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1. Introduction

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉, and
associated norm || · ||. Let C be nonempty, closed and convex subset of H.
Let A : H → 2H be a maximal monotone operator and f : H → H be a
real single-valued nonlinear mapping . Then, monotone variational inclusion
problems (simply denoted by MVIP) can be formulated as follows:

Search for z∗ ∈ H such that 0 ∈ A (z∗) + f (z∗) . (1.1)

We shall denote the solution set of (1.1) by Ω. Essentially, the concept of
variational inclusion problem plays a cardinal role in nonlinear analysis and
theory of optimization. MVIP has turned out to be a very useful tool for
investigating a wide range of many related problems in mathematical and ap-
plied sciences. It is strategically found in the center of image processing (for
instance see [11, 16, 28] and the references therein) and many other mathemati-
cal problems (Check; [10],[11],[21]-[23]). Most importantly, maximal monotone
variational inclusion problem gives a solid foundation for the study of many
optimization problems such as, convex programming problems, variational in-
equality problems, equilibrium problems, complementarity problem, optimal
control problems and many others, (see for instance [2], [6],[14],[20],[34],[47]
and references therein).

Suppose that f = 0 in (1.1), we have a zero point problem for maximal
monotone operator as follows:

Search for z∗ ∈ H such that 0 ∈ A (z∗) , (1.2)

where A is a maximal monotone operator. The monotone inclusion problem
(1.2) was first proposed and studied by Martinet [31] in 1970 and generalized in
1976 by Rockafeller [38]. Martinet proposed the classical technique of proximal
point algorithm (PPA) for the solution of (1.2) as follows:

xn+1 = (I + λnA)−1 xn n ≥ 1, (1.3)

where I is an identity operator, and {λn} is a sequence of non-negative real
numbers. After the advent of PPA by Martinet, many authors have developed
algorithms for solving the inclusion problem (1.2) ( see for example [37],[38]
and references therein). It is pertinent to note that z∗ ∈ H is a solution of the
MVIP (1.1) if and only if z∗ solves the fixed point problem,

z = JAµ (z − λf(z)) ,

that is, z∗ = JAµ (I − λf) z∗, where JAµ := (I + µA)−1 is the resolvent oper-
ator associated with µ > 0. This has enhanced the integration of resolvent
operator into the construction of algorithms for approximating the solution
of monotone inclusion problem (1.1). Consequently, numerous methods using
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resolvent operator have been developed and studied by many authors. Com-
mon amongst them is the classical proximal method (see Fang and Huang [21],
Solodov and Svaiter [39], Tseng [42], Zeng et al. [45] and references therein
for details).

Generally, several methods of approximating the solution of monotone vari-
ational inclusion problem (1.1) have been studied and extended by many au-
thors. Famous among these methods is the forward-backward splitting method
(for details of this technique see [28, 35, 42] and references therein). More-
over, the modification of these methods by researchers have not only enjoyed
versatility by using relaxation techniques (check [9, 29]) but with more accel-
eration using the inertial techniques (see [1, 7, 8, 13, 30, 33, 41, 43] for more).
Thus, in attempt to establish the solution of (1.1), various proximal gradient
algorithms have been proposed and studied. Although, many of the results
obtained are based on some stringent conditions imposed on the cost operator
f in (1.1), and other related algorithm parameters. For example, in 1998,
Haung [26] studied a class of problem (1.1) where the underlying operators, A
is maximally monotone, f is strongly monotone and L- Lipschitz continuous.
He proved existence of solutions for the completely class of general varia-
tional inclusion problems and strong convergence theorem for the sequence
of iterates generated by the algorithms. Zeng et al. [45], also proposed and
analyzed new iterative method for solving MVIP (1.1). They obtained strong
convergence theorem under some assumptions on the algorithm parameters
with strict condition that f is inverse strongly monotone. These algorithms
did not significantly improve the existing results because the stringent condi-
tions rather make the iterative methods computationally expensive. Moreover,
strong monotonicity is very difficult to obtain in practical problems. Hence,
the need to relax the conditions on f and other parameters to solve MVIP
(1.1).

In attempt to achieve some of these relaxations, in 2001, Alvarez and At-
touch in [5] introduced and studied inertial algorithm for solving monotone
inclusion problem as follows:

x0, x1 ∈ H1,

un = xn + θn (xn − xn−1) ,
xn+1 = JAλn (un) , n ≥ 1,

(1.4)

where {λn} is positive real sequence, JAλn is the resolvent of the maximal
monotone operator A with respect to λn. They established that under stan-
dard assumptions on the control parameters, the sequence {xn} generated by
(1.4) converges weakly to the solution of (1.1).
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In 2003, Moudafi and Oliny in [33], proposed and analyzed an iterative
method that is based on inertial proximal point approach. The algorithm,

x0, x1 ∈ H1,

un = xn + θn (xn − xn−1) ,
xn+1 = JAλn (xn − λnfun) , n ≥ 1,

(1.5)

where, f : H → H is monotone, L-Lipschitz continuous and A : H → 2H is set-
valued maximally monotone was studied. It was shown that under some mild
conditions imposed on the algorithm parameters, the sequence {xn} generated
by (1.5) converge weakly to the solution of MVIP (1.1).

Also, Jung in [27] proposed and studied an iterative method for approxi-
mating the common solution of monotone inclusion, variational inequality and
fixed point problems when the underlying operator is pseudocontractive. He
introduced iterative algorithm that generated net {xt} implicitly as follows:

xt = θtxt + (1− θt)Trt (tγV xt + (I − tµG)) JBλtAνtxt, t ∈ (0, 1), (1.6)

where B : H → 2H is maximal monotone, A : H → H is a continuous
monotone mapping, V : C → C is `-Lipschitzian and G : C → C is k-
Lipschitzian and ξ-strongly monotone. Under some appropriate conditions he
obtained a strong convergence in real Hilbert space.

It is worth mentioning that if A is the normal cone of the nonempty, closed
convex subset C of the Hilbert space H, then, the monotone variational in-
clusion problem (1.1) can be reformulated in terms of variational inequality
problem (VIP) as follows:

Find z∗ ∈ C such that 〈f(z∗), x− z∗〉 ≥ 0, ∀x ∈ C. (1.7)

One of the simplest and most efficient methods of approximating the solution
of (1.7) is by the projection and contraction methods (PCM). Many authors
have proposed and analyzed this method for solving VIP when the underlying
operator is monotone (see [19, 25, 40] for details).

