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1. Introduction

Let E be a real Banach space with dual E∗. Let 〈·, ·〉 and || · || be the
generalized duality pairing and the induced norm, respectively. If C is a
nonempty, closed and convex subset of E, then the mapping A: C → E∗ is
said to be

(a) α−strongly monotone on C if there exists α > 0 such that

〈Ax−Ay, x− y〉 ≥ α||x− y||2,

for all x, y ∈ C;
(b) monotone on C if

〈Ax−Ay, x− y〉 ≥ 0,

for all x, y ∈ C;
(c) α− inverse strongly monotone if there exists α > 0 such that

〈Ax−Ay, x− y〉 ≥ α||Ax−Ay||2,

for all x, y ∈ C;
(d) α−strongly pseudomonotone on C if there exists α > 0 such that

〈Ax, y − x〉 ≥ 0 =⇒ 〈Ay, y − x〉 ≥ α||x− y||2,

for all x, y ∈ C;
(e) pseudomonotone on C if

〈Ax, y − x〉 ≥ 0 =⇒ 〈Ay, y − x〉 ≥ 0,

for all x, y ∈ C;
(f) L− Lipschitz continuous on C if there exists a constant L > 0, called

the Lipschitz constant, such that

||Ax−Ay|| ≤ L||x− y||,
for all x, y ∈ C;

(g) If L < 1, then A is called a contraction and if L = 1, then A is said to
be nonexpansive;

(h) The mapping A is said to be sequentially weakly continuous if {Axn}
converges weakly to Ax whenever {xn} is a sequence that converges
weakly to x.

A point x ∈ C is called a fixed point of the mapping G: C → E if Gx = x.
The set of fixed points of G is denoted by F (G).

Remark 1.1. Every α−strongly monotone mapping is monotone and hence
pseudomonotone. It is also easy to see that every α−strongly monotone map-
ping is α−strongly pseudomonotone.

The variational inequality problem (VIP, in short) is defined as finding a
point x ∈ C such that

〈Ax, y − x〉 ≥ 0 for all y ∈ C, (1.1)
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where C is a nonempty, closed and convex subset of E and A: C → E∗ is
a mapping. The solution set of the variational inequality problem VIP(1.1)
is denoted by V I(C,A). The concept of variational inequality problem was
initially introduced by Hartman and Stampacchia [13] as a natural general-
ization of boundary value problems. Such problems are applicable in a wide
range of applied sciences and mathematics. It helps us to solve new prob-
lems that emerge from the fields of applied mathematics, engineering, physics,
mechanics, convex programming and the theory of control.

Many authors have studied and proposed different methods for solving
VIP(1.1) in different settings (see, for instance, [2, 8, 10, 11, 14, 22, 29, 30, 36,
37] and the references therein).

If H is a real Hilbert space and A: H → H is a Lipschitz continuous
and strongly monotone, then the projected gradient method introduced by
Goldstein [12] is the simplest method to solve (1.1).

In 2020, Thong et al. [28] proposed the following projection type algorithm

to solve (1.1) in a Hilbert space setting. Given l ∈ (0, 1), µ > 0, β ∈
(

0,
1

µ

)
and x1 ∈ C, compute:

sn = PC [xn − βAxn] ,

wn = xn − γnrβ(xn),

xn+1 = αnf(xn) + (1− αn)PCn(xn),

(1.2)

where PC is the metric projection from H onto C; A is uniformly continuous
pseudomonotone mapping that is sequentially weakly continuous on bounded
subsets of C; f : C → C is a contraction mapping with a coefficient δ ∈ [0, 1);
rβ(xn) = xn − sn; {αn} is a sequence of real numbers in (0, 1) such that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞; γn = ljn , where jn is the smallest non-

negative integer j that satisfies

〈Axn −A
(
xn − ljrβ(xn)

)
, rβ(xn)〉 ≤ µ||rβ(xn)||2,

Cn = {x ∈ C : hn(x) ≤ 0} and hn(x) = 〈Awn, x − wn〉. They proved that
if V I(C,A) 6= ∅, then the sequence generated by (1.2) converges strongly to
some x ∈ V I(C,A), where x = PV I(C,A)f(x).

In Banach spaces, more general than Hilbert spaces, Jolaoso and Shehu [16]
introduced the following single Bregman projection method to solve variational
inequality problems (see [33]): Let C be a nonempty, closed and convex subset
of E. Given u1 ∈ E, λ1 > 0 and ρ ∈ (0, α), compute

un+1 = ∇f∗ (∇f(zn)− λn(Azn −Aun)) , (1.3)



138 Y. A. Belay, H. Zegeye and O. A. Boikanyo

λn+1 =

 min

{
λn,

ρ||un − zn||
||Aun −Azn||

}
, if Aun 6= Azn

λn otherwise,

where zn = P fC(∇f∗(∇f(un) − λnAun)), A: E → E∗ is a pseudomonotone,
sequentially weakly continuous and Lipschitz continuous mapping and f : E →
R is a proper, lower semi-continuous, uniformly Fréchet differentiable, α−
strongly convex, strongly coercive and Legendre function which is bounded.
They proved that the sequence generated by (1.3) converges weakly to some
point in V I(C,A) in a reflexive real Banach space E provided that V I(C,A) 6=
∅. They also proved the strong convergence of the algorithm to a point of
V I(C,A) if, in addition, A is strongly pseudomonotone.

Besides these, several authors have proposed and studied different schemes
for finding a common point of the solution set of variational inequality and
fixed point problems (see, for example, [24, 27, 31, 34]). This method became
very important in optimization theory because it is applicable in mathematical
models whose constraints can be modeled as both problems.

Takahashi and Toyoda [27] introduced an iterative process for finding a
common element of the set of fixed points of a nonexpansive mapping and
the set of solutions of a variational inequality problem for an inverse strongly
monotone mapping in Hilbert spaces. Given a nonempty, closed and convex
subset D of H and x0 ∈ D. Let {xn} be the sequence generated by

xn+1 = αnxn + (1− αn)GPD (xn − ηnAxn) , (1.4)

where n is a nonnegative integer, A: D → H is β− inverse strongly monotone
mapping, G: D → H is a nonexpansive mapping, {αn} ⊂ (0, 1) and {ηn} ⊂
(0, 2β). They proved that if V I(D,A) ∩ F (G) 6= ∅, then the sequence {xn}
generated by (1.4) converges weakly to an element p ∈ V I(D,A) ∩ F (G).

In 2021, Wega and Zegeye [34] studied a method of approximating a common
element of the set of f -fixed points of a Bregman relatively f−nonexpansive
mapping and the set of solutions of a variational inequality problem for a Lip-
schitz monotone mapping in a reflexive real Banach space. They introduced
the following algorithm to find a point in V I(K,B) ∩ Ff (G). For a reflexive
Banach space E with its dual E∗, let g: E → (−∞,∞] be a strongly coercive,
bounded, λ− strongly convex on bounded subsets of E, uniformly Fréchet
differentiable Legendre function. Let K be a nonempty, closed and convex
subset of E. Let B: K → E∗ be a Lipschitz monotone mapping with Lips-
chitz constant L. Let G: K → E∗ be a Bregman relatively f−nonexpansive
mapping with Γ = V I(K,B) ∩ Ff (G) 6= ∅. Given x0, x ∈ K, let the sequence
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{xn} be generated by
sn = P gK∇g

∗ (∇gxn − ηnBxn) ,

tn = ∇g∗ [ξn∇gxn + βnGxn + τn∇gwn] ,

xn+1 = P gK∇g
∗ (αn∇g(x) + (1− αn)∇gtn) ,

(1.5)

where P gK(x) is the Bregman projection of x ∈ int(dom g) onto K, wn =

P gK∇g∗ (∇gxn − ηnBsn), 0 < η ≤ ηn ≤ η̄ <
λ

L
, {αn} is a sequence in (0, 1),

{ξn} , {βn} , {τn} ⊂ [δ, 1) ⊂ (0, 1) such that ξn + βn + τn = 1. They proved
that the sequence {xn} generated by (1.5) converges strongly to some element
x̄, where x̄ = P gΓ(x).

One of the generalizations of the variational inequality problem is the split
equality variational inequality problem (SEVIP) which is defined as finding a
point

(x̄, ū) ∈ V I(C,A)× V I(D,B) : T x̄ = Sū; (1.6)

where C and D are nonempty, closed and convex subsets of real Banach spaces
E1 and E2, respectively, A: E1 → E∗1 and B: E2 → E∗2 are nonlinear map-
pings, T : E1 → E3 and S: E2 → E3 are bounded linear mappings with
adjoints T ∗: E∗3 → E∗1 and S∗: E∗3 → E∗2 , respectively, where E3 is another
Banach space. Some of the special cases of SEVIP are common solutions of
variational inequality problem (CSVIP), split variational inequality problem
(SVIP), split equality feasibility problem (SEFP) introduced by Moudafi [21],
split feasibility problem (SFP) introduced by Censor and Elfving [9] and the
split equality null point problem (SENPP).

In 2021, Kwelegano et al. [17] introduced an iterative algorithm which
solves SEVIP for uniformly continuous and pseudomonotone mappings that
are sequentially weakly continuous in Hilbert spaces and proved a strong con-
vergence of the algorithm under certain conditions.

In 2021, Boikanyo and Zegeye [5] introduced a new algorithm which approx-
imates SEVIP for uniformly continuous pseudomonotone mappings that are
sequentially weakly continuous in real Banach spaces and they proved strong
convergence results.

Let C be a nonempty, closed and convex subset of a real Banach space
E and let f : E → (−∞,+∞] be a proper, lower semi-continuous, Gâteaux
differentiable and convex function. Let G: C → E∗ be any mapping. A point
p ∈ C is called

(1) an f−fixed point of G if Gp = ∇fp. The set of f− fixed points of G
is denoted by Ff (G).
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(2) an f−asymptotic fixed point of G if there exists a sequence {un} in C
such that un ⇀ p and

lim
n→∞

||∇fun −Gun|| = 0.

The set of f− asymptotic fixed points of G is denoted by F̂f (G).

