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Abstract. In the paper, the authors offer some new inequalities of Hermite-Hadamard type

for functions whose derivatives are of some geometric convexities.

1. INTRODUCTION

We first recall several definitions.
Definition 1.1. A function f: I C R = (—o0,00) — R is said to be convex if

flte+ (1 =t)y) <tf(x) + (1 —1)f(y) (1.1)
holds for all z,y € I and ¢ € [0,1].

Definition 1.2. A function f: I C Ry = [0,00) — R4 = (0, 00) is said to be
geometrically convex if

Flaty™™) < @) )] (1.2)
holds for all z,y € I and ¢ € [0, 1].
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Definition 1.3. ([15]) Let f(x) be a positive function on [0,b] and m € (0, 1].
If

F(@ty™ D) < (@) [f ()Y (1.3)
holds for all z,y € [0,b] and ¢ € [0, 1], then we say that the function f(z) is
m-geometrically convex on [0, b].

Definition 1.4. ([15]) Let f(z) be a positive function on [0, ] and (o, m) €
(0,1)%. If

flaty™ ) < [F@)] [ )0 (1.4)
holds for all z,y € [0,b] and ¢ € [0, 1], then we say that the function f(z) is
(cr, m)-geometrically convex on [0, b].

Definition 1.5. ([21]) A function f : I C Ry — Ry is said to be s-geometrically
convex for some s € (0, 1] if

'y < F@) @) (1.5)
holds for all z,y € I and ¢ € [0, 1].

We now recall some inequalities of Hermite-Hadamard type.

Theorem 1.6. ([4, Theorem 2.2]) Let f : I° C R — R be a differentiable
mapping on I° and a,b € I° with a < b. If |f(x)| is convex on [a,b], then

‘f )+ 10 _a/f ‘ B-a(f@ +IFB)

8

Theorem 1.7. ([10, Theorems 1 and 2]) Let f : I CR — R be differentiable
on I° and a,b € I with a <b. If |f'(x)|? is convex on [a,b] and ¢ > 1, then

‘f )+ f(b _a/f ' (!f’( >\q+rf'<b>|Q)”q @

2

and

‘f<a+b> ba/f ) da| <

Theorem 1.8. ([8, Theorem 2.3]) Let f : I C R — R be a differentiable
mapping on I° and a,b € I with a < b. If the mapping | f'(x)[P/®=Y is convex
on [a,b] for p > 1, then

L o)

/ q / g\ 1/4q
b (@O
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b—a 4 1/p Ly
S 16 <M> { [|f’(a)|p/(p—1) + 3|f/(b)|p/(17—1)] p

+ [31f/(@)P/®D 4 | £ (p) /oD, (1.9)

In recent years, some other kinds of Hermite-Hadamard type inequalities
were generated in, for example, [1]-[3], [7], [11]-][22]. For more systematic
information, please refer to monographs [5, 6, 9] and related references therein.

In this paper, we will establish some new inequalities of Hermite-Hadamard
type for functions whose derivatives are of some geometric convexities.

2. LEMMAS

For any mapping ¢ : Rg — Ry and for u,v,§ € Ry and a,m € (0, 1], define

oun = B ﬁ(a;é)z{?’_m e
L(u,v) = ﬁ uFv (2.2)

and ) T
N b e N R AR

- u="v.
27

Lemma 2.1. Let f : I C Ry — R be a differentiable function on I° and
a,be I° with0 < a <b. If f' € L([a,b]), then

1 b f(z) _ Inb—Ina
lnb—lna/a x dx—f(\/c%)— 4

» /lt[at/2b1t/2f/(at/2b1t/2) QU (@) e (2.4)
0

Proof. Letting « = a'~%/2b%/2 for 0 < t < 1 and integrating by part give

Inb—Ina [*
nb2na/0 tal=t20t/2 1 (10 20/2) at

_ /1 tdf (a252)]
0

_ tf(al—t/2bt/2)‘é_ /1 f(al—t/th/Q) dt
0
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Vab
) - e [

" Inb—1Ina T

Further putting = = a/2b't/2 for 0 < t < 1 yields

Inb—1 !
=t L /O tal/2p1-t/2 1 (qt/2p1-1/2) d¢

= [ rar )

1
_ _tf(at/Zblt/2)|é+/ f(at/Zblft/Q) dt
0

- 2 b f(x)
__f(\/%)+lnb—lna Jab da.

