o 2 a(0.0) £ (2)) +972(pa (0.0 £ (2)"
R {(1 — ) Qpa (a,c) f(2) +72(Qp o (CL,C)f(z))/ /3} (1.10)
2o 0,0 f(2)) +92° Qa0 F ()" ||
>k (1 =) Qo (a,6) £ (2) +72(Qpa (a,¢) [ (2)) 1|, zeU,

where —1 < <1, 0<y<1,a€ Nand k > 0.

By appropriately specializing the values of a, v, (a) and (c) the class given
in (1.10) can be reduced to the class investigated by many researchers, see for
example, [1], [2], [3], [10], [11], [12], [13], [14], [15], [21], [22], [23], [25], [27] and
[28].

The primary goal of this paper is to investigate the coefficient bounds,
extreme points, and radius of starlikeness for functions in the generalized class
(1.10).
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2. CHARACTERIZATION AND OTHER RELATED PROPERTIES

Our first conclusion provides a sufficient condition for f (z) € A, which are
analytic in U to be in Q’;,a (a,c, B,7).
Theorem 2.1. A function f(z) of the form (1.1) is in Q’;a (a,c, B,7), if
S p+1 )a(a)n,a |
n+p+1) (o), "7

L4 (n+p— 1) [(k+1)(n+p)(ﬁ+k)]<
n=1
<A=-B8A—=y+w)—(k+1)p+plp—-1)y—1A—=v+9p)]. (2.1)

Proof. Suppose that (2.1) is true for -1 < < 1,0 <~y <1, € N and
k > 0, in order to prove that f € Q’;ya (a,c,B,7). It suffices to show that
(1.10) is bounded by 1 — 3, that is,

AR (0,) (0,0) £ (2)) + 72 (Ppa (0:0) £ (2))" 1‘
(1 - ’7) Qp,a (a’ C) f (Z) + 'YZ(Qp,oz (av C) f (Z))/

WL, (2)) + 72 (0,0) £ (2))"
(1=7) (0.0  (2) +72(Qpa (0,0) £ (2))

—1}31—[3.

We have
#(Qpa(a,¢) f(2)) +72*(Qpa (a,0) f (2))"
(1 - 'Y) Q10,04 (aa C) f (Z) + IYZ(Qp,a (aa C) f (Z))/

_Re { Qe (0,6) F (2)) + 792 Qpa (0,0) £ ()" 1}
(1 - 7) Q;D,oz (av C) f (z) + ’YZ(Qp,oz (a7 C) f (Z))/

Z(Qp,a (av C) / (Z))/ + 722(Qp,a (a’v C) / (Z))//
(1 =) Qp,a (a;0) f(2) +72(Qpa (a,0) f(2))

(1+k)<M+N>,

-1

< (1+k)

1‘

IN

where

M=[p+pe-17-0-7+),

= - n — n — ptl (@), a
N =Sy ot Dl =) (A ) (5 e
and
Q=0-y+p) - > [L+v(n+p-1) (ni;iJ ((Z))” |antpl-

n=1
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The above mentioned expression is bound by (1 — 3)

o p+1 \%(a),

S+t = DI+ Do) =8+ 8] () (el
<A-B)A=v+)—p+tr-Dy-Q—-v+w](k+1)

and hence the proof is complete. O

Corollary 2.2. If f € Q’;}a (a,c,B,7), then
Bt )@, (=5t 9p) — (k1) [M]
P A4y nAp—1)(p+ DY [(k+ D) (n+p) - (B+K)](a),’

n>1, where -1 < <1, 0<y<1,a € N and k > 0. The equality (2.1)
holds for the function

(2.2)

(m+p+1)%),1L=B)A—y+yp) - A+K)[M] .,

@+nau+7m+p—nnm+pxrwo—w+wnmnz(;@

(n>1,z€U).

The following is the growth and distortion property for function f in the
class Q’;,a (a,c, B,7).

Theorem 2.3. If the function f(z) defined by (1.1) is in the class
Q];,a (a,c,B,7), then for 0 < |z| =r < 1, we have

(1=8)(p+2)" (1 —y+9p) — (k+1) [M]rrH!
(L+yp) (p+ D) [(k+1) (L +p) — (B+K)]

<|f(2)]

(1-8)(p+2)* (1 —y+9p) — (k+ 1) [M]rP+!