The mapping G is called Bregman relatively f−nonexpansive if the following
three properties hold:

(i) Ff (G) is nonempty;

(ii) Df (p,∇f∗Gz) ≤ Df (p, z), for all z ∈ C, p ∈ F̂f (G);

(iii) F̂f (G) = Ff (G).

All the results discussed above deal with either of the following: solutions of
VIPs; solutions of SEVIPs; finding a common solution of VIPs and fixed point
problems. Based on these results, we raise the following important question:

Question 1.2. Can we obtain a method for approximating a solution of split
equality of variational inequality and f, g−fixed point problems in reflexive real
Banach spaces, where the variational inequality problems are for uniformly
continuous pseudomonotone mappings and the f, g−fixed point problems are
for Bregman relatively f, g−nonexpansive mappings?

The split equality of variational inequality and f, g−fixed point problem is
defined as follows: Let G: C → E∗1 and K: D → E∗2 be Bregman relatively
f, g− nonexpansive mappings with f−fixed points Ff (G) and g−fixed points
Fg(K), respectively. The split equality of variational inequality and f, g−
fixed point problems is defined as finding a point

(x̄, ū) ∈ (V I(C,A) ∩ Ff (G))× (V I(D,B) ∩ Fg(K)) : T x̄ = Sū, (1.7)

where E1 and E2 are reflexive real Banach spaces, A: E1 → E∗1 and B:
E2 → E∗2 are any mappings, f : E1 → R and g: E2 → R are proper, con-
vex, lower semicontinuous, uniformly Fréchet differentiable, strongly convex,
strongly coercive Legendre functions which are bounded.

Motivated and inspired by the aforementioned results, in this paper we
introduce an algorithm for finding a solution of split equality of variational
inequality and f, g−fixed point problems, where the variational inequality
problems are for uniformly continuous pseudomonotone mappings and the
fixed point problems are for Bregman relatively f, g−nonexpansive mappings
in real Banach spaces. We prove a strong convergence theorem for the algo-
rithm proposed. Finally, we provide a numerical example to demonstrate the
effectiveness of the algorithm.
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2. Preliminaries

Under this section, we give definitions and some important results that will
be used in the subsequent analysis.

Let {xn} be a sequence in a reflexive real Banach space E. The strong
and weak convergence of {xn} to a point x ∈ E are denoted by xn → x and
xn ⇀ x, respectively. Let U = {x ∈ E : ||x|| = 1}. E is said to be strictly

convex if
||x+ y||

2
< 1 for all x, y ∈ U with x 6= y. If the limit

lim
t→0

||y + tz|| − ||y||
t

(2.1)

exists for y, z ∈ U , then we say that E is smooth.

Let f : E → R be a convex function. The domain of f , denoted by domf , is
defined as domf = {x ∈ E : f(x) < +∞}. The function f is said to be proper
if domf 6= ∅. If a function is proper, convex and lower semi-continuous, then
it is continuous (see, [4]). The Fenchel conjugate of f is the function f∗:
E∗ → R, defined by

f∗(x∗) = sup {〈x∗, x〉 − f(x) : x ∈ E}

for any x∗ ∈ E∗. The directional derivative of f at x ∈ int(dom f) in the
direction of y is defined as

fo(x, y) = lim
t↓0

f(x+ ty)− f(x)

t
(2.2)

provided that this limit exists. We say that f is Gâteaux differentiable at x if
the limit in (2.2) exists for every y ∈ E. In this case, we define the gradient
of f at x to be the linear function 〈∇f(x), y〉 = fo(x, y) for all y ∈ E. The
function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at
each x ∈ int(dom f). If the limit in (2.2) is attained uniformly for any y ∈ U ,
then we say that f is uniformly Fréchet differentiable at x.

A function f : E → R is said to be a Legendre function if and only if it
satisfies the following conditions:

(A) int(dom f) 6= ∅, f is Gâteaux differentiable and dom ∇f =int(dom f);
(B) int(dom f∗) 6= ∅, f∗ is Gâteaux differentiable and dom∇f∗ =int(dom

f∗).

If E is a smooth and strictly convex Banach space, then the function f(x) =
1

p
||x||p (1 < p <∞) is a proper, lower semi-continuous Legendre function with

Fenchel conjugate f∗(x∗) =
1

q
||x∗||q (1 < q <∞), (see, for instance, [3]), where
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1

p
+

1

q
= 1. In this case, the gradient of f is equal to the generalized duality

mapping, Jp, of E. That is, ∇f = Jp, where Jp : E → 2E
∗

is defined as

Jp(x) =
{
x∗ ∈ E∗ : 〈x∗, x〉 = ||x||p, ||x∗|| = ||x||p−1

}
.

If p = 2, then we write Jp = J and we call it the normalized duality mapping
and if, in addition, E = H, where H is a real Hilbert space, then J = I, where
I is the identity mapping on H. If f : E → (−∞,+∞] is a Legendre function

and E is a reflexive Banach space, then ∇f∗ = (∇f)−1(see, [6]). We also have
that f is a Legendre function if and only if f∗ is a Legendre function (see, [3]).

Lemma 2.1. ([26]) If E is a real Banach space and JE is the normalized
duality mapping on E, then

||x+ y||2 ≤ ||x||2 + 2〈jE(x+ y), y〉

for all x, y ∈ E and all jE(x+ y) ∈ JE(x+ y).

Definition 2.2. The function f : E → R∪{+∞} is said to be strongly coercive

if
f(x)

||x||
→ +∞ as ||x|| → +∞.

Definition 2.3. Let E be a Banach space and f : E → R∪{+∞} be a Gâteaux
differentiable convex function. The function Df : dom f × int(dom f) →
[0,+∞) defined by

Df (y, x) = f(y)− f(x)− 〈∇f(x), y − x〉

is called the Bregman distance with respect to f .

The Bregman distance has the following important properties:
For any w, x, y, z ∈ E,

(i) Three point identity :

Df (w, x) +Df (x, y)−Df (w, y) = 〈∇f(x)−∇f(y), x− w〉. (2.3)

(ii) Four point identity :

Df (x, z) +Df (w, y)−Df (x, y)−Df (w, z)

= 〈∇f(y)−∇f(z), x− w〉. (2.4)

Definition 2.4. A Gâteaux differentiable function f : E → R∪{+∞} defined
on a reflexive real Banach space E is said to be strongly convex if there exists
a constant β > 0 such that
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〈∇f(x)−∇f(y), x− y〉 ≥ β||x− y||2,
for all x, y ∈ domf , or equivalently

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
β

2
||x− y||2.

If E is a smooth and strictly convex Banach space, then f(x) =
1

2
||x||2 is a

strongly coercive, bounded, uniformly Fréchet differentiable and strongly con-
vex function with strong convexity constant β ∈ (0, 1] and Fenchel conjugate

f∗(x∗) =
1

2
||x∗||2.

It can be easily shown that if f is a strongly convex function with constant
β > 0, then for all y ∈ domf and x ∈ int(domf), we have

Df (y, x) ≥ β

2
||x− y||2. (2.5)

Definition 2.5. Let C ⊆ int(dom f) be a nonempty, closed and convex subset
of real Banach space E, where f : E → R ∪ {+∞} is a convex and Gâteaux
differentiable function. The Bregman projection of x ∈ int(dom f) onto C is

the unique vector P fC(x) of C with the property

Df (P fC(x), x) = inf {Df (y, x) : y ∈ C} .

The Bregman projection also satisfies the following properties:

z = P fC(x) if and only if 〈∇f(x)−∇f(z), y − z〉 ≤ 0, for all y ∈ C, (2.6)

and

Df (y, P fC(x)) +Df (P fC(x), x) ≤ Df (y, x), for all x ∈ E, y ∈ C. (2.7)

Lemma 2.6. ([1]) Let E1 and E2 be reflexive Banach spaces. Then, E =
E1 ×E2 is also a reflexive Banach space with dual E∗ = E∗1 ×E∗2 and duality
pairing

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉+ 〈y1, y2〉
for all (x1, y1) ∈ E, (x2, y2) ∈ E∗ and (xn, yn) ⇀ (x, y) implies xn ⇀ x and
yn ⇀ y.

If C is a nonempty, closed and convex subset of E, f : E1 → R ∪ {+∞},
g : E2 → R ∪ {+∞}, (x, y) ∈ E, (x∗, y∗) = P hC(x, y), where h = (f, g) and
∇h = (∇f,∇g), then

〈(u, v)− (x∗, y∗), (∇f(x),∇g(y))− (∇f(x∗),∇g(y∗))〉 ≤ 0 (2.8)

for all (u, v) ∈ C.
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Lemma 2.7. ([25]) If E is a reflexive real Banach space and f : E → (−∞,+∞]
is a proper, lower semi-continuous, convex and Gâteaux differentiable func-
tion, then f∗: E∗ → (−∞,+∞] is a proper, weak* lower semi-continuous and
convex function. Thus, for all x ∈ E, we have

Df

(
x,∇f∗

(
N∑
i=1

si∇f(yi)

))
≤

N∑
i=1

siDf (x, yi),

where {yi}Ni=1 ⊆ E and {si}Ni=1 ⊆ (0, 1) with
∑N

i=1 si = 1.

We say that a function f is uniformly convex with modulus φ if for all
x, y ∈ dom f and γ ∈ [0, 1], we have

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y)− γ(1− γ)φ(||x− y||),
where φ is an increasing function and φ(x) = 0 only for x = 0.

The subdifferential ∂f of f at x is defined by

∂f(x) = {x∗ ∈ E∗ : 〈x∗, y − x〉 ≤ f(y)− f(x), ∀ y ∈ E} (see, [15]).

Lemma 2.8. ([35]) Let f be a convex and lower semi-continuous function on
a Banach space E. The following assertions are equivalent:

(i) f is uniformly convex;
(ii) there exists modulus φ, for all (x, x∗), (y, y∗) ∈ Gph(∂f) such that

f(y) ≥ f(x) + 〈x∗, y − x〉+ φ(||x− y||);
(iii) dom f∗ = E∗, f∗ is Fréchet differentiable and ∇f∗ is uniformly con-

tinuous.