Lemma 2.1 is thus proved. O

Lemma 2.2. For u,v > 0 and u # v, we have

1
/O w22 = V(L R - Va (2.5)
and .
/ t(ut/zfulﬂt/2 + ulft/Qvt/Q) dt = [L(Vu, \/5)]2, (2.6)
0

where L(u,v) is defined by (2.2).
Proof. The proof is straightforward. O

3. SOME INEQUALITIES OF HERMITE-HADAMARD TYPE

Now we are in a position to establish some inequalities of Hermite-Hadamard
type for functions whose derivatives are of the geometric convexity, the m- and
(o, m)-geometric convexities, and the s-geometric convexity.

Theorem 3.1. Let f : I C Ry — R be a differentiable function on I° and
a,b € I° with 0 < a < b. If | f'(z)| is geometrically convex on [a,b], then

L (€
Inb— lna/a x dz = f(\/%)
Inb—Ina
< - 7
- 4
where L(u,v) is defined by (2.2).

{L(lalf" (@)%, bl F 0))Y?))2, (3.1)
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Proof. From Lemma 2.1, the geometric convexity of |f'(x)| on [a,b], and
Lemma 2.2, we have

1 " f()
lnb—lna/a x da:—f(\/@)

1
< Inb ; 111@/0 E[at/2010/2] 1 (at/ 26102 | 4 al 2 (1 202) ] dt

oI [ ol @) I 4l @)
< 1 A
Inb—Ina , /
= Lol (@) B B2 .
The proof of Theorem 3.1 is complete. O

Corollary 3.2. Forb>a >0 and r > 0, we have

b —a”

0 < L(a*,b*") — (ab)" < L(a",b"). (3.2)

Proof. This follows from letting f(z) = 2?" for x € Ry and r > 0 in Theo-
rem 3.1. O

Theorem 3.3. Let f : Ry — R be a differentiable function on Ry, (a,m) €
(0,1)%, and ' € L([a,b]) for a,b € Ry with 0 < a < b. If |f'(x)| is (o, m)-
geometrically convex on the closed interval [O,max{b, bl/m}] , then

1 " f@)
lnb—lna/a x dx—f(\/%)‘
Inb—1 m ;| f]a @
< n v na{b}f/(bl/m)‘ |f/|§,(b L1 ,b)G(l’Z|f/|a7b>
m | f'lp,a b @
Fal s @m0 (1, 2 ) | (53

where | f'qp, B ), and G(u,v) are respectively defined as in (2.1) and (2.3).

Proof. Using the (o, m)-geometric convexity of |f/(z)| on [0, max{b, bl/m}]
yields

‘f/(at/le—t/QH < |f’(a)|(t/2)a }f/(bl/m) ‘m[l—(t/Q)“]
= e
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< ‘f/(bl/m” ’f/‘ﬁ(a i Nayp)Fat/2 (3_4)

and

‘f/(alft/th/QH < ‘f/(a1/m)|m[1 (t/2)~ |f (b)] (t/2)>
= [ @)™ \ e
< [f (@) [ e (3.5)

for all t € [0, 1].
By Lemmas 2.1 and 2.2 and inequalities (3) and (3.5), we obtain

1 b flz)
Inb—1Ina /a T do = f(\/%)‘
< nb—lna /1 a6 12 £ (a25102)|
0

+ alft/th/Q‘f/(alft/th/Q)H dt

nb—1Ina [* my Bl v
< n4na/ t{b‘f/(bl/m)‘ |f,|a7(b i1 Na) <Z|f/|g,b>

0
my eyl flna) B "

+a‘f’(a1/m)} a he <a|f/‘l?,a> }dt

Inb—1 m a;|f'|a a
= By i) i 6 (111

m a3 ! a b «
+a‘f/(a1/m)} |f/|§,(a |f ‘b7 )G<1aa|f/|b,a>}'

The proof of Theorem 3.3 is complete. g

!/

Corollary 3.4. Under the conditions of Theorem 3.3,
(1) if a« =1, then

1 " f(@)
lnb—lna/a dx—f(\/%)
Inb

< 4{b\f (bl/mﬂmG( %

—i—a‘f/(al/m)}mG(l, Z’f/‘b,a> };

o)



Inequalities of Hermite-Hadamard type

(2) if m =1, then

L
Inb— lna/ dw—f(\/%)’
l b « b ale’
< BBy 06 (1811
ralr @l e (1, g,

(3) ifa =m =1, then

1 b f(x)
lnb—lna/ do — f(Vab)

Inb— lna

< (Lol £ (@), Bl £ B))72)}.