In 2014, Cai et al. in [12] employed the projection and contraction tech-
niques in obtaining the the solution of monotone variational inequalities. Their
results were principally based on the conditions in the definition of prediction
stepsize conditions, where the ’optimal’ step length,

βn :=
〈xn − yn, d(xn, yn)〉
||d(xn, yn)||2

in correction step.

Inspired by the results of Cai et al. [12], Dong et al. in [20] modified and
extended PCM for solving monotone variational inequality problems to infinite
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dimensional Hilbert space. They proposed and investigated the algorithm:
zn = PC (yn − λf(yn)) ,

d (yn, zn) = yn − zn − λ (f(yn)− f(zn)) ,

yn+1 = yn − γβnd (yn, zn) , n ≥ 1,

(1.8)

where λ is a fixed prediction stepsize. They further modified and extended
algorithm (1.8) to finding common solution set of monotone variational in-
equalities and fixed point set when the underlying mapping is nonexpansive.
That is, 

zn = PC (yn − λf(yn)) ,

d (yn, zn) = yn − zn − λ (f(yn)− f(zn)) ,

yn+1 = αnyn + (1− αn)T (yn − γβnd (yn, zn)) , n ≥ 1,

(1.9)

where T : H → H is a nonexpansive operator. They established that the
algorithm (1.8) converges weakly to a point in the solution set of VIP (1.7),
and (1.9) converges weakly to a common element in the solution set of VIP
and F (T ).

Recently, Zhang and Wang in [46] proposed and studied proximal and con-
traction method for solving MVIP (1.1). The algorithm stemmed from the
combination of Dong et al. projection and contraction algorithm in [19] with
resolvent operator. By replacing the metric projection operator in Dong et
al. [19] with resolvent operator, they successfully removed the difficulty as-
sociated with computation of projection when the feasible set has complex
structure and this gave their algorithms some special properties. Recall that
the resolvent operator is a special form of projection operator (projection and
resolvent operators coincide in the normal cones) that enjoys many special
properties that make it a central tool in monotone operator theory and its
applications. The following algorithms were proposed by them:

yn = JAλn (xn − λnf(xn)) ,

d(xn, yn) = xn − yn − λn (f(xn)− f(yn)) ,

xn+1 = xn + γβnd(xn, yn), n ≥ 1,

(1.10)

where γ ∈ (0, 2), βn := φ(xn,yn)
||d(xn,yn)||2 and φ(xn, yn) := 〈xn − yn, d(xn, yn)〉, f :

H → H is monotone and Lipschitz continuous, A : H → 2H is a maximal
monotone operator and

yn = JAλn (xn − λnf(xn)) ,

d(xn, yn) = xn − yn − λn (f(xn)− f(yn)) ,

xn+1 = αnxn + (1− αn)S (xn − γβnd(xn, yn)) , n ≥ 1,

(1.11)
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where S : H → H is a nonexpansive mapping, {λn} is a variable stepsize satis-
fying the prediction stepsize conditions and lim inf

n→∞
λn = λ > 0 . It was shown

that under some appropriate assumptions on the algorithms parameters, al-
gorithm (1.10) converges weakly to the solution of MVIP (1.1) and algorithm
(1.11) converges weakly to common element of Ω and the set of fixed points
of the nonexpansive mapping S : H → H. It is worth mentioning generally
that, strong convergence is more preferable to weak convergence in infinite
dimensional Hilbert spaces (see results in Bauschke and Combettes [9]). Also,
we know that stepsizes play essential roles in the convergence properties of
iterative methods, since efficiency of iterative methods depend heavily on it as
a result of the knowledge of operator norm or coefficient of the operator and
otherwise.

Motivated by the results of Zhang and Wang [46], Jung [27] and many
other results in this direction, in this paper, we proposed a proximal and con-
traction algorithm with inertial extrapolation and relaxation techniques for
approximating the common solution of monotone variational inclusion, and
fixed point problems when the underlying operator is pseudocontractive in
the framework of real Hilbert spaces. We establish that the sequence gener-
ated by this method converges strongly to the solution of the problems under
the prediction stepsizes (which theoretically has wider range) conditions con-
sidered by Cai et al. [12] and, Zhang and Wang [46] and other standard mild
assumptions on our algorithm parameters. Thus, our proposed method does
not require prior knowledge of Lipschitz constant L of the cost operator f
which generally enhances its efficiency and applicability. Moreover, we apply
our obtained results to convex minimization problems. Finally, the results
obtained in the work generalize and improve some well-known results in liter-
ature.

2. Preliminaries

In this section we will give some definitions and present results that will
help us in convergence analysis later.

Definition 2.1. ([36, 44]) Let H be real Hilbert space and C a nonempty,
closed and convex subset of H. Let S : H → H be a real single-valued operator
and F (S) := {u ∈ H : u = Su} denotes the set of all the fixed points of S.
Then, S is said to be:

(a) L-Lipschitz continuous if there exists L > 0 such that

||Su− Sν|| ≤ L||u− ν||, ∀u, ν ∈ H;

(b) non-expansive if

||Su− Sν|| ≤ ||u− ν||, ∀u, ν ∈ H;
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(c) pseudocontractive if

〈Su− Sν, u− ν〉 ≤ ||u− ν||2 for each u, ν ∈ H.

Equivalently, a mapping S is said to be pseudocontractive if

||Su− Sν||2 ≤ ||u− ν||2 + ||(I − S)u− (I − S)ν||2, ∀u, ν ∈ C.

Definition 2.2. ([46]) Let C be a nonempty, closed and convex subset of a
Hilbert space H and A : H → H be a real single-valued operator. Then, A is
said to be:

(a) monotone on C if

〈Au−Aν, u− ν〉 ≥ 0, ∀u, ν ∈ C;

(b) ζ-strongly monotone on C if there exists ζ > 0 such that

〈Au−Aν, u− ν〉 ≥ ζ||u− ν||2, ∀u, ν ∈ C;

(c) η-inverse strongly monotone (η-ism) if there exists a positive constant
η such that

〈Au−Aν, u− ν〉 ≥ η||Au−Aν||2, ∀u, ν ∈ C;

(d) firmly non-expansive on C if

〈Au−Aν, u− ν〉 ≥ ||Au−Aν||2, ∀u, ν ∈ C.