Note that a strongly convex function is uniformly convex with φ(x) =
β

2
||x||2 and hence the class of uniformly convex functions contains the class of

strongly convex functions.

Lemma 2.9. ([23]) Let E be a Banach space and f : E → (−∞,+∞] be a
Gâteaux differentiable function which is uniformly convex on bounded subsets
of E. Let {xn} and {un} be bounded sequences in E. Then, limn→∞Df (xn, un)
= 0 if and only if limn→∞(xn − un) = 0.

Let f : E → R be a Gâteaux differentiable Legendre function. The nonneg-
ative real-valued function Vf : E × E∗ → [0,+∞) defined by

Vf (x, x∗) = f(x)− 〈x∗, x〉+ f∗(x∗) for all x ∈ E, x∗ ∈ E∗, (2.9)

satisfies the properties

Vf (x, x∗) = Df (x,∇f∗(x∗)), (2.10)
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and
Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗) (2.11)

for all x ∈ E, x∗, y∗ ∈ E∗

Lemma 2.10. ([20]) Let C be a nonempty, closed and convex subset of a
reflexive real Banach space E. If A: C → E∗ is a continuous pseudomonotone
mapping, then V I(C,A) is closed and convex. Moreover, 〈Ap, q − p〉 ≥ 0 for
all q ∈ C if and only if 〈Aq, q − p〉 ≥ 0 for all q ∈ C.

Lemma 2.11. ([5]) If {cn} is a sequence of nonnegative real numbers such
that

cn+1 ≤ (1− αn) cn + αndn,

where {αn} ⊂ (0, 1) with
∑∞

n=1 αn =∞, and {dn} is a sequence of real num-
bers with lim supn→∞ dn ≤ 0, then limn→∞ cn = 0.

Lemma 2.12. ([18]) Let {an} be a sequence of nonnegative real numbers. If
{ani} is a subsequence of {an} such that ani < ani+1 for all i ∈ N, then there
exists a nondecreasing sequence {mk} of N such that limk→∞mk =∞ and the
following properties are satisfied by all (sufficiently large) number k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk=max{n ≤ k : an < an+1}.

The modulus of total convexity of a Gâteaux differentiable function f is the
function vf : int(domf)× [0,∞)→ [0,∞) defined by

vf (x, t) = inf {Df (y, x) : y ∈ domf, ||y − x|| = t} .
In this case we say that f is totally convex at a point x ∈ int(dom f) if
vf (x, t) > 0 whenever t > 0. The function f is said to be totally convex if it
is totally convex at every point x ∈ int(dom f).

On bounded subsets of E, the concepts of uniform convexity and total
convexity are the same (see, [7]).

Lemma 2.13. ([19]) Let E be a reflexive real Banach space and f : E → R
be a totally convex function. If {Df (xn, x0)} is bounded for any x0 ∈ E, then
{xn} is bounded.

Lemma 2.14. ([32]) Let f be a continuous, convex and strongly coercive real
valued function defined on a reflexive real Banach space E. Then the following
are equivalent:

(i) f is uniformly smooth and bounded on bounded subsets of E;
(ii) f∗: E∗ → R is Fréchet differentiable and ∇f∗ is uniformly norm-to-

norm continuous on bounded subsets of E∗;
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(iii) f∗ is strongly coercive, uniformly convex on bounded subsets of E∗ and
domf∗ = E∗.

Lemma 2.15. Let C be a subset of a reflexive real Banach space E and A:
C → E∗ be any mapping. Let f : E → R be a strongly convex function with
constant η and has Lipschitz continuous gradient with constant γ. If γ ≤ η,
then for any x ∈ E and α ≥ β > 0, the following inequality holds:

||x− P fC∇f∗(∇f(x)− αAx)||
α

≤
||x− P fC∇f∗(∇f(x)− βAx)||

β
.

Proof. Let xα = P fC∇f∗(∇f(x)−αAx) and xβ = P fC∇f∗(∇f(x)−βAx). Then
it follows from (2.6) that

〈∇f(x)− αAx−∇f(xα), y − xα〉 ≤ 0

and

〈∇f(x)− βAx−∇f(xβ), y − xβ〉 ≤ 0

for all y ∈ C, which implies that〈∇f(xα)−∇f(x)

α
+Ax, xβ − xα

〉
≥ 0

and 〈∇f(xβ)−∇f(x)

β
+Ax, xα − xβ

〉
≥ 0.

Adding both inequalities and using the Cauchy-Schwarz inequality, strong
convexity of f and Lipschitz continuity of ∇f , we get

0 ≤
〈∇f(x)−∇f(xα)

α
−
∇f(x)−∇f(xβ)

β
, xα − xβ

〉
=

〈∇f(x)−∇f(xα)

α
−
∇f(x)−∇f(xβ)

β
, (x− xβ)− (x− xα)

〉
= −

〈∇f(x)−∇f(xα)

α
, x− xα

〉
+
〈∇f(x)−∇f(xα)

α
, x− xβ

〉
−
〈∇f(x)−∇f(xβ)

β
, x− xβ

〉
+
〈∇f(x)−∇f(xβ)

β
, x− xα

〉
≤ − 1

α
〈∇f(x)−∇f(xα), x− xα〉 −

1

β
〈∇f(x)−∇f(xβ), x− xβ〉

+
1

α
||∇f(x)−∇f(xα)|| ||x− xβ||+

1

β
||∇f(x)−∇f(xβ)|| ||x− xα||
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≤ − η
α
||x− xα||2 −

η

β
||x− xβ||2 +

γ

α
||x− xα|| ||x− xβ||

+
γ

β
||x− xβ|| ||x− xα||

≤ η

α
||x− xα||2 −

η

β
||x− xβ||2 +

η

α
||x− xα|| ||x− xβ||

+
η

β
||x− xβ|| ||x− xα||. (2.12)

Thus, from (2.12), we obtain

0 ≥ (||x− xα|| − ||x− xβ||)
(
||x− xα||

α
−
||x− xβ||

β

)
. (2.13)

Now, suppose on the contrary that we have

||x− xα||
α

>
||x− xβ||

β
, (2.14)

which implies that

||x− xα|| > ||x− xβ||. (2.15)

Combining (2.14) and (2.15), we obtain

0 < (||x− xα|| − ||x− xβ||)
(
||x− xα||

α
−
||x− xβ||

β

)
,

which is a contradiction to (2.13) hence the proof is completed. �

Examples of functions that satisfy conditions of the hypothesis in Lemma
2.15 are functions of the type f(x) = k||x||2, for k > 0. One can show that
f is strongly convex with strong convexity constant 2k and ∇f is Lipschitz
continuous with Lipschitz constant 2k.

3. Main results

The following assumptions will be used in the sequel.

Condition 3.1.

(A1) Let C and D be nonempty, closed and convex subsets of the smooth,
strictly convex and reflexive real Banach spaces E1 and E2, respec-
tively.

(A2) Let f : E1 → R and g: E2 → R be proper, lower semi-continuous,
strongly coercive, uniformly Fréchet differentiable, strongly convex Le-
gendre functions which are bounded on bounded subsets of E1 and E2,
respectively. Let f and g have Lipschitz continuous gradients with the
strong convexity constant of f (respectively, g) greater than or equal
to the Lipschitz constant of ∇f (respectively, ∇g).
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Condition 3.2.

(B1) Let A: C → E∗1 and B: D → E∗2 be uniformly continuous, pseu-
domonotone and sequentially weakly continuous mappings;

(B2) LetG: E1 → E∗1 andK: E2 → E∗2 be Bregman relatively f−nonexpan-
sive and Bregman relatively g−nonexpansive mappings, respectively;

(B3) Let T : E1 → E3 and S: E2 → E3 be bounded linear mappings with
adjoints T ∗: E∗3 → E∗1 and S∗: E∗3 → E∗2 , respectively, where E3 is
another smooth, strictly convex real reflexive Banach space;

(B4) Let the set of solutions of (1.7), denoted by Υ, be nonempty, that is,
Υ={(x, u)∈(V I(C,A) ∩ Ff (G))×(V I(D,B) ∩ Fg(K)) :Tx = Su} 6=∅.

Condition 3.3.

(C1) Let β = min {β1, β2}, where β1 and β2 are the strong convexity con-
stants of f and g, respectively;

(C2) Let {αn} ⊆ (0, 1) be such that limn→∞ αn = 0 and
∑∞

n=1 αn =∞.

Algorithm A.
Initialization: Choose (x1, u1) ∈ E1 × E2, µ ∈ (0, β), l, γ, τ ∈ (0, 1). For
x ∈ C, u ∈ D define the algorithm as follows:

Step 1: Given the current iterates xn and un, compute{
zn = P fC [∇f∗ (∇f(xn)− γnT ∗JE3 (Txn − Sun))] ,

wn = P gD [∇g∗ (∇g(un)− γnS∗JE3 (Sun − Txn))] ,
(3.1)

where 0 < ρ ≤ γn ≤ ρn for n ∈ {m ∈ N : Txm − Sum 6= 0}, otherwise γn = ρ,
for some ρ > 0, and

ρn = min

{
ρ+ 1,

β||Txn − Sun||2

2[||T ∗JE3(Txn − Sun)||2 + ||S∗JE3(Sun − Txn)||2]

}
.

Step 2: Compute {
yn = P fC (∇f∗ (∇f(zn)− λnAzn)) ,

vn = P gD (∇g∗ (∇g(wn)− ηnBwn)) ,

where λn = γljm , for jm is the smallest nonnegative integer j satisfying

γlj ||Ayn −Azn|| ≤ µ||yn − zn||, (3.2)

and ηn = γlkm , for km is the smallest nonnegative integer k satisfying

γlk||Bvn −Bwn|| ≤ µ||vn − wn||. (3.3)

Step 3: Compute

an = ∇f∗ (∇f(yn)− λn(Ayn −Azn)) ,
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bn = ∇g∗ (∇g(vn)− ηn(Bvn −Bwn)) ,{
xn+1 = ∇f∗ (αn∇f(x) + (1− αn) [τ∇f(an) + (1− τ)G(an)]) ,

un+1 = ∇g∗ (αn∇g(u) + (1− αn) [τ∇g(bn) + (1− τ)K(bn)]) .
(3.4)

Set n := n+ 1 and go to Step 1.