Corollary 3.5. Under the conditions of Theorem 3.3,
(1) if |f'(a)] < }f’(bl/m)‘ and |f'(b)| < |f’(a1/m)‘m, then

lnb—lna/ fgcx )‘

<t {Mfwwﬂ|G(1rqu

ral (@) 6 (12 ) )

©2) if |f/(a)] < £/ (OY™)|™ and |£/(b)] = | (a¥/™)|™, then
lnb—lna/ ff de—f )‘

_Inb 41 {b‘f (/™) | G<1’Z|f/‘3’b>

Fal (@G (1)

(3) if |f'(a)| = | (b*/™)
)

Inb—1Ina

X
lnb lna m m o o
for@miriee(i i)

"™ and |f'(b)] < |f'(at/™)|™, then

169
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ralr@m) "6 (L2 |
@) if |F(@)] = [F/ (™)™ and |f'(0)] = |/ (a'/™)|™, then
1 b fx
lnb—lna/a f.(r ! dz = f(\/%)‘
< Inbd ; lna{b‘f/(bum)‘m % ’f/|(117_baG<1a Z’f/@’b)

N SN
+a’f,(a’1/m)‘ |f,’l%,a G<17a|f,’b7a>}‘

Theorem 3.6. Let f : I C Ry — R be a differentiable function on I° and
I € L([a,b]) for a,be I° with 0 < a <b. If |f'(z)| is s-geometrically convex
on [a,b] for some s € (0,1], then

1nbi1na/bf(x) dx—f(\/%)‘

lnb lna‘f (a) [P @D £ () B ®))

x {L([a ONEATHONES)S (3.6)
where f(a; &), and L(u,v) are respectively defined as in (2.1) and (2.2).

Proof. Using the s-geometric convexity of |f'(x)| on [a, b] yields
‘f’(at/le_t/Q) |
< I (@) | ]

<|f'(a )|6(s;|f'(a)\)+at/2|f/(b)|,8(S;\f'(b)|)+a(1_t/2) (3.7)
= ‘f ( )‘5(5 i1f (a Uf ( )‘ ]t/2‘f/(b)’5(s;|f’(b)\) Uf/(b)’s] 1-t/2
and
‘f’(al_t/th/QH
< 17(@)| 2 )
(3.8)

< |f!(a) [Pl @D +a(=t/2)) ¢ 4y BlsIF () +at/2

= [ £(@)|PE @D (@) 5] ) £ (B) P OD [ £ (B 4]
for all t € [0, 1].
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Making use of Lemmas 2.1 and 2.2 and inequalities (3.7) and (3.8) leads to

1 " f(2)
lnb—lna/a T dx—f(\/%)
< hlb;lna/lt[at/?blt/Q‘f’(at/let/Z)} +alft/th/Q‘f/(alft/th/g)Hdt
0
< Inb— lna|f ( )|'8(S;‘f/(a)|)‘f’(b)’5(5;|fl(b)|)
1
< [ H{lalr @P1 Rl P) T 4 [l @PF) Tl w)F) 7 e
0

lnb lna s f'(a ol 7 s s
P @OV )P OD L [al /() T2 o7 0] )
The proof of Theorem 3.6 is complete. O

Corollary 3.7. Under the conditions of Theorem 3.6,
(1) i (@) <1 and [f'()] < 1, then

1 b flx)
lnb—lna/ de - f(Vab)

Inb — lna

< {L(lal (@) *)2, Bl £/ (0)|*]/2) }; (3.9)
(2) if|f'(a) <1< \f’( )|, then
b X
lnbilna/ f )d”f—f(‘/@)’
<Mnb- lnOblf B {L([al £ (@) ]2, Bl £ (0)F1V2) % (3.10)
(3) if |f/(0)] <1 <|f'(a)l, then

1nbi1na/bf(x) da:—f(\/%)’

< P02 ) oL (al @) 12 S O ) Y (3.10)
(4) if |F(a)| > 1 and |f'(b)] > 1, then

1 * f(z)
lnb—lna/ dm_f(\/%)’
< In lna‘f( \f (b)|1_S{L([a|f/(a)’8]1/27 [b’f’(b)|s]1/2)}2; (3.12)
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(5) if s=1, then

1 " f(2)
lnb—lna/a x dx—f(\/%)

< L (ol @ B ) Y (3.13)

Theorem 3.8. Let f: Ry — Ry be (a, m)-geometrically convexr on the closed
interval [0, max{b,b'/™}] and f € L([a,b]) for 0 < a < b and (o, m) € (0,1]>.
Then

1 b f(z

Inb—1Ina

)d:z:

a

Smln{ f( 1/m)]m(1 a)fﬂ(afba L([f(al/m)]am,[f(b)]a),
[f(bl/m)] (1*a)f5§)a=fab)L([f(a)]a7 [f(bl/m)]@m)}7 (314)

where fop, B(a;§), and L(u,v) are respectively defined as in (2.1) and (2.2).