Definition 2.3. ([33]) Let H be a real Hilbert space and M : H → 2H be a
multi-valued operator. Then, M is said to be:

(a) monotone if

〈x− y, u− ν〉 ≥ 0, ∀x, y ∈ H, u ∈M(x), ν ∈M(y);

(b) maximal monotone if the graph of M denoted and defined by

G (M) := {(x, y) ∈ H ×H : y ∈M(x)}

is not properly contained in the graph of any other monotone operator.
In general M is maximal monotone if and only if (x, u) ∈ H × H,
〈x− y, u− ν〉 > 0 for all (y, ν) ∈ G (M) implies that u ∈M(x);

(c) The resolvent operator JMµ associated with multi-valued, maximal

monotone operator M and µ > 0 is a single-valued mapping JMµ :
H → H defined by

JMµ (x) := (I + µM)−1 (x), ∀x ∈ H,

where I is an identity operator on H.
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It should be noted that for all µ > 0 the resolvent operator JMµ is single-
valued, nonexpansive and firmly nonexpansive (reader can see [15] for more
details).

Definition 2.4. ([17]) Let H be a real Hilbert space and C be a nonempty,
closed and convex subset of H. Let A : C → H be an operator. Then, A is
said to be demiclosed at zero if for any sequence {yn}∞n=1 in C such that yn
converges weakly to a point ỹ ∈ C and A(yn)→ y then, A(ỹ) = y.

Lemma 2.5. ([28]) Let H be a real Hilbert space with u, v ∈ H and λ ∈ R.
Then the following holds:

(i) 2 〈u, v〉 = ||u||2 + ||v||2 − ||u− v||2 = ||u+ v||2 − ||u||2 − ||v||2;

(ii) ||u− v||2 ≤ ||u||2 + 2 〈v, u− v〉;
(iii) ||λu+ (1− λ)ν||2 = λ||u||2 + (1− λ)||ν||2 − λ(1− λ)||u− ν||2.

Lemma 2.6. ([44]) Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Let S : C → H be a smooth pseudocontractive mapping.
Then, for any λ > 0 and u ∈ H there exists ν ∈ C such that

〈w − ν, Sν〉 − 1

λ
〈w − ν, (1 + λ)ν − u〉 ≤ 0, ∀w ∈ C.

For λ > 0 and u ∈ H, the resolvent operator of S is a mapping Sλ : C → H
defined as follows:

Sλu :=

{
ν ∈ C : 〈w − ν, Sν〉 − 1

λ
〈w − ν, (1 + λ)ν − u〉 ≤ 0, ∀w ∈ C

}
.

Then, the following hold:

(i) Sλ is a single-valued operator;

(ii) Sλ is firmly nonexpansive, that is,

||u− ν||2 ≤ 〈Sλu− Sλν, u− ν〉 , ∀u, ν ∈ H;

(iii) F (Sλ) = F (S);

(iv) F (S) is a closed convex subset of C.

Lemma 2.7. ([24]) Let C be a closed convex subset of a real Hilbert space H,
and S : C → C be a nonexpansive mapping such that F (S) 6= 0. If a sequence
{xn} ⊂ C such that xn ⇀ x∗ and xn − Sxn → 0 as n→∞, then x∗ = Sx∗.

Lemma 2.8. ([43]) Let M : H → 2H be a maximal monotone mapping and
T : H → H be a Lipschitz continuous mapping. Then the mapping
D := M + T : H → 2H is a maximal monotone mapping.
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Lemma 2.9. ([27]) Let {χn} be a sequence of positive real numbers. Let

{δn} be a sequence in [0, 1] with
∞∑
n=1

δn = ∞, let {ρn} also be a real sequence

such that lim sup ρn ≤ 0 or
∞∑
n=1
|δnρn| < ∞. Suppose that {χn} satisfies the

inequality:

χn+1 ≤ (1− δn)χn + δnρn, ∀ n ∈ N.
Then, lim

n→∞
χn = 0.

Lemma 2.10. ([27]) Let {χn} be a sequence of positive real numbers such that
there exists a subsequence {χnk} of {χn} with χnk < χnk+1 for all k ∈ N. Let
{mj} be sequence of integers defined by mj = max{k ≤ j : χk < χk+1}. Then,
{mj} is a non-decreasing sequence satisfying lim

j→∞
mj =∞ with the properties

χmj ≤ χmj+1 and χj ≤ χmj+1, for all j ∈ N.

3. Main results

Throughout this work, we shall use xn → x (resp. xn ⇀ x) to denote
that the sequence {xn} converges strongly (resp. weakly) to a point x as
n → ∞. For the convergence analysis of our method, we shall make the
following assumptions.

Assumption 3.1. Supposed that:

(A1) Let C be a nonempty, closed and convex subset of a Hilbert space H;

(A2) A : H → 2H is a multi-valued maximal monotone mapping;

(A3) f : H → H is monotone and L-Lipschitz continuous;

(A4) S : H → H is a pseudocontractive mapping with F (S) 6= ∅;
(A5) The solution set Ω := {z∗ ∈ H : 0 ∈ f(z∗) +A(z∗)} 6= ∅ and

Γ := Ω ∩ F (S) 6= ∅;
(A6) The operator; Sλn : H → C is defined by

Sλnu :=
{
ν ∈ C :〈w−ν, Sν〉− 1

λn
〈w−ν, (1+λn)ν−u〉 ≤ 0, ∀w ∈ C

}
;

(A7) The control sequences:{αn}, {λn} are positive real sequences in (0, 1)

with {αn} satisfying the property: lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, {σn} ⊂

(a, 1− αn) , a > 0 and {cn} a positive sequence with

cn = ◦(σn),

that is, lim
n→∞

cn
σn

= 0.
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Algorithm 3.2. Initialization: Choose γ ∈ (0, 2), (µn) ⊂ [µ1, µ2] ∈
(
0, 1

L

)
,

θ ∈ [0, 1], x0, x1 ∈ H.

Iterative Process Steps: Given the iterates xn−1 and xn for each n ≥ 1,
choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n = min

{
θ,

cn
||xn − xn−1||

}
, if xn 6= xn−1; otherwise, set θ̄n = θ.

Step 1: Set n = 1, we calculate the iterate xn+1 as follows:

wn = xn + θn (xn − xn−1)

and compute

νn = (1− αn)wn,

where αn is as given in assumption (A7).

Step 2: Compute

un = JAµn (νn − µnf(νn)) ,

d(νn, un) = νn − un − µn (f(νn)− f(un)) .

Step 3: Compute

yn = νn − γβnd(νn, un),

xn+1 = (1− σn)yn + σnSλnyn,

where βn := φ(νn,un)
||d(νn,un)||2 , for φ(νn, un) := 〈νn − un, d(νn, un)〉 .

Step 4: Set n := n+ 1 and return to Step 1.