Hereunder, we present some results that are fundamental to the convergence
analysis of the sequences generated by Algorithm A. We begin by proving that
the proposed algorithm is well-defined.

Lemma 3.1. Assume that Conditions (A1)− (A2), (B1)− (B4) and (C1)−
(C2) hold. Then the Armijo line-search rules (3.2) and (3.3) are well-defined.

Proof. If zn ∈ V I(C,A), then zn = P fC∇f∗(∇f(zn) − λnAzn). In this case,
we have zn = yn and hence (3.2) holds for j = 0. Now, we consider the case
when zn /∈ V I(C,A) and assume on the contrary that for all j ≥ 0 we have

γlj ||Ayn −Azn|| > µ||yn − zn||.

That is,

||AP fC∇f
∗(∇f(zn)− γljAzn)−Azn||

>
µ

γlj
||P fC∇f

∗(∇f(zn)− γljAzn)− zn||. (3.5)

Since P fC and ∇f∗ are continuous, we have that

lim
j→∞

||zn − P fC∇f
∗(∇f(zn)− γljAzn)|| = 0. (3.6)

By the uniform continuity of the mapping A on bounded subsets of C, we
obtain

lim
j→∞

||AP fC∇f
∗(∇f(zn)− γljAzn)−Azn|| = 0. (3.7)

From (3.5) and (3.7), we have

lim
j→∞

||zn − P fC∇f∗(∇f(zn)− γljAzn)||
γlj

= 0. (3.8)

Since ∇f is Lipschitz continuous, there exists a real number R > 0 such that

0 ≤ lim
j→∞

||∇f(zn)−∇f
(
P fC∇f∗(∇f(zn)− γljAzn)

)
||

γlj

≤ R lim
j→∞

||zn − P fC∇f∗(∇f(zn)− γljAzn)||
γlj

,
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which implies from (3.8) that

lim
j→∞

||∇f(zn)−∇fP fC∇f∗(∇f(zn)− γljAzn)||
γlj

= 0. (3.9)

Let kj = P fC∇f∗(∇f(zn)− γljAzn). Then, by (2.6), we get

〈∇f(kj)−∇f(zn) + γljAzn, y − kj〉 ≥ 0, ∀y ∈ C,

which implies that〈∇f(kj)−∇f(zn)

γlj
, y −kj

〉
+〈Azn, zn − kj〉+〈Azn, y −zn〉 ≥ 0, ∀y ∈ C. (3.10)

Taking the limit as j →∞ in (3.10) and using (3.6) and (3.9), we obtain

〈Azn, y − zn〉 ≥ 0 for all y ∈ C (3.11)

and this implies that zn ∈ V I(C,A), which is a contradiction. Hence, (3.2)
holds. Similarly, one can show that (3.3) holds and hence the proof is complete.

�

Theorem 3.2. Assume that Conditions (A1)−(A2), (B1)−(B4) and (C1)−
(C2) hold. Then the sequences {xn} and {un} generated by Algorithm A are
bounded.

Proof. Denote

qn = ∇f∗ (∇f(xn)− γnT ∗JE3(Txn − Sun))

and

tn = ∇g∗ (∇g(un)− γnS∗JE3(Sun − Txn)) .

Let (x̄, ū) ∈ Υ. Then by (3.4), Lemma 2.7 and Bregman relatively f−non-
expansiveness of G, we have

Df (x̄, xn+1) = Df

(
x̄,∇f∗ (αn∇f(x) + (1− αn) [τ∇f(an) + (1− τ)G(an)])

)
≤ αnDf (x̄, x) + (1− αn)Df

(
x̄,∇f∗ [τ∇f(an) + (1− τ)G(an)]

)
≤ αnDf (x̄, x) + (1− αn)τDf (x̄, an)

+ (1− αn)(1− τ)Df (x̄,∇f∗(G(an)))

≤ αnDf (x̄, x) + (1− αn)τDf (x̄, an)

+ (1− αn)(1− τ)Df (x̄, an)

= αnDf (x̄, x) + (1− αn)Df (x̄, an).
(3.12)
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From the definition of an, we have

Df (x̄, an) = Df

(
x̄,∇f∗ (∇f(yn)− λn (Ayn −Azn))

)
= f(x̄)− 〈∇f(yn)− λn(Ayn −Azn), x̄− an〉 − f(an)

= f(x̄) + 〈∇f(yn), an − x̄〉+ 〈λn(Ayn −Azn), x̄− an〉 − f(an)

= f(x̄)− 〈∇f(yn), x̄− yn〉 − f(yn) + 〈∇f(yn), x̄− yn〉+ f(yn)

+ 〈∇f(yn), an − x̄〉+ 〈λn(Ayn −Azn), x̄− an〉 − f(an)

= Df (x̄, yn) + 〈∇f(yn), an − yn〉
+ f(yn)− f(an) + 〈λn(Ayn −Azn), x̄− an〉

= Df (x̄, yn)−Df (an, yn) + 〈λn(Ayn −Azn), x̄− an〉.
(3.13)

Using (2.4), we get

Df (x̄, yn)−Df (an, yn) = Df (x̄, zn)−Df (an, zn) + 〈∇f(zn)−∇f(yn), x̄− an〉.

Thus, (3.13) becomes

Df (x̄, an) = Df (x̄, zn)−Df (an, zn) + 〈∇f(zn)−∇f(yn), x̄− an〉
+ 〈λn(Ayn −Azn), x̄− an〉.

(3.14)

Furthermore, from (2.3), we obtain

Df (an, zn) = Df (an, yn) +Df (yn, zn)− 〈∇f(yn)−∇f(zn), yn − an〉. (3.15)

Therefore, from (3.14) and (3.15) we obtain

Df (x̄, an) = Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+ 〈∇f(zn)−∇f(yn), x̄− an〉
+ 〈∇f(yn)−∇f(zn), yn − an〉+ 〈λn(Ayn −Azn), x̄− an〉

= Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+ 〈∇f(zn)−∇f(yn), x̄− yn〉
+ 〈λn(Ayn −Azn), x̄− an〉

= Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+ 〈∇f(zn)−∇f(yn), x̄− yn〉
+ 〈λn(Ayn −Azn), x̄− yn + yn − an〉

= Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+ 〈∇f(zn)−∇f(yn), x̄− yn〉
+ 〈λn(Ayn −Azn), x̄− yn〉+ 〈λn(Ayn −Azn), yn − an〉
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= Df (x̄, zn)−Df (an, yn)−Df (yn, zn) + 〈λn(Ayn −Azn)

+∇f(zn)−∇f(yn), x̄− yn〉+ 〈λn(Ayn −Azn), yn − an〉
= Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

− 〈λn(Ayn −Azn)− (∇f(yn)−∇f(zn)), yn − x̄〉
+ 〈λn(Ayn −Azn), yn − an〉.

(3.16)

Since yn = P fC [∇f∗ (∇f(zn)− λnAzn)], by (2.6) we get

〈∇f(zn)− λnAzn −∇f(yn), yn − x̄〉 ≥ 0. (3.17)

Since x̄ ∈ V I(C,A) and yn ∈ C, we have 〈Ax̄, yn− x̄〉 ≥ 0. Moreover, the fact
that A is pseudomonotone implies that 〈Ayn, yn − x̄〉 ≥ 0, and thus

〈λnAyn, yn − x̄〉 ≥ 0. (3.18)

Combining (3.17) and (3.18), we get

〈λn(Ayn −Azn)− (∇f(yn)−∇f(zn)), yn − x̄〉 ≥ 0. (3.19)

Thus, from (3.16) and (3.19), we obtain

Df (x̄, an) ≤ Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+ 〈λn(Ayn −Azn), yn − an〉.
(3.20)

Furthermore, from (3.20), Cauchy Schwarz inequality, (3.2) and (2.5), we
get

Df (x̄, an) ≤ Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+ λn||yn − an|| ||Ayn −Azn||
≤ Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+ µ||yn − an|| ||yn − zn||
≤ Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+
µ

2

(
||yn − an||2 + ||yn − zn||2

)
≤ Df (x̄, zn)−Df (an, yn)−Df (yn, zn)

+
µ

β

(
Df (an, yn) +Df (yn, zn)

)
= Df (x̄, zn)−

(
1− µ

β

)(
Df (an, yn) +Df (yn, zn)

)
.

(3.21)
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Using (2.7), (2.10) and (2.11), we get

Df (x̄, zn) ≤ Df

(
x̄,∇f∗ (∇f(xn)− γnT ∗JE3(Txn − Sun))

)
−Df (zn, qn)

≤ Df

(
x̄,∇f∗ (∇f(xn)− γnT ∗JE3(Txn − Sun))

)
= Vf

(
x̄,∇f(xn)− γnT ∗JE3(Txn − Sun)

)
≤ Vf (x̄,∇f(xn))

−
〈
γnT

∗JE3(Txn − Sun),

∇f∗ (∇f(xn)− γnT ∗JE3(Txn − Sun))− x̄
〉

= Df (x̄, xn)− γn
〈
T ∗JE3(Txn − Sun), qn − x̄

〉
= Df (x̄, xn)− γn

〈
JE3(Txn − Sun), T qn − T x̄

〉
.

(3.22)

Substituting (3.22) into (3.21), we obtain

Df (x̄, an) ≤ Df (x̄, xn)−
(

1− µ

β

)(
Df (an, yn) +Df (yn, zn)

)
− γn〈JE3(Txn − Sun), T qn − T x̄〉.

(3.23)

Thus, from (3.23) and (3.12), we get

Df (x̄, xn+1) ≤ αnDf (x̄, x) + (1− αn)Df (x̄, xn)

− (1− αn)

(
1− µ

β

)(
Df (an, yn) +Df (yn, zn)

)
− (1− αn)γn〈JE3(Txn − Sun), T qn − T x̄〉.