Proof. Putting z = a7’ for 0 < ¢t < 1 and using the (o, m)-geometric
convexity of f(z [O max{b, b/ m}] reveal

T 1
lnbilna/a fi)dx:/o f(al10) db
1 o «
< / [ (/™))" o) at

1/m / fb Bl fo,a) +at

= [£(a"/m)]" f“)L([f( YT L)),
The proof of Theorem 3.8 is complete. U

Corollary 3.9. Under the conditions of Theorem 3.8,
(1) if a« =1, then

1 Y f@)
lnb—lna/a x dz
(

< min{ L([f(aV/™]™, £®)), L(f(a), [F(b}/™)]™)};
(2) if m =1, then
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1 b f(=)
lnb—lna/a PR

< min{ [f(a)]' " £y,

PO L (), £20);

(3) if a =m =1, then

1 " f(=)
lnb—lna/a x dz < L(f(a), f(b))-

Theorem 3.10. Let f,g: Ry — Ry be (a, m)-geometrically convex functions
on the closed interval [0, max{0, bl/m}] and fg € L([a,b]) for (a,m) € (0,1]?
and 0 < a <b. Then

1 * f(2)g(x)
Inb—1Ina /a x dz

< min{(fg)y, " [ (a¥/m)g (a7
x L([f(a'/™)g(a™)]"™, [£(b)g(B)]*),
(fg)f’(ba;(fg)a,b) [f(bl/m)g(bl/m)]m(lfa)
< L([f(a)g(a)]®, [£(b"™)g(b*™)]*™)}, (3.15)
where fqp, B(a;€),and L(u,v) are respectively defined as in (2.1) and (2.2).

Proof. The proof is similar to that of Theorem 3.8. U

Corollary 3.11. Under the conditions of Theorem 3.10,
(1) if « =1, then

1 b fx)g()
lnb—lna/a 07

< min{ L([f(a"™)g(a"/™)]™, F(B)g(b)),
L(f(a)g(a), [f("/™)g(b"™)]™) };

(2) if m =1, then

1 " f(2)g(x)
Inb—Ina /a x dz
< mi

< min{ (fg), " [ fla)gla)]
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(fg)i(ba;(fg)a,b) [f(b)g(b)] l—a}
x L([f(a)g(a)]*, [f(0)g(0)]");
(3) if a =m =1, then

b X X
s [ e < wsgta). S0

Theorem 3.12. Let f : I C Ry — Ry be a s-geometrically convex function
on I° for some s € (0,1], a,b € I° with 0 < a < b and f € L([a,b]). Then

1 b
nb— lna/a f;x) dz < [f(@) TIPSO L(f*(a), (b)), (3.16)
where f(a; &) and L(u,v) are respectively defined as in (2.1) and (2.2).

Proof. Letting x = a'~'b'

of f(z) on [a,b] give

L b f(x) _ ! 1—tyt
1nb—lna/a T dx—/of(a b)dt

1
a (l—t)s e
< /0 F(@)] O [Fo))E dt

for 0 <t < 1 and utilizing the s-geometric convexity

= [F@)PCT D@ OIL(f(a), £2(1).
The proof of Theorem 3.12 is complete. g

1
< / [f(a)]ﬁ(s,f(a))-‘rs(l—t) [f(b)]lg(svf(b))‘i'st at
0

Theorem 3.13. Let f,g: 1 C Ry — Ry be s-geometrically convex functions
on I° for s € (0,1], a,b € I° with 0 < a < b and fg € L(|a,b]). Then

b X X
s | T o < (@@ [f(p)g 0] O

x L([f(a)g(@)]®, [f(b)g(D))*). (3.17)
where B(a; &) and L(u,v) are respectively defined as in (2.1) and (2.2).

Proof. The proof is similar to that of Theorem 3.12. O
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