Let τ1, τ2 > 0, then from the results in Cai et al. [12], we say that µn satisfies
the prediction stepsize conditions in proximal and contraction methods if µn
satisfies the inequalities:

τ1||νn − un||2 ≤ φ(νn, un) (3.1)

and

τ2 ≤ βn, ∀n ≥ 1. (3.2)

Lemma 3.3. For each n ≥ 1, if νn = un or d(νn, un) = 0, in Algorithm 3.2,
then νn ∈ Ω.
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Proof. Since f is L-Lipschitzian, using the definition of d(νn, un) in Algorithm
3.2, we have

||d(νn, un)|| = ||νn − un − µn (f(νn)− f(un)) ||
≥ ||νn − un|| − µn||f(νn)− f(un)||
≥ ||νn − un|| − µnL||νn − un||
= (1− µnL) ||νn − un||, ∀ n ≥ 1. (3.3)

Similarly, we have

||d(νn, un)|| = ||νn − un − µn (f(νn)− f(un)) ||
≤ ||νn − un||+ µn||f(νn)− f(un)||
≤ ||νn − un||+ µnL||νn − un||
= (1 + µnL) ||νn − un||, ∀ n ≥ 1. (3.4)

Combining (3.3) and (3.4) we have

(1− µnL) ||νn − un|| ≤ ||d(νn, un)||
≤ (1 + µnL) ||νn − un||, ∀ n ≥ 1. (3.5)

From (3.5) we observe that νn = un if and only if d(νn, un) = 0. Therefore,
νn = un or d(νn, un) = 0. Thus, if νn = un then we have

νn = JAµn (νn − µnf(νn))

= (I + µnA)−1 (νn − µnf(νn)) ,

νn − µnf(νn) ∈ (I + µnA) νn,

0 ∈ A(νn) + f(νn).

Hence, νn ∈ Ω. �

Lemma 3.4. Let {νn} and {yn} be sequences generated by Algorithm 3.2 under
Assumption 3.1. Let µn ∈ [µ1, µ2] ⊂

(
0, 1

L

)
, that is, 0 < µ1 ≤ µn ≤ µ2 < +∞

with lim inf
n→∞

µn = µ1 > 0. If µn satisfies the conditions (3.1) and (3.2). Then,

the following hold:

(i)

βn ≥
1− µ2L
1 + µ22L

2
. (3.6)

(ii)

||yn − z∗||2 ≤ ||νn − z∗||2 −
2− γ
γ
||yn − νn||2. (3.7)



186 J. A. Abuchu, G. C. Ugunnadi and O. K. Narain

(iii)

||νn − un||2 ≤
1 + µ22L

2

[(1− µ2L)γ]2
||νn − yn||2. (3.8)

Proof. (i) From definition of φ(νn, un) in Algorithm 3.2 we have

φ(νn, un) = 〈νn − un, d(νn, un)〉
= 〈νn − un, νn − un − µn (f(νn)− f(un))〉
= ||νn − un||2 − µn 〈νn − unf(νn)− f(un)〉
≥ ||νn − un||2 − µn||νn − un||||f(νn)− f(un)||
≥ ||νn − un||2 − µnL||νn − un||2

= (1− µ2L)||νn − un||2. (3.9)

Also, we have

||d(νn, un)||2 = ||νn − un − µn (f(νn)− f(un)) ||2

= ||νn − un||2 + µ2n||f(νn)− f(un)||2

− 2µn 〈νn − un, f(νn)− f(un)〉
≤ ||νn − un||2 + µ2nL

2||νn − un||2

= (1 + µ22L
2)||νn − un||2. (3.10)

Combining (3.9) and (3.10) we get

βn :=
φ(νn, un)

||d(νn, un)||2
≥ 1− µ2L

1 + µ22L
2
. (3.11)

(ii) Let z∗ ∈ Γ. Then, by definition of yn, in Algorithm 3.2, we have

||yn − z∗||2 = ||νn − γβnd(νn, un)− z∗||2

= ||νn−z∗||2−2γβn 〈νn−z∗, d(νn, un)〉+γ2β2n||d(νn, un)||2. (3.12)

From Definition 2.3 (c), we know that the resolvent operator JAµn is firmly

nonexpansive and z∗ = JAµn (I − µnf) z∗. It implies that〈
JAµn (I − µnf) νn − JAµn (I − µnf) z∗, (I − µnf)νn − (I − µnf)z∗

〉
≥ ||JAµn (I − µnf) νn − JAµn (I − µnf) z∗||2

= ||un − z∗||2. (3.13)
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Observe that

〈un − z∗, νn − un − µnf(νn)〉
=
〈
JAµn (I − µnf) νn − JAµn (I − µnf) z∗, (I − µnf)νn − (I − µnf)z∗

〉
+ 〈un − z∗, z∗ − un〉+ 〈un − z∗,−µnf(z∗)〉

≥ ||JAµn (I − µnf) νn − JAµn (I − µnf) z∗||2

− ||un − z∗||2 − µn 〈un − z∗, f(z∗)〉 . (3.14)

Combining (3.13) and (3.14), we obtain

〈un − z∗, νn − un − µnf(νn)〉
≥ ||un − z∗||2 − ||un − z∗||2 − µn 〈un − z∗, f(z∗)〉 . (3.15)

Hence,

〈un − z∗, νn − un − µnf(νn)〉+ µn 〈un − z∗, f(z∗)〉 ≥ 0,

〈un − z∗, νn − un − µn (f(νn)− f(z∗))〉 ≥ 0. (3.16)

From the monotonicity of f and µn > 0, we have that

〈un − z∗, µn (f(un)− f(z∗))〉 ≥ 0. (3.17)

Combining (3.16) and (3.17) we get,

〈un − z∗, νn − un − µnf(νn) + µnf(z∗) + µnf(un)− µnf(z∗)〉 ≥ 0,

〈un − z∗, νn − un − µn (f(νn)− f(un))〉 ≥ 0.