(3.24)

Similarly, we have

Dg(ū, un+1) ≤ αnDg(ū, u) + (1− αn)Dg(ū, un)

− (1− αn)

(
1− µ

β

)(
Dg(bn, vn) +Dg(vn, wn)

)
− (1− αn)γn〈JE3(Sun − Txn), Stn − Sū〉.

(3.25)

Now, denote

Ωn = Df (x̄, xn) +Dg(ū, un)

and

Σ = Df (x̄, x) +Dg(ū, u).

Since µ ∈ (0, β) and β > 0, we have that 1 >
µ

β
> 0. Thus, 1− µ

β
> 0. Then,

combining (3.24) and (3.25) and using the fact that T x̄ = Sū, we get

Ωn+1 ≤ αnΣ + (1− αn)Ωn − (1− αn)γn〈Tqn − Stn, JE3(Txn − Sun)〉. (3.26)
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But, we have by the Cauchy Schwarz inequality that

−〈Tqn − Stn, JE3(Txn − Sun)〉 = −〈Txn − Sun, JE3(Txn − Sun)〉
− 〈Tqn − Txn, JE3(Txn − Sun)〉
− 〈Sun − Stn, JE3(Txn − Sun)〉

= −||Txn − Sun||2

− 〈qn − xn, T ∗JE3(Txn − Sun)〉
− 〈un − tn, S∗JE3(Txn − Sun)〉
≤ −||Txn − Sun||2

+ ||qn − xn|| ||T ∗JE3(Txn − Sun)||
+ ||un − tn|| ||S∗JE3(Txn − Sun)||.

(3.27)

From the strong convexity of f and the definition of qn, we have

||qn − xn|| = ||∇f∗ (∇f(xn)− γnT ∗JE3(Txn − Sun))−∇f∗ (∇f(xn)) ||

≤ 1

β1
||γnT ∗JE3(Txn − Sun)||

≤ γn
β
||T ∗JE3(Txn − Sun)||.

(3.28)

Similarly, the strong convexity of g and the definition of tn gives

||tn − un|| ≤
γn
β
||S∗JE3(Sun − Txn)||. (3.29)

Substituting (3.29) and (3.28) into (3.27) and applying the property of γn,
we get

−γn〈Tqn − Stn, JE3(Txn − Sun)〉 ≤ −γn||Txn − Sun||2

+
γ2
n

β
||T ∗JE3(Txn − Sun)||2

+
γ2
n

β
||S∗JE3(Sun − Txn)||2

≤ −ρ
2
||Txn − Sun||2 −

γn
2
||Txn − Sun||2

+
γ2
n

β
||T ∗JE3(Txn − Sun)||2

+
γ2
n

β
||S∗JE3(Sun − Txn)||2

≤ −ρ
2
||Txn − Sun||2, (3.30)
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and substituting (3.30) into (3.26), we obtain

Ωn+1 ≤ αnΣ + (1− αn)Ωn − (1− αn)
ρ

2
||Txn − Sun||2

≤ αnΣ + (1− αn)Ωn,

which implies by the mathematical induction that Ωn ≤ max {Ω1,Σ}. Hence
we have that {Df (x̄, xn) +Dg(ū, un)} is bounded which implies that the se-
quences {Df (x̄, xn)} and {Dg(ū, un)} are bounded. By Lemma 2.13, we have
that {xn} and {un} are bounded. �

Lemma 3.3. Assume that Conditions (A1)− (A2), (B1)− (B4) and (C1)−
(C2) hold. Let {zn}, {yn} , {wn} and {vn} be as defined in Algorithm A. Then
we have the following statements:

(1) If there exist subsequences {znk
} and {ynk

} of {zn} and {yn}, respec-
tively, such that znk

⇀ p ∈ C and ||znk
− ynk

|| → 0 as k →∞, then

(i) 0 ≤ lim infk→∞〈Aznk
, z − znk

〉 for all z ∈ C;
(ii) p ∈ V I(C,A).

(2) If there exist subsequences {wnk
} and {vnk

} of {wn} and {vn}, respec-
tively, such that wnk

⇀ q ∈ D and ||wnk
− vnk

|| → 0 as k → ∞,
then
(i) 0 ≤ lim infk→∞〈Bwnk

, w − wnk
〉 for all w ∈ D;

(ii) q ∈ V I(D,B).

Proof. (1) Let the hypotheses be satisfied.

(i) Put snk
= P fC∇f∗(∇fznk

− λnk
l−1Aznk

). By Lemma 2.15 and (3.6) we
have

||znk
− snk

|| ≤ 1

l
||znk

− ynk
|| → 0, as k →∞. (3.31)

Therefore, snk
⇀ p ∈ C. Thus, we have that {snk

} is bounded. Since A is
uniformly continuous on bounded subsets of E1, we have

||Aznk
−Asnk

|| → 0, as k →∞. (3.32)

By the Armijo line-search rule (3.2), we have

λnk
l−1||AP fC∇f

∗(∇f(znk
)− λnk

l−1Aznk
)−Aznk

||

> µ||znk
− P fC∇f

∗(∇f(znk
)− λnk

l−1Aznk
)||,

which implies that

1

µ
||AP fC∇f

∗(∇f(znk
)− λnk

l−1Aznk
)−Aznk

||

>
||znk

− P fC∇f∗(∇f(znk
)− λnk

l−1Aznk
)||

λnk
l−1

.

(3.33)
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From (3.32) and (3.33), we have

lim
k→∞

||znk
− P fC∇f∗(∇f(znk

)− λnk
l−1Aznk

)||
λnk

l−1
= 0. (3.34)

Since ∇f is Lipschitz continuous, we have

0 ≤ lim
k→∞

||∇fznk
−∇f

(
P fC∇f∗(∇f(znk

)− λnk
l−1Aznk

)
)
||

λnk
l−1

≤ L lim
k→∞

||znk
− P fC∇f∗(∇f(znk

)− λnk
l−1Aznk

)||
λnk

l−1

(3.35)

for some L > 0. Thus, we obtain from (3.34) and (3.35) that

lim
k→∞

||∇fznk
−∇f

(
P fC∇f∗(∇f(znk

)− λnk
l−1Aznk

)
)
||

λnk
l−1

= 0. (3.36)

From the definition of snk
and (2.6), we obtain

〈∇f(znk
)− λnk

l−1Aznk
−∇f(snk

), z − snk
〉 ≤ 0 for all z ∈ C.

This implies that〈∇f (znk
)−∇f (snk

)

λnk
l−1

, z − snk

〉
+ 〈Aznk

, snk
− znk

〉

≤ 〈Aznk
, z − znk

〉 for all z ∈ C.
(3.37)

Taking the limit on both sides of (3.37) as k → ∞ and using (3.36), (3.31),
uniform continuity of A and the boundedness of the sequences {znk

} and {snk
},

we obtain

lim inf
k→∞

〈Aznk
, z − znk

〉 ≥ 0 for all z ∈ C. (3.38)

(ii) Let {εk} be a sequence of decreasing nonnegative numbers such that
εk → 0 as k → ∞. For each εk, we choose Nk to be the smallest positive
integer such that

〈Aznk
, z − znk

〉+ εk ≥ 0 for all k ≥ Nk (3.39)

where the existence of Nk follows from (3.38). Since {εk} is decreasing, {Nk}
is increasing. If there exists N > 0 such that AzNk

= 0 for all k ≥ N , then

〈AzNk
, z − zNk

〉 ≥ 0

for all k ≥ N and z ∈ C. Since A is pseudomonotone, we have that

〈Az, z − zNk
〉 ≥ 0 for all k ≥ N and z ∈ C. (3.40)

Taking the limit on both sides of (3.40) as k →∞, we obtain

〈Az, z − p〉 ≥ 0 for all k ≥ N and z ∈ C.
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By Lemma 2.10, we conclude that p ∈ V I(C,A). If there exists a subsequence
{Nki} of {Nk}, again denoted by {Nk}, such that AzNk

6= 0 for all k ∈ N, then

setting tNk
=
J−1
E1
AzNk

||AzNk
||2

, we get 〈AzNk
, tNk

〉 = 1 for each k. Therefore, from

(3.39)
〈AzNk

, z + εktNk
− zNk

〉 ≥ 0.

Since A is pseudomonotone, we have that

〈A(z + εktNk
), z + εktNk

− zNk
〉 ≥ 0. (3.41)

Since {znk
} converges weakly to p as k → ∞ and A is sequentially weakly

continuous, we have that {Aznk
} converges weakly to Ap. Suppose Ap 6=

0 (otherwise, p ∈ V I(C,A)). Then by the sequentially weakly lower semi-
continuity of the norm, we get

0 < ||Ap|| ≤ lim inf
k→∞

||Aznk
||.

Since {zNk
} ⊂ {znk

} and εk → 0 as k →∞, we get that

0 ≤ lim sup
k→∞

||εktNk
|| = lim sup

k→∞

(
εk

||Aznk
||

)
≤ lim supk→∞ εk

lim infk→∞ ||Aznk
||
≤ 0

||Ap||
= 0.

Hence, lim supk→∞ ||εktNk
|| = 0. So, taking the limit on both sides of (3.41)

as k →∞, we get
〈Az, z − p〉 ≥ 0 for all z ∈ C.

Therefore, by Lemma 2.10, we have p ∈ V I(C,A).

(2) Part (2) of the lemma can be proved in a similar way. �

Theorem 3.4. Suppose that Conditions (A1)−(A2), (B1)−(B4) and (C1)−
(C2) hold. Then the sequence {(xn, un)} generated by Algorithm A converges
strongly to (x̄, ū) ∈ Υ, where (x̄, ū) = P hΥ(x, u), for h = (f, g).

Proof. Let (x̄, ū) = P hΥ(x, u). Denote Cn = τ∇f(an) + (1− τ)G(an) and

∆n = 〈∇f(x)−∇f(x̄), xn − x̄〉+ 〈∇g(u)−∇g(ū), un − ū〉
= 〈(∇f(x),∇g(u))− (∇f(x̄),∇g(ū)), (xn, un)− (x̄, ū)〉.