P _

ST T ) T [kt ) (L5 p)— (B 1K)
and
ol (1-8)(p+2)*"(A—y+p) — (k+1)[M]r?
Q+ym+p—1)p+1)* " [(k+1) 1 +p) — (B+Fk)]
<|f (2)|
< ol 1-8)(p+2)* L —~y+~yp) — (k+1)[M]rP

Q+y(n+p—1) @+ [(k+1)(1+p)— (B+k)]



86 M. Gh. Ahmed and S. Supramaniam

Proof. Since f € Q’;}a (a,c, 8,7), Theorem 2.1 readily yields the inequality

3 (1=8)+2)* (A =v+p) = (k+1)[M]
;an+p§ P+ 1A+ ) [(k+1)(1+p)— (B+EK)] n>1.  (24)

As a result, for 0 < |z| = r < 1 and using (2.4), we obtain

o (o.9]
1F <P+ an 2P <P 40P " ayy,

n=1 n=1
ey A=B) (+2)" (1 =y +p) = (k+1) [M]r"*!
B (T+yp) e+ D) [(k+1) (1 +p) — (B+FK)]

and

o0 00
‘f(z” > ’Zp| - Zan ’z”""p’ > rP —rp+1zan+p

n=1 n=1
o =B @+2)" (A —vy+qp) = (k+1) [M]r"*!
- (T+yp) e+ 1) [(k+1) (1+p) — (B +FK)]

We also obtain the following from Theorem 2.1
f'(z) =p2P!

(nt+p+1)"(n+p)(c), 1 =B (L —v+7p) = (k+ 1) [M] 4y
(I+yn+p=1))(@+1)*[(k+1)(n+p)—(B+FK)(a),

and
S (14 o) a (P+2)"(A =51 =v+p) = (A +Fk)[M]
;( TP S T (L (e p— D) [ +p) (L4 k) — (B B

Hence, we have

oo
1/ (2)] < [p2P 4D (04 p) anayp |27

n=1

[e.o]
< prP7t 4P Z (n+Dp)anip

n=1

(1-8)p+2)* (1 —v+p) — (k+1)[M]rP
A+vm+p—1)p+1* " [(k+1)(1+p) — (B+k)]

<prP7t 4
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and
1/ (2)] = [p2" 7 = > (n+p) angyp |27
n=1
> S (4 p) e
n=1
> ol - (1-8)(p+2)" (1 —y+vp) = (k+1)[M]r?
- (L+y(+p=1)(p+ 1) [(k+1)(L+p) — (B+Fk)]
The proof of Theorem 2.3 is now complete. O

The following theorems provide the radii of starlikeness and convexity for
the class Q’; (a,c, B,7).

Theorem 2.4. If the function f in (1.1) belongs to the class Q];a (a,c, 5,7),
then f is starlike of order 6 (0 < 6 < 1) in the disc |z| = r1, where

S ((2—p—5><1+7<n+p—1>>[<n+p><1+k>—<5+k>]>*
st (n+p—0)(1=p8)(1—y+p) - (1+k)[M] ’

For the function f, (z) provided by (2.3), the result is sharp.

Proof. Since f(z) is starlike of order ¢ (0 < § < 1), we have

it

That is

Now, for |z| = r1, we have

Qo (a,0) f(2) 1‘
Qp.a(a,c) f(2)

(p—1)2F + Z_:l (n+p—1) <nf;}r1> ((Z;" .

n

D = pt1 % (a), n+p
zP+ 21 ntpti) (o), Gntp?
n=
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o0 o a n
=D+ % (ntp—1) (Fhr) (G2 lonsal 12"

n

P o p+1 a(a)n n+p
P+ 55 (72) 22 eyl I
n=

n=1
[e.°] 1 o N

1= % (i) G lanl 120"
n—=

Hence (2.5) holds true if

(p—1>+2<n+p—1>(
n=1

-1+ % (n+p—1) (25) & lansyl 2"

p+1 >a<a>

L angpl |2]"
n+p+1) (o),

< (1-9) (1—2 (niz_lFl) ((fﬁ” |antp] !z!”)

n=1 n

or
o}

(n+p=9)( p+1 \"(a) n
™ ay, <1
n; 2-p-0)\n+p+1) (o), fanl 1" <

With the help of (2.2) and (2.7), it is indeed correct to say that

—~(n+p=0)( p+1 \*(a),
;(2—10—5 <n+p+1> (©)n, i

~ [ —

At+ytp=1)) @+ 1) [(k+1)(n+p)— (B+K)](a),

T A=) ntp+ 1)), (L= +9p) = (k+1)[M]
Solving (2.8) for |z| = r1, we obtain

(2.5)

(2.8)

R (R L L L

(n+p—0)1—=8)1—y+9p) — (1 +Fk)[M]

By observing that the function f(z), given by (2.3), is indeed an extremal

function for the assertion (2.1), Thus Theorem 2.4 is proved.

g

Theorem 2.5. If the function f given by (1.1) is in the class Q’;ya (a,c,B,7),

then it is convex of order § (0 < 6 < 1) in the disc |z| = ro, where

n>1

ro = inf <(1+7(”+p—1))(2—p—6)[(n+p)(1+k)_(ﬂJrk
’ 1-=8)(n+p—=8)(n+p) (1 —v+p) — (1 +k)[M]

For the function f, (z) provided by (2.3), the result is sharp.