It follows that

〈un − z∗, d(νn, un)〉 = 〈un − z∗, νn − un − µn (f(νn)− f(un))〉 ≥ 0. (3.18)

Now

〈νn − z∗, d(νn, un)〉 = 〈νn − un + un − z∗, d(νn, un)〉
= 〈νn − un, d(νn, un)〉+ 〈un − z∗, d(νn, un)〉 . (3.19)

From (3.18) and (3.19) with the definition of φ(νn, un) in Algorithm 3.2, Step
3, we have

〈νn − z∗, d(νn, un)〉 ≥ φ(νn, un). (3.20)

Combining (3.12) and (3.20) we have

||yn − z∗||2 ≤ ||νn − z∗||2 − 2γβnφ(νn, un) + γ2βnφ(νn, un)

= ||νn − z∗||2 − γ (2− γ)βnφ(νn, un). (3.21)
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From the definition of yn and the relation βn := φ(νn,un)
||d(νn,un)||2 , we have that

βnφ(νn, un) = ||βnd(νn, un)||2

=
1

γ2
||yn − νn||2. (3.22)

Combining (3.21) and (3.22) we obtain

||yn − z∗||2 ≤ ||νn − z∗||2 −
2− γ
γ
||yn − νn||2. (3.23)

(iii) From (3.11) and (3.22) we have

φ(νn, un) =
1

βnγ2
||yn − νn||2

≤ 1 + µ22L
2

γ2 (1− µ2L)
||yn − νn||2. (3.24)

Combining (3.9) and (3.24) we obtain

(1− µ2L)||νn − un||2 ≤ φ(νn, un)

≤ 1 + µ22L
2

γ2 (1− µ2L)
||yn − νn||2.

Hence,

||νn − un||2 ≤
1 + µ22L

2

[γ (1− µ2L)]2
||yn − νn||2. (3.25)

�

Lemma 3.5. Let {xn} be a sequence generated by Algorithm 3.2 under As-
sumption 3.1. Then, {xn} is bounded.

Proof. Let z∗ ∈ Γ. Then, by definition of wn, in Algorithm 3.2, we obtain

||wn − z∗|| = ||xn + θn (xn − xn−1)− z∗||
= ||xn − z∗ + θn (xn − xn−1) ||

≤ ||xn − z∗||+ αn
θn
αn
||xn − xn−1||.

Since, θn
αn
||xn − xn−1|| ≤ cn

αn
, which by (A7) implies that

lim
n→∞

θn
αn
||xn − xn−1|| = 0,
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which means
{
θn
αn
||xn − xn−1||

}
is bounded. Then, there exists a constant

M0 > 0 such that
θn
αn
||xn − xn−1|| ≤M0

for all n ≥ 1. Hence,

||wn − z∗|| ≤ ||xn − z∗||+ αnM0. (3.26)

We know from Lemma 3.4 (ii) that

||yn − z∗||2 ≤ ||νn − z∗||2 −
2− γ
γ
||yn − νn||2. (3.27)

Since γ ∈ (0, 2) it follows that 2− γ > 0 and so,

||yn − z∗|| ≤ ||νn − z∗||. (3.28)

Using the definition of sequence {xn} in Algorithm 3.2, Lemma 2.6 (iii),
(3.26) and (3.28) we have,

||xn+1 − z∗|| = ||(1− σn)yn + σnSλnyn − z∗||
≤ (1− σn)||yn − z∗||+ σn||yn − z∗||
= ||yn − z∗||
≤ ||νn − z∗||
= || (1− αn) (wn − z∗)− αnz∗||
≤ (1− αn)||wn − z∗||+ αn||z∗||
≤ (1− αn)||xn − z∗||+ αn [M0 + ||z∗||]
≤ max {||xn − z∗||, [M0 + ||z∗||]} . (3.29)

By induction we have

||xn − z∗|| ≤ max {||x1 − z∗||, [M0 + ||z∗||]} . (3.30)

Since the sequence {||xn − z∗||} is bounded, it follows that {xn} is bounded.
Thus, ensuring the boundedness of {wn}, {νn}, {un}, {yn} and {Sλnyn}, re-
spectively. �

Lemma 3.6. Let {xn} be sequence generated by Algorithm 3.2 under Assump-
tion 3.1. Then, {xn} satisfies the inequality:

Υn+1 ≤ (1− αn) Υn + αnρn, (3.31)

where,
Υn := ||xn − z∗||2

and

ρn := 2 〈z∗, νn − z∗〉+
θn
αn
||xn − xn−1||M1,
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with M1 := sup (θn||xn − xn−1||+ 2||xn − z∗||) .
Proof. Let z∗ ∈ Γ. Then, using the definition of sequence {xn} in Step 3 of
Algorithm 3.2, Assumption 3.1, Lemma 2.5, and (3.27), we obtain

||xn+1 − z∗||2 = ||(1− σn)yn + σnSλnyn − z∗||2

= (1− σn)||yn − z∗||2 + σn||Sλnyn − z∗||2

− σn (1− σn) ||yn − Sλnyn||2

≤ (1− σn)||yn − z∗||2 + σn||yn − z∗||2

− σn (1− σn) ||yn − Sλnyn||2

= ||yn − z∗||2 − σn (1− σn) ||yn − Sλnyn||2

≤ ||νn − z∗||2 −
2− γ
γ
||νn − yn||2

− σn (1− σn) ||yn − Sλnyn||2

≤ (1− αn)2||wn − z∗||2 + 2αn 〈z∗, νn − z∗〉

− 2− γ
γ
||νn − yn||2

− σn (1− σn) ||yn − Sλnyn||2. (3.32)

We observe that,

||wn − z∗||2 = ||xn − z∗ + θn (xn − xn−1) ||2

= ||xn − z∗||2 + 2θn 〈xn − z∗, xn − xn−1〉
+ θ2n||xn − xn−1||2

≤ ||xn − z∗||2 + 2θn||xn − z∗||||xn − xn−1||
+ θn2||xn − xn−1||2

= ||xn − z∗||2 + θn||xn − xn−1||
× (2||xn − z∗||+ θn||xn − xn−1||)

= ||xn − z∗||2 + θn||xn − xn−1||M1, (3.33)

where, M1 := sup (2||xn − z∗||+ θn||xn − xn−1||) <∞.
Combining (3.32) and (3.33) we get

||xn+1 − z∗||2 ≤ (1− αn)
[
||xn − z∗||2 + θn||xn − xn−1||M1

]
+ 2αn 〈z∗, νn − z∗〉 −

2− γ
γ
||yn − νn||2

− σn (1− σn) ||yn − Sλnyn||2
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≤ (1− αn)||xn − z∗||2

+ αn

[
2 〈z∗, νn − z∗〉+

θn
αn
||xn − xn−1||M1

]
− 2− γ

γ
||yn − νn||2 − σn (1− σn) ||yn − Sλnyn||2

≤ (1− αn)||xn − z∗||2

+ αn

[
2 〈z∗, νn − z∗〉+

θn
αn
||xn − xn−1||M1

]
.