Then, by the Cauchy-Schwarz inequality, we have

∆n+1 = 〈∇f(x)−∇f(x̄), xn − x̄〉+ 〈∇g(u)−∇g(ū), un − ū〉
+ 〈∇f(x)−∇f(x̄), xn+1 − xn〉
+ 〈∇g(u)−∇g(ū), un+1 − un〉
≤ ∆n + Λ

[
||xn+1 − xn||+ ||un+1 − un||

]
,
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for some constant Λ > 0. From (3.4), (2.10) and (2.11) we obtain

Df (x̄, xn+1)

= Df

(
x̄,∇f∗ (αn∇f(x) + (1− αn)Cn)

)
= Vf

(
x̄, αn∇f(x) + (1− αn)∇f (∇f∗(Cn))

)
≤ Vf

(
x̄, αn∇f(x) + (1− αn)∇f (∇f∗(Cn))− αn (∇f(x)−∇f(x̄))

)
−
〈
−αn (∇f(x)−∇f(x̄)) ,

∇f∗ (αn∇f(x) + (1− αn)∇f (∇f∗(Cn)))− x̄
〉

= Vf

(
x̄, αn∇f(x̄) + (1− αn)∇f (∇f∗(Cn))

)
+ αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉

= Df (x̄,∇f∗ (αn∇f(x̄) + (1− αn)∇f (∇f∗(Cn))))

+ αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉
≤ αnDf (x̄, x̄) + (1− αn)Df (x̄,∇f∗(Cn))

+ αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉,

which implies by Lemma 2.7 that

Df (x̄, xn+1) ≤ (1− αn)Df (x̄,∇f∗(Cn))

+ αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉.
(3.42)

Furthermore, from (2.9), (2.10), part (iii) of Lemma 2.14 and Bregman
relatively f−nonexpansiveness of G, we have

Df (x̄,∇f∗(Cn)) = Df (x̄,∇f∗(τ∇f(an) + (1− τ)G(an)))

= Vf (x̄, τ∇f(an) + (1− τ)G(an))

= f(x̄) + f∗ (τ∇f(an) + (1− τ)G(an))

− 〈τ∇f(an) + (1− τ)G(an), x̄〉
≤ f(x̄) + τf∗ (∇f(an)) + (1− τ)f∗(G(an))

− τ(1− τ)φ1 (||∇f(an)−G(an)||)
− τ〈∇f(an), x̄〉 − (1− τ)〈G(an), x̄〉

= τVf (x̄,∇f(an)) + (1− τ)Vf (x̄, G(an))

− τ(1− τ)φ1 (||∇f(an)−G(an)||)
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= τDf (x̄, an) + (1− τ)Df (x̄,∇f∗G(an))

− τ(1− τ)φ1 (||∇f(an)−G(an)||)
≤ τDf (x̄, an) + (1− τ)Df (x̄, an)

− τ(1− τ)φ1 (||∇f(an)−G(an)||)
= Df (x̄, an)− τ(1− τ)φ1 (||∇f(an)−G(an)||) ,

(3.43)

where φ1 is the modulus of uniform convexity of f∗.
Substituting (3.43) into (3.42), we get

Df (x̄, xn+1) ≤ (1− αn)Df (x̄, an)

− (1− αn)τ(1− τ)φ1 (||∇f(an)−G(an)||)
+ αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉.

(3.44)

Again using (3.23), we obtain

Df (x̄, xn+1) ≤ (1− αn)Df (x̄, xn)

− (1− αn)

(
1− µ

β

)(
Df (an, yn) +Df (yn, zn)

)
− (1− αn)τ(1− τ)φ1 (||∇f(an)−G(an)||)
− (1− αn)γn〈JE3(Txn − Sun), T qn − T x̄〉
+ αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉.

(3.45)

Similarly, we get

Dg(ū, un+1) ≤ (1− αn)Dg(ū, un)

− (1− αn)

(
1− µ

β

)(
Dg(bn, vn) +Dg(vn, wn)

)
− (1− αn)τ(1− τ)φ2 (||∇g(bn)−K(bn)||)
− (1− αn)γn〈JE3(Sun − Txn), Stn − Sū〉
+ αn〈∇g(u)−∇g(ū), un+1 − ū〉,

(3.46)

where φ2 is the modulus of uniform convexity of g∗.
Let Θn = Df (x̄, xn) + Dg(ū, un). Then, combining (3.45) and (3.46) and

using the relation in (3.30), we obtain
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Θn+1 ≤ (1− αn)Θn − (1− αn)

(
1− µ

β

)
Df (an, yn)

− (1− αn)

(
1− µ

β

)
Df (yn, zn)− (1− αn)

(
1− µ

β

)
Dg(bn, vn)

− (1− αn)

(
1− µ

β

)
Dg(vn, wn)

− (1− αn)τ(1− τ)φ1 (||∇f(an)−G(an)||)
− (1− αn)τ(1− τ)φ2 (||∇g(bn)−K(bn)||)
− (1− αn)γn〈JE3(Txn − Sun), T qn − T x̄〉
− (1− αn)γn〈JE3(Sun − Txn), Stn − Sū〉
+ αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉+ αn〈∇g(u)−∇g(ū), un+1 − ū〉

≤ (1− αn)Θn − (1− αn)

(
1− µ

β

)
Df (an, yn)

− (1− αn)

(
1− µ

β

)
Df (yn, zn)− (1− αn)

(
1− µ

β

)
Dg(bn, vn)

− (1− αn)

(
1− µ

β

)
Dg(vn, wn)

− τ(1− τ)(1− αn)φ1 (||∇f(an)−G(an)||)
− τ(1− τ)(1− αn)φ2 (||∇g(bn)−K(bn)||)

− (1− αn)
ρ

2
||Txn − Sun||2 + αn〈∇f(x)−∇f(x̄), xn+1 − x̄〉

+ αn〈∇g(u)−∇g(ū), un+1 − ū〉.
(3.47)

This implies that

(
1− µ

β

)[
Df (an, yn) +Df (yn, zn) +Dg(bn, vn) +Dg(vn, wn)

]
+
ρ

2
||Txn − Sun||2 + τ(1− τ)φ1

(
||∇f(an)−G(an)||

)
+ τ(1− τ)φ2

(
||∇g(bn)−K(bn)||

)
≤ Θn −Θn+1 + αnM,

(3.48)

for some M > 0, where the existence of such M is guaranteed by the bound-
edness of {xn} and {un}.

Now, we show that the sequence {Θn} of real numbers, converges strongly
to zero by considering two cases:
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Case I. If there exists a natural number n0 such that Θn+1 ≤ Θn for all
n ≥ n0, then {Θn} converges. Taking the limit as n→∞ in (3.48), we get

lim
n→∞

||Txn − Sun||2 = 0 (3.49)

and

limn→∞ φ1 (||∇f(an)−G(an)||) = 0 = limn→∞ φ2 (||∇g(bn)−K(bn)||),

which implies that

lim
n→∞

||∇f(an)−G(an)|| = 0 = lim
n→∞

||∇g(bn)−K(bn)||. (3.50)

From the definition of zn, (2.10), (2.11), property of the Bregman projection,
and Cauchy-Schwarz inequality, we have

Df (xn, zn)

≤ Df

(
xn,∇f∗ (∇f(xn)− γnT ∗JE3 (Txn − Sun))

)
= Vf (xn,∇f(xn)− γnT ∗JE3 (Txn − Sun))

≤ Vf (xn,∇f(xn))

−
〈
γnT

∗JE3(Txn − Sun),∇f∗ (∇f(xn)− γnT ∗JE3 (Txn − Sun))− xn
〉

= Df (xn, xn)− γn〈T ∗JE3(Txn − Sun), qn − xn〉
≤ γn||T ∗JE3(Txn − Sun)|| ||qn − xn||.

(3.51)

Substituting (3.28) into (3.51), then taking the limit on both sides and using
(3.49), we obtain

0 ≤ lim
n→∞

Df (xn, zn) ≤ lim
n→∞

(
γ2
n

β
||T ||2 ||JE3(Txn − Sun)||2

)
= lim

n→∞

(
γ2
n

β
||T ||2 ||Txn − Sun||2

)
= 0.

This implies that limn→∞Df (xn, zn) = 0 and hence by Lemma 2.9 we obtain

lim
n→∞

||xn − zn|| = 0. (3.52)

Similarly, one can show that

lim
n→∞

||un − wn|| = 0. (3.53)

Moreover, by taking the limit as n→∞ on both sides of (3.48), we obtain

lim
n→∞

Df (an, yn) = 0, lim
n→∞

Df (yn, zn) = 0,

lim
n→∞

Dg(bn, vn) = 0, lim
n→∞

Dg(vn, wn) = 0,
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which implies that

lim
n→∞

||an − yn|| = 0, lim
n→∞

||yn − zn|| = 0 (3.54)

and
lim
n→∞

||bn − vn|| = 0, lim
n→∞

||vn − wn|| = 0. (3.55)

From (3.52) and (3.54), we have

lim
n→∞

||xn − yn|| ≤ lim
n→∞

||xn − zn||+ lim
n→∞

||zn − yn|| = 0 (3.56)

and from (3.53) and (3.55), we obtain

lim
n→∞

||un − vn|| ≤ lim
n→∞

||un − wn||+ lim
n→∞

||wn − vn|| = 0. (3.57)

From (3.54) and (3.56), we have

lim
n→∞

||an − xn|| ≤ lim
n→∞

||an − yn||+ lim
n→∞

||yn − xn|| = 0. (3.58)

From (3.4) and (3.50), we have

lim
n→∞

||∇f(xn+1)−∇f(an)|| ≤ lim
n→∞

(αn||∇f(x)− τ∇f(an)||)

+ (1− τ) lim
n→∞

((1− αn)||G(an)−∇f(an)||)

= 0.
(3.59)

From (3.59) and part (iii) of Lemma 2.8, we have

lim
n→∞

||xn+1 − an|| = 0. (3.60)

Therefore, from (3.60) and (3.58), we obtain

lim
n→∞

||xn+1 − xn|| ≤ lim
n→∞

||xn+1 − an||+ lim
n→∞

||an − xn||

= 0. (3.61)

Similarly, we have
lim
n→∞

||un+1 − un|| = 0. (3.62)

Since {(xn, un)} is bounded and E1 × E2 is reflexive (Lemma 2.6), there
exists a subsequence {(xnk

, unk
)} of {(xn, un)} which converges weakly to some

(x∗, u∗) ∈ E1 × E2 and

lim sup
n→∞

∆n = lim
k→∞

∆nk
. (3.63)

Consequently, we have xnk
⇀ x∗ and unk

⇀ u∗. From (3.52) and (3.53), we
have znk

⇀ x∗ and wnk
⇀ u∗, respectively. So, from (3.54), the fact that

znk
⇀ x∗ and Lemma 3.3, we obtain x∗ ∈ V I(C,A). Similarly, one can show

that u∗ ∈ V I(D,B). From (3.58), we have an ⇀ x∗. Thus, with the help
of (3.50) and the definition of f−asymptotic fixed points, we conclude that
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x∗ ∈ F̂f (G). From the Bregman relatively f−nonexpansivity of G, we have
x∗ ∈ Ff (G). So, x∗ ∈ V I(C,A) ∩ Ff (G).