>]>*{
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Proof. Using the method used in the proof of Theorem 2.4, we can demonstrate
that

2(Qpa (a,¢) f(2) f (2))"
(Qpa (a,0) f(2) f(2))
plp—1)+ fj (ntp)(ntp=1)(p+1) (a),,

ntp+1 ©, |anpl |2["
< nozol
n 1) (a n
p— 3 G W o] |2
<1-94. (2.9)

We can show from (2.1) that (2.9) is true if

oo

(n+p—0)(n+p)(p+1)(a), =n
2 p—mepsD) @,

(p+1)A+y(n+p-1)[(n+p)(k+1)—(B+k)(a),
- (=8, (n+p+ 1) (I —y+7p) — (k+1)[M]

When we solve (2.10) for|z| = ra, we obtain

ol < <(1+7(n+p—1))(2—p—5)[(k+1)(n+p)—(ﬁ+k)]>71‘
"\ (=B tp=08)(n+tp)(l—v+wp) - (k+1[M] ]
Sharpness of the result follows by setting

n=1

(2.10)

fn (2)
_p (n+p+1)%0),A=B) A=y +yp) A+ K)[M] .y
P+ A +y(+p—1D)[(n+p) A+k) = (B+E)(a),”
(n>1, z € U). This completes the proof. O

The following result is a linear combination of several functions of the type
(1.9).

Theorem 2.6. Let
fi(z) == (2.11)

_ (1=B)(n+p+1)" (1 —v+7p) — (k+1)[M](c)

n Zn+p
A+y(n+p-1))@+1)*[(k+1) (n+p) - (B+K)](a),
(2.12)
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then f € an (a,c, B,7) if and only if it is possible to express it in the following
way:

F(2)=Anfnl2), (2.13)
n=1

where A\, >0 and Y A\, = 1.

n=1

Proof. Suppose f(z) can be written as in (2.14). Then
f (Z) = Z)‘nfn (Z)
n=1

_ (ntp+ DA =F) A=y +7p) = A+K) [M]()pAn_ _nip
P+ (A+y(n+p-1))[n+p)(L+k) = (B+k)](),

i(1+7(n+p—1))(p+1)"‘[(n+p)(1+k‘)—(5+/~€) (a),
(1= (n+p+1)*(A—=~+p) — A +Ek)[M](c),
(A=B)n+p+1)* (1 —vy+9p) = (1+k)[M](c),Mn

(I+y(n+p=1))(@+D)%[(n+p) (1+k) = (B+E)](a),

:i)\n:1—)\1<1.
n=1

n=1

It follows from Theorem 2.1 that the function f € Q’;,a (a,c, 3,7).
Conversely, let us assume that f € Q’;a (a,c, 8,7). Since

v e Q=B Ap+ )T A=y typ) — A+ K [M](),
TP Aty mAp— 1)) (p+ ) () (L +E) - (B+R)](),
Setting

A+yn+p=1) @+ [(k+1)(n+p) = (B+k)(a)

Ap = = 2 pap,m > 1
1=B)(n+p+1)* (1 —v+p) = (k+1)[M](c), v
and
AM=1-> A,
n=2
It follows that f (z) = > Anfn (2). Thus, the theorem is proved. O
n=1

Theorem 2.7. The class Q’;a (a,c,B,7) is closed under convex linear combi-
nations.
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Proof. Assume that the functions f; (z) and fs (z) are defined by
o0

fi(2) =24 anipz"P, (Gngp; =0, =1,212€0),
n=1

which belongs to the class Q’;?a (a,c, B,7). Setting

fE) =pfi(z)+ M —p)falz), 0<p<l (2.14)
We may deduce from (2.14) that

F(2) =243 {Hans + (1= p)ang} 2", 0<p<1l z€U).
n=2

In view of Theorem 2.1, we may conclude that

[e.e]

Y Lyt p=D][(k+1)(n+p)—(5+k)

n=1
p+1 \%(a),
(1) G2 e + (1= wana)

=p> [+yn+p=1][(k+1)(n+p)—(B+k)
n=1

1 (e}
><< p+ ) (a)nan1
n+p+1) (¢),

o0

+(1=p)Y Ly +p=D[(k+1)(n+p)— (B+Fk)

n=1
p+1 \%(a),
8 <n—|—p+1> Ec))na”’2
Sp(l=B)(1—v+p) = [M](k+1)
+(1-p)A=8)A—=y+p)— [M](k+1)
=1=8)A—v+p)— [M(k+1).
This completes the proof. O
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