Therefore, we have

||xn+1 − z∗||2 ≤ (1− αn)||xn − z∗||2

+ αn

[
2 〈z∗, νn − z∗〉+

θn
αn
||xn − xn−1||M1

]
, (3.34)

which yields our desired result. �

Theorem 3.7. Let {xn} be the sequence generated by Algorithm 3.2 under
Assumption 3.1. Then, {xn} converges strongly to a point z∗ ∈ Γ := Ω∩F (S) .

Proof. Let z∗ ∈ Γ. We shall denote Υn := ||xn − z∗||2 for all n ≥ 1, n ∈ N.
Our convergence analysis will be divided into two cases.

Case I: Suppose {Υn} is monotonically non-increasing for all n ∈ N, that
is Υn ≥ Υn+1. Then, it is obvious that Υn −Υn+1 → 0 as n→∞.
Using the definition of sequence {xn} in Algorithm 3.2, Lemma 2.5, equation
(3.27) and (3.33), we obtain

||xn+1 − z∗||2 = ||(1− σn)(yn − z∗) + σn (Sλnyn − z∗) ||2

= (1− σn)||yn − z∗||2 + σn||Sλnyn − z∗||2

− σn (1− σn) ||yn − Sλnyn||2

≤ (1− σn)||yn − z∗||2 + σn||yn − z∗||2

− σn (1− σn) ||yn − Sλnyn||2

= ||yn − z∗||2 − σn (1− σn) ||yn − Sλnyn||2

≤ ||νn − z∗||2 −
2− γ
γ
||νn − yn||2

− σn (1− σn) ||yn − Sλnyn||2
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≤ (1− αn)2||wn − z∗||2 + 2αn 〈z∗, νn − z∗〉

− 2− γ
γ
||νn − yn||2 − σn (1− σn) ||yn − Sλnyn||2

≤ (1− αn)||xn − z∗||2

+ αn

[
2 〈z∗, νn − z∗〉+

θn
αn
||xn − xn−1||M1

]
− 2− γ

γ
||yn − νn||2 − σn (1− σn) ||yn − Sλnyn||2. (3.35)

It follows from (3.35) that

2− γ
γ
||yn − νn||2 + σn (1− σn) ||yn − Sλnyn||2

≤ (1− αn)||xn − z∗||2 + αn

[
2 〈z∗, νn − z∗〉+

θn
αn
||xn − xn−1||M1

]
− ||xn+1 − z∗||2. (3.36)

Hence, passing limit as n→∞ in (3.36) and using Assumption 3.1-(A7) with

the fact that lim
n→∞

θn
αn
||xn − xn−1|| = 0, we obtain

lim
n→∞

[
2− γ
γ
||yn − νn||2 + σn (1− σn) ||yn − Sλnyn||2

]
= 0. (3.37)

This implies that

lim
n→∞

||yn − νn|| = 0 (3.38)

and

lim
n→∞

||yn − Sλnyn|| = 0. (3.39)

Observe from the definition of wn that

||wn − xn|| = αn ×
θn
αn
||xn − xn−1|| → 0 as n→∞. (3.40)

From the definition of (yn) and βn we have

||yn − νn|| = γβn||d(νn, un)||

= γ
〈νn − un, d(νn, un)〉
||d(νn, un)||

. (3.41)
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But, we know that

||d(νn, un)|| = ||νn − un − µn (f(νn)− f(u)) ||
≤ ||νn − un||+ µn||f(νn)− f(u)||
≤ ||νn − un||+ µnL||νn − u||
= (1 + µ2L)||νn − un||. (3.42)

It follows from (3.42) that

1

||d(νn, un)||
≥ 1

(1 + µ2L)||νn − un||
. (3.43)

Also from (3.9) we have

〈νn − un, d(νn, un)〉 ≥ (1− µ2L)||νn − un||2. (3.44)

Combining (3.41), (3.43) and (3.44) we obtain

||yn − νn|| ≥ γ
1− µ2L
1 + µ2L

||νn − un||. (3.45)

Applying (3.38) we have

lim
n→∞

||νn − un|| = 0. (3.46)

Also, we have

lim
n→∞

||νn − wn|| = lim
n→∞

(αn||wn||) = 0. (3.47)

Applying (3.40) we get

||νn − xn|| = ||(1− αn)wn − xn||
= ||(1− αn)(wn − xn)− αnxn||
≤ (1− αn)||wn − xn||+ αn||xn||
→ 0 as n→∞. (3.48)

Combining (3.46) and (3.47), we obtain

||yn − un|| ≤ ||yn − νn||+ ||νn − un||
→ 0 as n→∞. (3.49)

Applying (3.38) and (3.48), we get

||yn − xn|| ≤ ||yn − νn||+ ||νn − xn||
→ 0 as n→∞. (3.50)
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Also, applying (3.39) we obtain

||yn − xn+1|| = ||yn − (1− σn)yn − σnSλnyn||
= σn||yn − Sλnyn||
→ 0 as n→∞.

Hence,

lim
n→∞

||yn − xn+1|| = 0. (3.51)

Combining (3.50) and (3.51) we obtain

||xn − xn+1|| = ||xn − yn + yn − xn+1||
≤ ||xn − yn||+ ||yn − xn+1||
→ 0 as n→∞.

Thus,

lim
n→∞

||xn − xn+1|| = 0. (3.52)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that
xnk ⇀ z∗ ∈ H as n → ∞. Accordingly, by Lemma 3.3, unk ⇀ z∗ ∈ H as
n→∞.

Next we need to show that

0 ∈ A(z∗) + f(z∗).

Since the operator f is monotone and L-Lipschitz continuous, by Lemma 2.8,
it follows that (A+ f) is a maximal monotone mapping. Let us consider
G (A+ f) as the graph of this operator. It follows that for (u, ω) ∈ G (A+ f) ;
ω − fu ∈ A(u). From the definition of un = JAµn (νn − µnf(νn)), we obtain

un = JAµn (νn − µnf(νn))

= (I + µnA)−1 (νn − µnf(νn)) .

It implies that

νn − µnf(νn) ∈ (I + µnA)un.

That is

1

µn
(νn − un − µnf(νn)) ∈ A(un).
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Since (A+ f) is maximally monotone, it follows that for (u, ω) ∈ G (A+ f),
we have〈

u− unk , ω − fu−
1

µnk
(νnk − un − µnkfνnk)

〉
≥ 0,

〈u− unk , ω〉 −
〈
u− unk , fu+

1

µn
(νnk − un − µnkfνnk)

〉
≥ 0.