Similarly, we can show that u∗ ∈ V I(D,B) ∩ Fg(K).
Moreover, by Lemma 2.1 we have

||Tx∗ − Su∗||2 = ||Txnk
− Sunk

+ Tx∗ − Txnk
+ Sunk

− Su∗||2

≤ ||Txnk
− Sunk

||2

+ 2〈JE3(Tx∗ − Su∗), Tx∗ − Txnk
+ Sunk

− Su∗〉.
(3.64)

Since T and S are sequentially weakly continuous, we have that xnk
⇀ x∗

implies Txnk
⇀ Tx∗, and unk

⇀ u∗ implies Sunk
⇀ Su∗. Thus, we obtain

using (3.49) that Tx∗ = Su∗. Therefore, (x∗, u∗) ∈ Υ.
Furthermore, from the definition of ∆n+1, (3.61), (3.62), (3.63) and (2.8)

we have

lim sup
n→∞

∆n+1 ≤ lim sup
n→∞

∆n + Λ lim sup
n→∞

[||xn+1 − xn||+ ||un+1 − un||]

= lim
k→∞

∆nk
+ Λ lim

k→∞
[||xnk+1 − xnk

||+ ||unk+1 − unk
||]

= lim
k→∞
〈(∇f(x),∇g(u))− (∇f(x̄),∇g(ū)), (xnk

, unk
)− (x̄, ū)〉

= 〈(∇f(x),∇g(u))− (∇f(x̄),∇g(ū)), (x∗, u∗)− (x̄, ū)〉
≤ 0.

(3.65)

From (3.47) we have

Θn+1 ≤ (1− αn)Θn + αn∆n+1. (3.66)

So, (3.65), (3.66), Lemma 2.11 and the condition on αn give that

lim
n→∞

Θn = 0,

which implies that

lim
n→∞

Df (x̄, xn) = 0

and

lim
n→∞

Dg(ū, un) = 0.

Thus, by Lemma 2.9 we obtain limn→∞ xn = x̄ and limn→∞ un = ū.

Case II. If there exists a subsequence {Θni} of {Θn} with Θni < Θni+1 for
all i ≥ 0, then by Lemma 2.12, we can find a nondecreasing sequence {mk} of
positive integers such that limk→∞mk =∞ and

Θmk
≤ Θmk+1 and Θk ≤ Θmk+1, (3.67)
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for all positive integers k. Thus, (3.48) becomes(
1− µ

β

)[
Df (amk

, ymk
) +Df (ymk

, zmk
) +Dg(bmk

, vmk
) +Dg(vmk

, wmk
)
]

+ τ(1− τ)
[
φ1 (||∇f(amk

)−G(amk
)||) + φ2 (||∇g(bmk

)−K(bmk
)||)
]

+
ρ

2
||Txmk

− Sumk
||2

≤ Θmk
−Θmk+1 + αmk

M.
(3.68)

Taking the limit as k →∞ to both sides of (3.68), we derive

lim
k→∞

||Txmk
− Sumk

||2 = 0,

lim
k→∞

||∇f(amk
)−G(amk

)|| = lim
k→∞

||∇g(bmk
)−K(bmk

)|| = 0.

Following the method used in Case I, we get

lim
k→∞

||xmk
− zmk

|| = lim
k→∞

||umk
− wmk

|| = 0,

lim
k→∞

||ymk
− zmk

|| = lim
k→∞

||vmk
− wmk

|| = 0,

lim
k→∞

||xmk
− ymk

|| = lim
k→∞

||umk
− vmk

|| = 0.

Furthermore, following similar steps as in Case I, we obtain

lim
k→∞

||xmk+1 − xmk
|| = 0, lim

k→∞
||umk+1 − umk

|| = 0

and

lim sup
k→∞

∆mk+1 ≤ 0.

Thus, from (3.47) and (3.67), we have

αmk
Θmk

≤ Θmk
−Θmk+1 + αmk

∆mk+1 ≤ αmk
∆mk+1,

which implies that

Θmk
≤ ∆mk+1. (3.69)

Taking the limit on both sides of (3.69) as k → ∞ and using the fact that
lim supk→∞∆mk+1 ≤ 0, we get that the sequence Θmk

→ 0 as k → ∞ . It
follows from (3.66) that Θmk+1 → 0 as k → ∞. Since Θk ≤ Θmk+1 for all
k ≥ 0, we have that Θk → 0 as k →∞. Thus, we have limk→∞Df (x̄, xk) = 0
and limk→∞Dg(ū, uk) = 0, which implies by Lemma 2.9 that limk→∞ xk = x̄
and limk→∞ uk = ū.

Thus, we have shown, in Cases I and II, that the sequence {(xn, un)} gen-
erated by Algorithm A, converges strongly to (x̄, ū) = P hΥ(x, u), and this
completes the proof. �
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If A and B are uniformly continuous and monotone mappings, then the
assumption that A and B are sequentially weakly continuous is not required
and hence the following corollary follows.

Corollary 3.5. Assume that A: C → E∗1 and B: D → E∗2 are uniformly con-
tinuous and monotone mappings. If Conditions (A1)− (A2), (B2)− (B4) and
(C1)− (C2) are satisfied, then the sequence {(xn, un)} generated by Algorithm
A, converges strongly to (x̄, ū) ∈ Υ, where (x̄, ū) = P hΥ(x, u).

If x = 0 = u, then Algorithm A can be used to locate an element of the
solution with the minimum norm and hence we have the following corollary.

Corollary 3.6. Suppose that the Conditions (A1) − (A2), (B1) − (B4) and
(C1)−(C2) are satisfied. Then the sequence {(xn, un)} generated by Algorithm
A with x = 0 and u = 0, converges strongly to (x̄, ū) ∈ Υ, where (x̄, ū) =
P hΥ(0, 0).

4. Applications

Condition 4.1.

This section deals with applications of the main result to some specific cases.
The following are the assumptions that will be used in these cases.

(A3) Let C and D be nonempty, closed and convex subsets of a smooth,
strictly convex, reflexive real Banach space E with dual E∗;

(A4) Let f, g: E → R be proper, lower semi-continuous, uniformly Fréchet
differentiable, strongly convex, strongly coercive, Legendre functions
which are bounded on bounded subsets. Let f and g have Lipschitz
continuous gradients with the strong convexity constant of f (respec-
tively, g) greater than or equal to the Lipschitz constant of ∇f (re-
spectively, ∇g);

(B5) Let A,B: E → E∗ be uniformly continuous, pseudomonotone and
sequentially weakly continuous on bounded subsets of E;

(B6) Let G,K: E → E∗ be Bregman relatively f−nonexpansive and Breg-
man relatively g−nonexpansive mappings, respectively.

4.1. Common Solutions of Variational Inequality and f, g−Fixed Point
Problems. Let E = E1 = E2 = E3, T = S = I and let f and g be as in
Condition 4.1 (A4). Then the split equality of variational inequality and f, g−
fixed point problems reduces to finding a common solution of two variational
inequality and f, g−fixed point problems. This problem can be expressed as:

find x̄ ∈ (V I(C,A) ∩ Ff (G)) and ū ∈ (V I(D,B) ∩ Fg(K)) such that x̄ = ū.

Denote Σ = {(x̄, ū) ∈ (V I(C,A) ∩ Ff (G))× (V I(D,B) ∩ Fg(K)) : x̄ = ū}.
In this case, we have the following corollaries.
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Corollary 4.1. Assume that Σ 6= ∅. If Conditions (A3)− (A4), (B5)− (B6),
(C1)− (C2) are satisfied, then the sequence {(xn, un)} generated by Algorithm
A,with E = E1 = E2 = E3 and T = S = I, converges strongly to (x̄, ū) ∈ Σ,
where (x̄, ū) = P hΣ(x, u).

Corollary 4.2. Assume that Σ 6= ∅ and let A: E → E∗ and B: E → E∗ be
uniformly continuous monotone mappings. If Conditions (A3) − (A4), (B6),
(C1)− (C2) are satisfied, then the sequence {(xn, un)} generated by Algorithm
A, with E = E1 = E2 = E3 and T = S = I, converges strongly to (x̄, ū) ∈ Σ,
where (x̄, ū) = P hΣ(x, u).

4.2. Split Equality of Null Point and f, g−Fixed Point Problems. Let
f and g be as in (A2). If C = E1 and D = E2, then the split equality
of variational inequality and f, g−fixed point problem reduces to the split
equality of null point and f, g−fixed point problem which can be described as
finding a point (x̄, ū) with the property

(x̄, ū) ∈
(
A−1(0) ∩ Ff (G)

)
×
(
B−1(0) ∩ Fg(K)

)
: T x̄ = Sū,

where A−1(0) = {x ∈ E1 : 0 ∈ Ax} and B−1(0) = {u ∈ E2 : 0 ∈ Bu}.
Denote

Υ∗ =
{

(x̄, ū) ∈
(
A−1(0) ∩ Ff (G)

)
×
(
B−1(0) ∩ Fg(K)

)
: T x̄ = Sū

}
.

In this case, we have the following results:

Corollary 4.3. Assume that Υ∗ 6= ∅. If Conditions (A1)−(A2), (B1)−(B3),
with C = E1, D = E2, (C1)− (C2) are satisfied, then the sequence {(xn, un)}
generated by Algorithm A, converges strongly to (x̄, ū) ∈ Υ∗, where (x̄, ū) =
P hΥ∗(x, u).

Corollary 4.4. Let A: E1 → E∗1 and B: E2 → E∗2 be uniformly contin-
uous monotone mappings and assume that Υ∗ 6= ∅. If Conditions (A1) −
(A2), (B2) − (B3) with C = E1 and D = E2, (C1) − (C2) are satisfied,
then the sequence {(xn, un)} generated by Algorithm A, converges strongly to
(x̄, ū) ∈ Υ∗, where (x̄, ū) = P hΥ∗(x, u).

4.3. Split Equality Variational Inequality Problem. Let f and g be as
in (A2). If, in Condition 3.2, Gx = ∇f(x) for all x ∈ C and Ku = ∇g(u)
for all u ∈ D, then the split equality of variational inequality and f, g−fixed
point problems reduces to the split equality variational inequality problem
which seeks to

find x̄ ∈ V I(C,A) and ū ∈ V I(D,B) such that T x̄ = Sū.

Denote Γ = {(x̄, ū) ∈ V I(C,A)× V I(D,B) : T x̄ = Sū}.
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One can easily show that ∇f and ∇g are Bregman f−relatively nonexpan-
sive and Bregman g−relatively nonexpansive, respectively, and hence we have
the following results.

Corollary 4.5. Assume that Γ 6= ∅. If Conditions (A1)− (A2), (B1)− (B3),
(C1) − (C2) are satisfied with Gx = ∇f(x) for all x ∈ C and Ku = ∇g(u)
for all u ∈ D, then the sequence {(xn, un)} generated by Algorithm A, con-
verges strongly to (x̄, ū) ∈ Γ, where (x̄, ū) = P hΓ (x, u).

Corollary 4.6. Let A: E1 → E∗1 and B: E2 → E∗2 be uniformly continuous
monotone mappings. Assume that Γ 6= ∅. If Conditions (A1)− (A2), (B2)−
(B3), (C1) − (C2) are satisfied with Gx = ∇f(x) for all x ∈ C and Ku =
∇g(u) for all u ∈ D, then the sequence {(xn, un)} generated by Algorithm A,
converges strongly to (x̄, ū) ∈ Γ, where (x̄, ū) = P hΓ (x, u).

4.4. Split Equality f−Fixed Point Problem. If we have A = 0 and B = 0,
in Algorithm A, then the split equality of variational inequality and f, g−fixed
point problem reduces to the split equality f, g−fixed point problem which
seeks to

find x̄ ∈ Ff (G) and ū ∈ Fg(K) such that T x̄ = Sū.

Denote Γ∗ = {(x̄, ū) ∈ Ff (G)× Fg(K) : T x̄ = Sū}.

Corollary 4.7. Assume that Γ∗ 6= ∅. If Conditions (A1)− (A2), (B2)− (B3),
(C1)−(C2) are satisfied. then the sequence {(xn, un)} generated by Algorithm
A, with A = B = 0, converges strongly to (x̄, ū) ∈ Γ∗, where (x̄, ū) = PΓ∗(x, u).

5. Numerical Example

Under this section, a numerical example is given to demonstrate the con-
vergence of the sequence generated by Algorithm A.

Example 5.1. Given E1 = E2 = E3 = R2. Let the norm and inner product

on R2 be, respectively, given by ||x|| =
√
〈x, x〉 =

√∑2
i=1 |xi|2 and 〈x, u〉 =∑2

i=1 xiui for all x, u ∈ R2. Define the mappings A: R2 → R2 and B: R2 → R2

by

Ax = A(x1, x2) =

(
5

2
+
√
x2

1 + x2
2

)
(x1, x2 − 1),

Bu = B(u1, u2) =
√
u2

1 + u2
2 (u1, u2)

and let C andD be given by C =
{
x ∈ R2 : ||x|| ≤ 2

}
, D =

{
u ∈ R2 : ||u|| ≤ 2

}
.

Clearly, C and D are nonempty, closed and convex subsets of R2, and the map-
pings A and B are uniformly continuous and sequentially weakly continuous
on C and D, respectively. It can be easily shown that B is pseudomonotone
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on subsets of D. We only show here that A is pseudomonotone on R2. To this
end, let 〈Ax, y − x〉 ≥ 0. Then we have,(

5

2
+
√
x2

1 + x2
2

)
(x1, x2 − 1), (y1 − x1, y2 − x2)

〉
≥ 0,

this implies that(
5

2
+
√
x2

1 + x2
2

)〈
(x1, x2 − 1), (y1 − x1, y2 − x2)

〉
≥ 0.

Since
5

2
+
√
x2

1 + x2
2 > 0, we conclude that 〈(x1, x2−1), (y1−x1, y2−x2)〉 ≥ 0.

Now, for (y1, y2) ∈ R2 we have

〈Ay, y − x〉 =

(
5

2
+
√
y2

1 + y2
2

)〈
(y1, y2 − 1), (y1 − x1, y2 − x2)

〉
≥
(

5

2
+
√
y2

1 + y2
2

)[〈
(y1, y2 − 1), (y1 − x1, y2 − x2)

〉]
−
(

5

2
+
√
y2

1 + y2
2

)[〈
(x1, x2 − 1), (y1 − x1, y2 − x2)

〉]
=

(
5

2
+
√
y2

1 + y2
2

)(
|y1 − x1|2 + |y2 − x2|2

)
≥ 5

2
||y − x||2

≥ 0.

Therefore, A is pseudomonotone on R2.
Let us define T, S: R2 → R2 by

Tx = T (x1, x2) = (5x1, 0) and Su = S(u1, u2) = (2u1, 3u2),

where (x1, x2), (u1, u2) ∈ R2. Then T and S are bounded linear maps on R2

with adjoints T ∗x = (5x1, 0) and S∗u = (2u1, 3u2), respectively. Now, we have
〈A(0, 1), (x1, x2)−(0, 1)〉 ≥ 0 for all (x1, x2) ∈ C, 〈B(0, 0), (u1, u2)−(0, 0)〉 ≥ 0
for all (u1, u2) ∈ D. So, x̄ ∈ V I(C,A) and ū ∈ V I(D,B), where x̄ = (0, 1)
and ū = (0, 0). Let us define G: C → R2 and K: D → R2 by

Gx = G(x1, x2) = (0, x2) and Ku = K(u1, u2) = (u2, u1),

and f, g: R2 → R by f(x) =
1

2
||x||2 and g(u) =

1

2
||u||2. Then, we have

∇f(x) = x, ∇g(u) = u and JE = I, where I is the identity mapping on R2.
One can easily show that G is Bregman relatively f−nonexpansive and K is
Bregman relatively g−nonexpansive. Moreover,

Gx̄ = G(0, 1) = (0, 1) = ∇f(0, 1) and Kū = K(0, 0) = (0, 0) = ∇g(0, 0).
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From this, we conclude that x̄ ∈ Ff (G) and ū ∈ Fg(K). Moreover, T (0, 1) =
(0, 0) = S(0, 0). Thus,

(x̄, ū) ∈ (V I(C,A) ∩ Ff (G))× (V I(D,B) ∩ Fg(K)) with T x̄ = Sū.

Now, taking αn =
1

n+ 100000
for n ≥ 1 and

γn =


(

2

5

)
(5x1n − 2u1n)2 + (3u2n)2

(25x1n − 10u1n)2 + (4u1n − 10x1n)2 + (9u2n)2
if n ∈ Ω,

1

1000000
if n /∈ Ω.

then the Conditions (A1)− (A2), (B1)− (B4), and (C1)− (C2) are satisfied.

The figures below show that the error term sequence {En} = {(xn, un)
−(x̄, ū)} converges strongly to zero for different choices of the parameter l
and different initial points.
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Figure 1. Illustration of convergence rate of the sequence for
different values of the parameter l.
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Figure 2. Illustration of convergence rate of the sequence for
different initial values.

The numerical experiments were carried out using MATLAB version R2020a
and all programs were run on a 64-bit OS PC with Intel(R) Core(TM) i7-8550U
CPU@1.80GHz 1.99GHz and 16GB RAM.

Remark 5.2. Figure 1 shows that the convergence of the sequence generated
by Algorithm A gets faster as l gets closer to 1. From Figure 2, we observe that
for any choice of initial point, the sequence {(xn, un)} converges to a solution
of the split equality of variational inequality and f, g−fixed point problem.
That is, the ultimate convergence of the sequence does not depend on the
choice of initial points.

6. Conclusions

In this paper, we have proposed a method for finding a solution of split
equality of variational inequality and f, g−fixed point problems, where the
variational inequality problems are for uniformly continuous pseudomono-
tone mappings and the f, g−fixed point problems are for Bregman relatively



Solving split equality of variational inequality and f, g-fixed point problems 171

f, g−nonexpansive mappings in reflexive Banach spaces. We have proved
strong convergence of the algorithm using the Bregman distance approach.
Finally, a numerical example is provided to show the applicability of the pro-
posed algorithm. The results in this paper extend most of the results which
are discussed in the literature in one or the other way. Specifically, the results
of our method improve the result obtained by Wega and Zegeye [34] in the
sense that it extends the result from finding common solution of variational
inequality and f−fixed point problems to finding a solution of split equality of
variational inequality and f, g−fixed point problems. Our result also extends
the results obtained by Boikanyo and Zegeye [5] in the sense that it addresses
f, g−fixed point problems on top of the split equality variational inequality
problems.
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acknowledge the funding received from Simons Foundation based at Botswana
International University of Science and Technology (BIUST).
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