It follows that

〈u− unk , ω〉 ≥
〈
u− unk , fu+

1

µnk
(νnk − un − µnkfνnk)

〉
=

〈
u− unk , fu− funk + funk +

1

µnk
(νnk − un − µnkfνnk)

〉
= 〈u− unk , fu− funk〉+ 〈u− unk , funk − fνnk〉

+
1

µnk
〈u− unk , νnk − unk〉

≥ 〈u− unk , funk − fνnk〉+
1

µnk
〈u− unk , νnk − unk〉 . (3.53)

Recall that f is L-Lipschitzian, so, combining (3.46) and (3.53) we obtain

||funk − fνnk || ≤ L||unk − νnk ||
→ 0 as n→∞. (3.54)

Also, since {unk} converges weakly to x∗, we obtain from (3.53) that

lim
k→∞

〈u− unk , ω〉 = 〈u− z∗, ω〉 ≥ 0.

A+ f being maximally monotone, ensures that 0 ∈ (A+ f) z∗. Thus, z∗ ∈ Ω.
Next we need to establish that {xn} converges strongly to z∗ ∈ Ω. To

achieve this entails showing that

lim sup
n→∞

〈z∗, νn − z∗〉 ≤ 0.

Since {νn} is bounded, there exists a subsequence {νnk} of {νn} such that
{νn} converges weakly to a point p∗ ∈ H such that

lim sup
n→∞

〈z∗, z∗ − νn〉 = lim
k→∞

〈z∗, z∗ − νnk〉 . (3.55)

And since p∗ is a unique solution of MVIP in (1.1), then p∗ ∈ Ω and it follows
that

lim sup
k→∞

〈z∗, z∗ − νnk〉 = 〈z∗, z∗ − p∗〉 ≤ 0. (3.56)
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In Lemma 3.6, if we replace z∗ with p∗ we obtain

||xn+1 − p∗||2 ≤ ||νn − p∗||2

≤ (1− αn)2||wn − p∗||2 + 2αn 〈p∗, νn − p∗〉
≤ (1− αn)||wn − p∗||2 + 2αn 〈p∗, νn − p∗〉 . (3.57)

Combining (3.33) and (3.57) we obtain

||xnk+1 − p∗||2 ≤ (1− αnk)
[
||xn − p∗||2 + θnk ||xnk − xnk−1||M1

]
+ 2αnk 〈p

∗, νnk − p
∗〉

= (1− αnk)

[
||xnk − p

∗||2 + αnk

(
θnk
αnk
||xnk − xnk−1||M1

)]
+ 2αnk(1− αnk) 〈p∗, νnk − p

∗〉
≤ (1− αnk)||xnk − p

∗||2

+ αnk

[
2 〈p∗, νnk − p

∗〉+

(
θnk
αnk
||xnk − xnk−1||M1

)]
.

(3.58)

We know that

ρnk := 2 〈p∗, νnk − p
∗〉+

θnk
αnk
||xnk − xnk−1||M1.

Hence, by lim
k→∞

θnk
αnk
||xnk − xnk−1|| = 0, (3.56) and Lemma 2.9, we have that

lim
n→∞

||xn − z∗|| = 0.

Therefore, we conclude that the sequence {xn} converges strongly to a point
z∗ ∈ Ω as n→∞.

Next we need to show that z∗ ∈ F (S) in under to conclude that xn → z∗ ∈
Γ := Ω ∩ F (S).

From (3.36) we have

2− γ
γ
||ynk − νnk ||

2 + σnk (1− σnk) ||ynk − Sλnk ynk ||
2

≤ (1− αnk)||xnk − z
∗||2 − ||xnk+1 − z∗||2

+ αnk

[
2 〈z∗, νnk − z

∗〉+
θnk
αnk
||xnk − xnk−1||M1

]
.
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It follows that

σnk (1− σnk) ||ynk − Sλnk ynk ||
2

≤ (1− αnk)||xnk − z
∗||2 − ||xnk+1 − z∗||2

+ αnk

[
2 〈z∗, νnk − z

∗〉+
θnk
αnk
||xnk − xnk−1||M1

]
→ 0 as k →∞. (3.59)

Thus,

lim
k→∞

||ynk − Sλnk ynk || = 0. (3.60)

But

||νnk − Sλnk νnk || = ||νnk − Sλnk ynk + Sλnk ynk − Sλnk νnk ||
≤ ||νnk − Sλnk ynk ||+ ||Sλnk ynk − Sλnk νnk ||
≤ ||νnk − Sλnk ynk ||+ ||ynk − νnk ||
= ||νnk − ynk + ynk − Sλnk ynk ||+ ||ynk − νnk ||
≤ ||ynk − Sλnk ynk ||+ 2||νnk − ynk ||. (3.61)

Combining (3.38), (3.60) and (3.61) we have

lim
k→∞

||νnk − Sλnk νnk || = 0. (3.62)

Since νnk ⇀ z∗, from Lemma 2.7 and (3.62), we obtain z∗ = Sλnk z
∗. Following

the same line of argument given above, and demiclosedness of S and Lemma
2.6 (iii) we conclude that z∗ ∈ F (S). Therefore, xn → z∗ ∈ Γ.

Case II: Suppose {Υn} is not monotonically decreasing for all n ∈ N. Let
υ : N→ N be a sequence that is defined for all n ≥ n0, for some large n0 such
that

υ(n) := max{m ∈ N : m ≤ n, Υm ≤ Υm+1}.

Then, it is obvious from Lemma 2.10 that {υ(n)} is non-decreasing sequence
with the property lim

n→∞
υ(n) = ∞ and Υυ(n) ≤ Υυ(n)+1 for all n ≥ n0. From

(3.36) and by the condition on control sequence {αυ(n)}, we have

2− γ
γ
||yυ(n) − νυ(n)||2 + συ(n)

(
1− συ(n)

)
||yυ(n) − Sλυ(n)yυ(n)||

2

≤ (1− αυ(n))||xυ(n) − z∗||2 − ||xυ(n)+1 − z∗||2

+ αυ(n)

[
2
〈
z∗, νυ(n) − z∗

〉
+
θυ(n)

αυ(n)
||xυ(n) − xυ(n)−1||M1

]
→ 0, as n→∞. (3.63)
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This implies,

lim
n→∞

||yυ(n) − Sλυ(n)yυ(n)|| = 0 (3.64)

and

lim
n→∞

||yυ(n) − νυ(n)|| = 0. (3.65)

Similarly, by adopting the same line of argument as in Case I we obtain

lim
n→∞

||νυ(n) − uυ(n)|| = lim
n→∞

||yυ(n) − uυ(n)|| = lim
n→∞

||xυ(n) − xυ(n)+1|| = 0.

By the same line of argument in Case I, since {νυ(n)} is bounded, there
exists a subsequence {νυ(n)k} of {νυ(n)} such that νυ(n)k ⇀ p∗ ∈ H and

lim sup
k→∞

〈
z∗, z∗ − νυ(n)k

〉
= 〈z∗, z∗ − p∗〉 ≤ 0. (3.66)

Also, in the view of (3.58), for all n ≥ n0 we have

||xυ(n)k+1 − z∗||2

≤
(
1− αυ(n)k

)
||xυ(n)k − z

∗||2

+ αυ(n)k

[
2
〈
z∗, νυ(n)k−z

∗〉+ θυ(n)k
αυ(n)k

||xυ(n)k−xυ(n)k−1||M1

]
. (3.67)

Since lim
k→∞

θυ(n)k
αυ(n)k

||xυ(n)k − xυ(n)k−1|| = 0, by Lemma 2.9, (3.66) and (3.67)

we have that ||xυ(n) − z∗||2 → 0, as n→∞. And since we have

||xυ(n) − z∗||2 ≥ ||xn − z∗||2 ≥ 0,

we conclude that xn → z∗ as n→∞. Therefore, {xn} converges strongly
to z∗ ∈ Ω. Adopting the same approach as in Case I, from (3.61) we have

||νυ(n)k − Sλυ(n)kνυ(n)k || ≤ ||yυ(n)k − Sλυ(n)kyυ(n)k ||
+ 2||νυ(n)k − yυ(n)k ||
→ 0, as n→∞. (3.68)

Since νυ(n)k ⇀ z∗, then from Lemma 2.7 and (3.62) we obtain z∗ =
Sλυ(n)kz

∗. From demiclosedness of S and Lemma 2.6 (iii) we conclude

that z∗ ∈ F (S). Therefore, we have that xn → z∗ ∈ Γ, completing the
proof. �
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4. Application

In this section we are going to use our main result, Theorem 3.7 to find
approximate solution of some special monotone variational inclusion and fixed
point problems.

4.1. Application to convex minimization problem. Let F : H → R be
a convex and differentiable function. Let G : H → R be a proper convex and
lower semi-continuous function. Let∇F denotes the gradient of F . Recall that
∇F is L-Lipschitz continuous. Let ∂G denotes the subdifferential of mapping
G. In the work of Rockafeller [38], we see that ∂G is maximal monotone
mapping and

F (z∗) +G(z∗) = min
x∈H

[F (x) +G(x)] ⇐⇒ 0 ∈ [∇F (z∗) + ∂G(z∗)] .

Now let us consider a class of convex minimization problem : Find z∗ ∈ H
such that

F (z∗) +G(z∗) = min
x∈H

[F (x) +G(x)] . (4.1)

By application of Fermat’s rule, problem (4.1) can be equivalently expressed
as: Find z∗ ∈ H such that

0 ∈ ∇F (z∗) + ∂G(z∗). (4.2)

Suppose that the solution set of (1.1) is Ω 6= ∅ and Γ := Ω ∩ F (T ). Then, if
we set A := ∂G, and f := ∇F in Theorem 3.7, we obtain result:

Corollary 4.1. Let H be a real Hilbert space with nonempty, closed and
convex subsets C. Let F : H → R be a proper convex and lower semi-
continuous mapping such that the gradient∇F is L-Lipschitzian. Let G : H →
R be a convex and differentiable function with subdifferential ∂G. Assume
Γ 6= ∅ and the sequence {xn} generated for arbitrary x0, x1 ∈ H is defined by

wn = xn + θn (xn − xn−1) ,
νn = (1− αn)wn,

un = J∂Gµn (νn − µn∇F (νn)) ,

d(νn, un) = νn − un − µn (∇F (νn)−∇F (un)) ,

yn = νn − γβnd(νn, un),

xn+1 = (1− σn)yn + σnSλnyn,

(4.3)

where, βn := φ(νn,un)
||d(νn,un)||2 , φ(νn, un) := 〈νn − un, d(νn, un)〉, with µn satisfying

the prediction stepsize conditions (3.1) and (3.2). Then, the sequence {xn}
converges strongly to a point in Γ.
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Remark 4.2. Compare with the results in Haung [26], Moudafi and Oliny
[33], Alvarez and Attouch [5], and Zhang and Wang [46], our results improve
and generalize them in the following ways.

(i) The problem of finding the solution of monotone variational inclusion
problem when the underlying operator is inverse strongly monotone in
Haung [26] was extended to finding the solution of MVIP with mono-
tone cost operator, and fixed point constraint of pseudocontractive
mapping embellished with relaxation using inertial proximal and con-
traction techniques under prediction stepsizes conditions.

(ii) The task of finding the solution of MVIP (1.1) in Moudafi and Oliny
[33], Alvarez and Attouch [5] using proximal projection algorithm,
which they only obtained weak convergence results were extended to
finding element(s) in Ω ∩ F (S) under norm convergence, where Ω is
the solution set of MVIP, and F (S) is the fixed point set of pseudo-
contractive mapping S.

(iii) Also, the problem of finding the solution of monotone variational in-
clusion problem and fixed point problem of nonexpansive mapping in
Zhang and Wang [46] was extended to finding element(s) in Ω ∩ F (S)
under self-adjustment stepsize condition without prior knowledge of
Lipschitz constant of the underlying operator. The class of operators
(monotone and pseudocontractive operators) considered in our work
are more general than the ones in [5, 26, 33, 46]. Specifically, the class
of pseudocontractive mappings include several important classes of op-
erators like nonexpansive mappings, quasi-nonexpansive mappings, k-
strictly pseudocontractive and so on.

5. Conclusion

A modified relaxed inertial proximal and contraction algorithm for solving
monotone variational inclusion, and fixed point problems when the under-
lying operator is pseudocontractive in real Hilbert space was introduced and
studied. From our convergence analysis, we establish strong convergence of
Algorithm 3.2 under the prediction stepsizes conditions considered by Cai et
al. [12] and, Zhang and Wang [46] and other standard mild assumptions on
the algorithm parameters. The proposed iterative method does not require
prior knowledge of Lipschitz constant L of the cost operator f which generally
enhances its efficiency and applicability. Finally, application of our established
result to convex minimization problem was presented.

Acknowledgments. The authors sincerely appreciate the anonymous ref-
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